org.jgroups.util.AverageMinMax Maven / Gradle / Ivy
Go to download
This artifact provides a single jar that contains all classes required to use remote Jakarta Enterprise Beans and Jakarta Messaging, including
all dependencies. It is intended for use by those not using maven, maven users should just import the Jakarta Enterprise Beans and
Jakarta Messaging BOM's instead (shaded JAR's cause lots of problems with maven, as it is very easy to inadvertently end up
with different versions on classes on the class path).
package org.jgroups.util;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
/**
* Measures min and max in addition to average
* @author Bela Ban
* @since 4.0, 3.6.10
*/
public class AverageMinMax extends Average {
protected long min=Long.MAX_VALUE, max=0;
protected List values;
public long min() {return min;}
public long max() {return max;}
public boolean usePercentiles() {return values != null;}
public AverageMinMax usePercentiles(int capacity) {values=capacity > 0? new ArrayList<>(capacity) : null; return this;}
public T add(long num) {
super.add(num);
min=Math.min(min, num);
max=Math.max(max, num);
if(values != null)
values.add(num);
return (T)this;
}
public T merge(T other) {
if(other.count() == 0)
return (T)this;
super.merge(other);
if(other instanceof AverageMinMax) {
AverageMinMax o=(AverageMinMax)other;
this.min=Math.min(min, o.min());
this.max=Math.max(max, o.max());
if(this.values != null)
this.values.addAll(o.values);
}
return (T)this;
}
public void clear() {
super.clear();
if(values != null)
values.clear();
min=Long.MAX_VALUE; max=0;
}
public String percentiles() {
if(values == null) return "n/a";
Collections.sort(values);
double stddev=stddev();
return String.format("stddev: %.2f, 50: %d, 90: %d, 99: %d, 99.9: %d, 99.99: %d, 99.999: %d, 100: %d\n",
stddev, p(50), p(90), p(99), p(99.9), p(99.99), p(99.999), p(100));
}
protected long p(double percentile) {
if(values == null)
return -1;
int size=values.size();
int index=(int)(size * (percentile/100.0));
return values.get(index-1);
}
protected double stddev() {
if(values == null) return -1.0;
double av=average();
int size=values.size();
double variance=values