All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.common.graph.BaseGraph Maven / Gradle / Ivy

Go to download

This artifact provides a single jar that contains all classes required to use remote Jakarta Enterprise Beans and Jakarta Messaging, including all dependencies. It is intended for use by those not using maven, maven users should just import the Jakarta Enterprise Beans and Jakarta Messaging BOM's instead (shaded JAR's cause lots of problems with maven, as it is very easy to inadvertently end up with different versions on classes on the class path).

There is a newer version: 35.0.0.Final
Show newest version
/*
 * Copyright (C) 2017 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.graph;

import java.util.Set;

/**
 * A non-public interface for the methods shared between {@link Graph} and {@link ValueGraph}.
 *
 * @author James Sexton
 * @param  Node parameter type
 */
interface BaseGraph extends SuccessorsFunction, PredecessorsFunction {
  //
  // Graph-level accessors
  //

  /** Returns all nodes in this graph, in the order specified by {@link #nodeOrder()}. */
  Set nodes();

  /** Returns all edges in this graph. */
  Set> edges();

  //
  // Graph properties
  //

  /**
   * Returns true if the edges in this graph are directed. Directed edges connect a {@link
   * EndpointPair#source() source node} to a {@link EndpointPair#target() target node}, while
   * undirected edges connect a pair of nodes to each other.
   */
  boolean isDirected();

  /**
   * Returns true if this graph allows self-loops (edges that connect a node to itself). Attempting
   * to add a self-loop to a graph that does not allow them will throw an {@link
   * IllegalArgumentException}.
   */
  boolean allowsSelfLoops();

  /** Returns the order of iteration for the elements of {@link #nodes()}. */
  ElementOrder nodeOrder();

  //
  // Element-level accessors
  //

  /**
   * Returns the nodes which have an incident edge in common with {@code node} in this graph.
   *
   * @throws IllegalArgumentException if {@code node} is not an element of this graph
   */
  Set adjacentNodes(N node);

  /**
   * Returns all nodes in this graph adjacent to {@code node} which can be reached by traversing
   * {@code node}'s incoming edges against the direction (if any) of the edge.
   *
   * 

In an undirected graph, this is equivalent to {@link #adjacentNodes(Object)}. * * @throws IllegalArgumentException if {@code node} is not an element of this graph */ @Override Set predecessors(N node); /** * Returns all nodes in this graph adjacent to {@code node} which can be reached by traversing * {@code node}'s outgoing edges in the direction (if any) of the edge. * *

In an undirected graph, this is equivalent to {@link #adjacentNodes(Object)}. * *

This is not the same as "all nodes reachable from {@code node} by following outgoing * edges". For that functionality, see {@link Graphs#reachableNodes(Graph, Object)}. * * @throws IllegalArgumentException if {@code node} is not an element of this graph */ @Override Set successors(N node); /** * Returns the edges in this graph whose endpoints include {@code node}. * * @throws IllegalArgumentException if {@code node} is not an element of this graph * @since 24.0 */ Set> incidentEdges(N node); /** * Returns the count of {@code node}'s incident edges, counting self-loops twice (equivalently, * the number of times an edge touches {@code node}). * *

For directed graphs, this is equal to {@code inDegree(node) + outDegree(node)}. * *

For undirected graphs, this is equal to {@code incidentEdges(node).size()} + (number of * self-loops incident to {@code node}). * *

If the count is greater than {@code Integer.MAX_VALUE}, returns {@code Integer.MAX_VALUE}. * * @throws IllegalArgumentException if {@code node} is not an element of this graph */ int degree(N node); /** * Returns the count of {@code node}'s incoming edges (equal to {@code predecessors(node).size()}) * in a directed graph. In an undirected graph, returns the {@link #degree(Object)}. * *

If the count is greater than {@code Integer.MAX_VALUE}, returns {@code Integer.MAX_VALUE}. * * @throws IllegalArgumentException if {@code node} is not an element of this graph */ int inDegree(N node); /** * Returns the count of {@code node}'s outgoing edges (equal to {@code successors(node).size()}) * in a directed graph. In an undirected graph, returns the {@link #degree(Object)}. * *

If the count is greater than {@code Integer.MAX_VALUE}, returns {@code Integer.MAX_VALUE}. * * @throws IllegalArgumentException if {@code node} is not an element of this graph */ int outDegree(N node); /** * Returns true if there is an edge directly connecting {@code nodeU} to {@code nodeV}. This is * equivalent to {@code nodes().contains(nodeU) && successors(nodeU).contains(nodeV)}. * *

In an undirected graph, this is equal to {@code hasEdgeConnecting(nodeV, nodeU)}. * * @since 23.0 */ boolean hasEdgeConnecting(N nodeU, N nodeV); }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy