io.netty.buffer.PoolArena Maven / Gradle / Ivy
Go to download
This artifact provides a single jar that contains all classes required to use remote Jakarta Enterprise Beans and Jakarta Messaging, including
all dependencies. It is intended for use by those not using maven, maven users should just import the Jakarta Enterprise Beans and
Jakarta Messaging BOM's instead (shaded JAR's cause lots of problems with maven, as it is very easy to inadvertently end up
with different versions on classes on the class path).
/*
* Copyright 2012 The Netty Project
*
* The Netty Project licenses this file to you under the Apache License,
* version 2.0 (the "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*/
package io.netty.buffer;
import io.netty.util.internal.LongCounter;
import io.netty.util.internal.PlatformDependent;
import io.netty.util.internal.StringUtil;
import java.nio.ByteBuffer;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.atomic.AtomicInteger;
import static io.netty.util.internal.ObjectUtil.checkPositiveOrZero;
import static java.lang.Math.max;
abstract class PoolArena implements PoolArenaMetric {
static final boolean HAS_UNSAFE = PlatformDependent.hasUnsafe();
enum SizeClass {
Tiny,
Small,
Normal
}
static final int numTinySubpagePools = 512 >>> 4;
final PooledByteBufAllocator parent;
private final int maxOrder;
final int pageSize;
final int pageShifts;
final int chunkSize;
final int subpageOverflowMask;
final int numSmallSubpagePools;
final int directMemoryCacheAlignment;
final int directMemoryCacheAlignmentMask;
private final PoolSubpage[] tinySubpagePools;
private final PoolSubpage[] smallSubpagePools;
private final PoolChunkList q050;
private final PoolChunkList q025;
private final PoolChunkList q000;
private final PoolChunkList qInit;
private final PoolChunkList q075;
private final PoolChunkList q100;
private final List chunkListMetrics;
// Metrics for allocations and deallocations
private long allocationsNormal;
// We need to use the LongCounter here as this is not guarded via synchronized block.
private final LongCounter allocationsTiny = PlatformDependent.newLongCounter();
private final LongCounter allocationsSmall = PlatformDependent.newLongCounter();
private final LongCounter allocationsHuge = PlatformDependent.newLongCounter();
private final LongCounter activeBytesHuge = PlatformDependent.newLongCounter();
private long deallocationsTiny;
private long deallocationsSmall;
private long deallocationsNormal;
// We need to use the LongCounter here as this is not guarded via synchronized block.
private final LongCounter deallocationsHuge = PlatformDependent.newLongCounter();
// Number of thread caches backed by this arena.
final AtomicInteger numThreadCaches = new AtomicInteger();
// TODO: Test if adding padding helps under contention
//private long pad0, pad1, pad2, pad3, pad4, pad5, pad6, pad7;
protected PoolArena(PooledByteBufAllocator parent, int pageSize,
int maxOrder, int pageShifts, int chunkSize, int cacheAlignment) {
this.parent = parent;
this.pageSize = pageSize;
this.maxOrder = maxOrder;
this.pageShifts = pageShifts;
this.chunkSize = chunkSize;
directMemoryCacheAlignment = cacheAlignment;
directMemoryCacheAlignmentMask = cacheAlignment - 1;
subpageOverflowMask = ~(pageSize - 1);
tinySubpagePools = newSubpagePoolArray(numTinySubpagePools);
for (int i = 0; i < tinySubpagePools.length; i ++) {
tinySubpagePools[i] = newSubpagePoolHead(pageSize);
}
numSmallSubpagePools = pageShifts - 9;
smallSubpagePools = newSubpagePoolArray(numSmallSubpagePools);
for (int i = 0; i < smallSubpagePools.length; i ++) {
smallSubpagePools[i] = newSubpagePoolHead(pageSize);
}
q100 = new PoolChunkList(this, null, 100, Integer.MAX_VALUE, chunkSize);
q075 = new PoolChunkList(this, q100, 75, 100, chunkSize);
q050 = new PoolChunkList(this, q075, 50, 100, chunkSize);
q025 = new PoolChunkList(this, q050, 25, 75, chunkSize);
q000 = new PoolChunkList(this, q025, 1, 50, chunkSize);
qInit = new PoolChunkList(this, q000, Integer.MIN_VALUE, 25, chunkSize);
q100.prevList(q075);
q075.prevList(q050);
q050.prevList(q025);
q025.prevList(q000);
q000.prevList(null);
qInit.prevList(qInit);
List metrics = new ArrayList(6);
metrics.add(qInit);
metrics.add(q000);
metrics.add(q025);
metrics.add(q050);
metrics.add(q075);
metrics.add(q100);
chunkListMetrics = Collections.unmodifiableList(metrics);
}
private PoolSubpage newSubpagePoolHead(int pageSize) {
PoolSubpage head = new PoolSubpage(pageSize);
head.prev = head;
head.next = head;
return head;
}
@SuppressWarnings("unchecked")
private PoolSubpage[] newSubpagePoolArray(int size) {
return new PoolSubpage[size];
}
abstract boolean isDirect();
PooledByteBuf allocate(PoolThreadCache cache, int reqCapacity, int maxCapacity) {
PooledByteBuf buf = newByteBuf(maxCapacity);
allocate(cache, buf, reqCapacity);
return buf;
}
static int tinyIdx(int normCapacity) {
return normCapacity >>> 4;
}
static int smallIdx(int normCapacity) {
int tableIdx = 0;
int i = normCapacity >>> 10;
while (i != 0) {
i >>>= 1;
tableIdx ++;
}
return tableIdx;
}
// capacity < pageSize
boolean isTinyOrSmall(int normCapacity) {
return (normCapacity & subpageOverflowMask) == 0;
}
// normCapacity < 512
static boolean isTiny(int normCapacity) {
return (normCapacity & 0xFFFFFE00) == 0;
}
private void allocate(PoolThreadCache cache, PooledByteBuf buf, final int reqCapacity) {
final int normCapacity = normalizeCapacity(reqCapacity);
if (isTinyOrSmall(normCapacity)) { // capacity < pageSize
int tableIdx;
PoolSubpage[] table;
boolean tiny = isTiny(normCapacity);
if (tiny) { // < 512
if (cache.allocateTiny(this, buf, reqCapacity, normCapacity)) {
// was able to allocate out of the cache so move on
return;
}
tableIdx = tinyIdx(normCapacity);
table = tinySubpagePools;
} else {
if (cache.allocateSmall(this, buf, reqCapacity, normCapacity)) {
// was able to allocate out of the cache so move on
return;
}
tableIdx = smallIdx(normCapacity);
table = smallSubpagePools;
}
final PoolSubpage head = table[tableIdx];
/**
* Synchronize on the head. This is needed as {@link PoolChunk#allocateSubpage(int)} and
* {@link PoolChunk#free(long)} may modify the doubly linked list as well.
*/
synchronized (head) {
final PoolSubpage s = head.next;
if (s != head) {
assert s.doNotDestroy && s.elemSize == normCapacity;
long handle = s.allocate();
assert handle >= 0;
s.chunk.initBufWithSubpage(buf, null, handle, reqCapacity);
incTinySmallAllocation(tiny);
return;
}
}
synchronized (this) {
allocateNormal(buf, reqCapacity, normCapacity);
}
incTinySmallAllocation(tiny);
return;
}
if (normCapacity <= chunkSize) {
if (cache.allocateNormal(this, buf, reqCapacity, normCapacity)) {
// was able to allocate out of the cache so move on
return;
}
synchronized (this) {
allocateNormal(buf, reqCapacity, normCapacity);
++allocationsNormal;
}
} else {
// Huge allocations are never served via the cache so just call allocateHuge
allocateHuge(buf, reqCapacity);
}
}
// Method must be called inside synchronized(this) { ... } block
private void allocateNormal(PooledByteBuf buf, int reqCapacity, int normCapacity) {
if (q050.allocate(buf, reqCapacity, normCapacity) || q025.allocate(buf, reqCapacity, normCapacity) ||
q000.allocate(buf, reqCapacity, normCapacity) || qInit.allocate(buf, reqCapacity, normCapacity) ||
q075.allocate(buf, reqCapacity, normCapacity)) {
return;
}
// Add a new chunk.
PoolChunk c = newChunk(pageSize, maxOrder, pageShifts, chunkSize);
boolean success = c.allocate(buf, reqCapacity, normCapacity);
assert success;
qInit.add(c);
}
private void incTinySmallAllocation(boolean tiny) {
if (tiny) {
allocationsTiny.increment();
} else {
allocationsSmall.increment();
}
}
private void allocateHuge(PooledByteBuf buf, int reqCapacity) {
PoolChunk chunk = newUnpooledChunk(reqCapacity);
activeBytesHuge.add(chunk.chunkSize());
buf.initUnpooled(chunk, reqCapacity);
allocationsHuge.increment();
}
void free(PoolChunk chunk, ByteBuffer nioBuffer, long handle, int normCapacity, PoolThreadCache cache) {
if (chunk.unpooled) {
int size = chunk.chunkSize();
destroyChunk(chunk);
activeBytesHuge.add(-size);
deallocationsHuge.increment();
} else {
SizeClass sizeClass = sizeClass(normCapacity);
if (cache != null && cache.add(this, chunk, nioBuffer, handle, normCapacity, sizeClass)) {
// cached so not free it.
return;
}
freeChunk(chunk, handle, sizeClass, nioBuffer, false);
}
}
private SizeClass sizeClass(int normCapacity) {
if (!isTinyOrSmall(normCapacity)) {
return SizeClass.Normal;
}
return isTiny(normCapacity) ? SizeClass.Tiny : SizeClass.Small;
}
void freeChunk(PoolChunk chunk, long handle, SizeClass sizeClass, ByteBuffer nioBuffer, boolean finalizer) {
final boolean destroyChunk;
synchronized (this) {
// We only call this if freeChunk is not called because of the PoolThreadCache finalizer as otherwise this
// may fail due lazy class-loading in for example tomcat.
if (!finalizer) {
switch (sizeClass) {
case Normal:
++deallocationsNormal;
break;
case Small:
++deallocationsSmall;
break;
case Tiny:
++deallocationsTiny;
break;
default:
throw new Error();
}
}
destroyChunk = !chunk.parent.free(chunk, handle, nioBuffer);
}
if (destroyChunk) {
// destroyChunk not need to be called while holding the synchronized lock.
destroyChunk(chunk);
}
}
PoolSubpage findSubpagePoolHead(int elemSize) {
int tableIdx;
PoolSubpage[] table;
if (isTiny(elemSize)) { // < 512
tableIdx = elemSize >>> 4;
table = tinySubpagePools;
} else {
tableIdx = 0;
elemSize >>>= 10;
while (elemSize != 0) {
elemSize >>>= 1;
tableIdx ++;
}
table = smallSubpagePools;
}
return table[tableIdx];
}
int normalizeCapacity(int reqCapacity) {
checkPositiveOrZero(reqCapacity, "reqCapacity");
if (reqCapacity >= chunkSize) {
return directMemoryCacheAlignment == 0 ? reqCapacity : alignCapacity(reqCapacity);
}
if (!isTiny(reqCapacity)) { // >= 512
// Doubled
int normalizedCapacity = reqCapacity;
normalizedCapacity --;
normalizedCapacity |= normalizedCapacity >>> 1;
normalizedCapacity |= normalizedCapacity >>> 2;
normalizedCapacity |= normalizedCapacity >>> 4;
normalizedCapacity |= normalizedCapacity >>> 8;
normalizedCapacity |= normalizedCapacity >>> 16;
normalizedCapacity ++;
if (normalizedCapacity < 0) {
normalizedCapacity >>>= 1;
}
assert directMemoryCacheAlignment == 0 || (normalizedCapacity & directMemoryCacheAlignmentMask) == 0;
return normalizedCapacity;
}
if (directMemoryCacheAlignment > 0) {
return alignCapacity(reqCapacity);
}
// Quantum-spaced
if ((reqCapacity & 15) == 0) {
return reqCapacity;
}
return (reqCapacity & ~15) + 16;
}
int alignCapacity(int reqCapacity) {
int delta = reqCapacity & directMemoryCacheAlignmentMask;
return delta == 0 ? reqCapacity : reqCapacity + directMemoryCacheAlignment - delta;
}
void reallocate(PooledByteBuf buf, int newCapacity, boolean freeOldMemory) {
assert newCapacity >= 0 && newCapacity <= buf.maxCapacity();
int oldCapacity = buf.length;
if (oldCapacity == newCapacity) {
return;
}
PoolChunk oldChunk = buf.chunk;
ByteBuffer oldNioBuffer = buf.tmpNioBuf;
long oldHandle = buf.handle;
T oldMemory = buf.memory;
int oldOffset = buf.offset;
int oldMaxLength = buf.maxLength;
// This does not touch buf's reader/writer indices
allocate(parent.threadCache(), buf, newCapacity);
int bytesToCopy;
if (newCapacity > oldCapacity) {
bytesToCopy = oldCapacity;
} else {
buf.trimIndicesToCapacity(newCapacity);
bytesToCopy = newCapacity;
}
memoryCopy(oldMemory, oldOffset, buf, bytesToCopy);
if (freeOldMemory) {
free(oldChunk, oldNioBuffer, oldHandle, oldMaxLength, buf.cache);
}
}
@Override
public int numThreadCaches() {
return numThreadCaches.get();
}
@Override
public int numTinySubpages() {
return tinySubpagePools.length;
}
@Override
public int numSmallSubpages() {
return smallSubpagePools.length;
}
@Override
public int numChunkLists() {
return chunkListMetrics.size();
}
@Override
public List tinySubpages() {
return subPageMetricList(tinySubpagePools);
}
@Override
public List smallSubpages() {
return subPageMetricList(smallSubpagePools);
}
@Override
public List chunkLists() {
return chunkListMetrics;
}
private static List subPageMetricList(PoolSubpage>[] pages) {
List metrics = new ArrayList();
for (PoolSubpage> head : pages) {
if (head.next == head) {
continue;
}
PoolSubpage> s = head.next;
for (;;) {
metrics.add(s);
s = s.next;
if (s == head) {
break;
}
}
}
return metrics;
}
@Override
public long numAllocations() {
final long allocsNormal;
synchronized (this) {
allocsNormal = allocationsNormal;
}
return allocationsTiny.value() + allocationsSmall.value() + allocsNormal + allocationsHuge.value();
}
@Override
public long numTinyAllocations() {
return allocationsTiny.value();
}
@Override
public long numSmallAllocations() {
return allocationsSmall.value();
}
@Override
public synchronized long numNormalAllocations() {
return allocationsNormal;
}
@Override
public long numDeallocations() {
final long deallocs;
synchronized (this) {
deallocs = deallocationsTiny + deallocationsSmall + deallocationsNormal;
}
return deallocs + deallocationsHuge.value();
}
@Override
public synchronized long numTinyDeallocations() {
return deallocationsTiny;
}
@Override
public synchronized long numSmallDeallocations() {
return deallocationsSmall;
}
@Override
public synchronized long numNormalDeallocations() {
return deallocationsNormal;
}
@Override
public long numHugeAllocations() {
return allocationsHuge.value();
}
@Override
public long numHugeDeallocations() {
return deallocationsHuge.value();
}
@Override
public long numActiveAllocations() {
long val = allocationsTiny.value() + allocationsSmall.value() + allocationsHuge.value()
- deallocationsHuge.value();
synchronized (this) {
val += allocationsNormal - (deallocationsTiny + deallocationsSmall + deallocationsNormal);
}
return max(val, 0);
}
@Override
public long numActiveTinyAllocations() {
return max(numTinyAllocations() - numTinyDeallocations(), 0);
}
@Override
public long numActiveSmallAllocations() {
return max(numSmallAllocations() - numSmallDeallocations(), 0);
}
@Override
public long numActiveNormalAllocations() {
final long val;
synchronized (this) {
val = allocationsNormal - deallocationsNormal;
}
return max(val, 0);
}
@Override
public long numActiveHugeAllocations() {
return max(numHugeAllocations() - numHugeDeallocations(), 0);
}
@Override
public long numActiveBytes() {
long val = activeBytesHuge.value();
synchronized (this) {
for (int i = 0; i < chunkListMetrics.size(); i++) {
for (PoolChunkMetric m: chunkListMetrics.get(i)) {
val += m.chunkSize();
}
}
}
return max(0, val);
}
protected abstract PoolChunk newChunk(int pageSize, int maxOrder, int pageShifts, int chunkSize);
protected abstract PoolChunk newUnpooledChunk(int capacity);
protected abstract PooledByteBuf newByteBuf(int maxCapacity);
protected abstract void memoryCopy(T src, int srcOffset, PooledByteBuf dst, int length);
protected abstract void destroyChunk(PoolChunk chunk);
@Override
public synchronized String toString() {
StringBuilder buf = new StringBuilder()
.append("Chunk(s) at 0~25%:")
.append(StringUtil.NEWLINE)
.append(qInit)
.append(StringUtil.NEWLINE)
.append("Chunk(s) at 0~50%:")
.append(StringUtil.NEWLINE)
.append(q000)
.append(StringUtil.NEWLINE)
.append("Chunk(s) at 25~75%:")
.append(StringUtil.NEWLINE)
.append(q025)
.append(StringUtil.NEWLINE)
.append("Chunk(s) at 50~100%:")
.append(StringUtil.NEWLINE)
.append(q050)
.append(StringUtil.NEWLINE)
.append("Chunk(s) at 75~100%:")
.append(StringUtil.NEWLINE)
.append(q075)
.append(StringUtil.NEWLINE)
.append("Chunk(s) at 100%:")
.append(StringUtil.NEWLINE)
.append(q100)
.append(StringUtil.NEWLINE)
.append("tiny subpages:");
appendPoolSubPages(buf, tinySubpagePools);
buf.append(StringUtil.NEWLINE)
.append("small subpages:");
appendPoolSubPages(buf, smallSubpagePools);
buf.append(StringUtil.NEWLINE);
return buf.toString();
}
private static void appendPoolSubPages(StringBuilder buf, PoolSubpage>[] subpages) {
for (int i = 0; i < subpages.length; i ++) {
PoolSubpage> head = subpages[i];
if (head.next == head) {
continue;
}
buf.append(StringUtil.NEWLINE)
.append(i)
.append(": ");
PoolSubpage> s = head.next;
for (;;) {
buf.append(s);
s = s.next;
if (s == head) {
break;
}
}
}
}
@Override
protected final void finalize() throws Throwable {
try {
super.finalize();
} finally {
destroyPoolSubPages(smallSubpagePools);
destroyPoolSubPages(tinySubpagePools);
destroyPoolChunkLists(qInit, q000, q025, q050, q075, q100);
}
}
private static void destroyPoolSubPages(PoolSubpage>[] pages) {
for (PoolSubpage> page : pages) {
page.destroy();
}
}
private void destroyPoolChunkLists(PoolChunkList... chunkLists) {
for (PoolChunkList chunkList: chunkLists) {
chunkList.destroy(this);
}
}
static final class HeapArena extends PoolArena {
HeapArena(PooledByteBufAllocator parent, int pageSize, int maxOrder,
int pageShifts, int chunkSize, int directMemoryCacheAlignment) {
super(parent, pageSize, maxOrder, pageShifts, chunkSize,
directMemoryCacheAlignment);
}
private static byte[] newByteArray(int size) {
return PlatformDependent.allocateUninitializedArray(size);
}
@Override
boolean isDirect() {
return false;
}
@Override
protected PoolChunk newChunk(int pageSize, int maxOrder, int pageShifts, int chunkSize) {
return new PoolChunk(this, newByteArray(chunkSize), pageSize, maxOrder, pageShifts, chunkSize, 0);
}
@Override
protected PoolChunk newUnpooledChunk(int capacity) {
return new PoolChunk(this, newByteArray(capacity), capacity, 0);
}
@Override
protected void destroyChunk(PoolChunk chunk) {
// Rely on GC.
}
@Override
protected PooledByteBuf newByteBuf(int maxCapacity) {
return HAS_UNSAFE ? PooledUnsafeHeapByteBuf.newUnsafeInstance(maxCapacity)
: PooledHeapByteBuf.newInstance(maxCapacity);
}
@Override
protected void memoryCopy(byte[] src, int srcOffset, PooledByteBuf dst, int length) {
if (length == 0) {
return;
}
System.arraycopy(src, srcOffset, dst.memory, dst.offset, length);
}
}
static final class DirectArena extends PoolArena {
DirectArena(PooledByteBufAllocator parent, int pageSize, int maxOrder,
int pageShifts, int chunkSize, int directMemoryCacheAlignment) {
super(parent, pageSize, maxOrder, pageShifts, chunkSize,
directMemoryCacheAlignment);
}
@Override
boolean isDirect() {
return true;
}
// mark as package-private, only for unit test
int offsetCacheLine(ByteBuffer memory) {
// We can only calculate the offset if Unsafe is present as otherwise directBufferAddress(...) will
// throw an NPE.
int remainder = HAS_UNSAFE
? (int) (PlatformDependent.directBufferAddress(memory) & directMemoryCacheAlignmentMask)
: 0;
// offset = alignment - address & (alignment - 1)
return directMemoryCacheAlignment - remainder;
}
@Override
protected PoolChunk newChunk(int pageSize, int maxOrder,
int pageShifts, int chunkSize) {
if (directMemoryCacheAlignment == 0) {
return new PoolChunk(this,
allocateDirect(chunkSize), pageSize, maxOrder,
pageShifts, chunkSize, 0);
}
final ByteBuffer memory = allocateDirect(chunkSize
+ directMemoryCacheAlignment);
return new PoolChunk(this, memory, pageSize,
maxOrder, pageShifts, chunkSize,
offsetCacheLine(memory));
}
@Override
protected PoolChunk newUnpooledChunk(int capacity) {
if (directMemoryCacheAlignment == 0) {
return new PoolChunk(this,
allocateDirect(capacity), capacity, 0);
}
final ByteBuffer memory = allocateDirect(capacity
+ directMemoryCacheAlignment);
return new PoolChunk(this, memory, capacity,
offsetCacheLine(memory));
}
private static ByteBuffer allocateDirect(int capacity) {
return PlatformDependent.useDirectBufferNoCleaner() ?
PlatformDependent.allocateDirectNoCleaner(capacity) : ByteBuffer.allocateDirect(capacity);
}
@Override
protected void destroyChunk(PoolChunk chunk) {
if (PlatformDependent.useDirectBufferNoCleaner()) {
PlatformDependent.freeDirectNoCleaner(chunk.memory);
} else {
PlatformDependent.freeDirectBuffer(chunk.memory);
}
}
@Override
protected PooledByteBuf newByteBuf(int maxCapacity) {
if (HAS_UNSAFE) {
return PooledUnsafeDirectByteBuf.newInstance(maxCapacity);
} else {
return PooledDirectByteBuf.newInstance(maxCapacity);
}
}
@Override
protected void memoryCopy(ByteBuffer src, int srcOffset, PooledByteBuf dstBuf, int length) {
if (length == 0) {
return;
}
if (HAS_UNSAFE) {
PlatformDependent.copyMemory(
PlatformDependent.directBufferAddress(src) + srcOffset,
PlatformDependent.directBufferAddress(dstBuf.memory) + dstBuf.offset, length);
} else {
// We must duplicate the NIO buffers because they may be accessed by other Netty buffers.
src = src.duplicate();
ByteBuffer dst = dstBuf.internalNioBuffer();
src.position(srcOffset).limit(srcOffset + length);
dst.position(dstBuf.offset);
dst.put(src);
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy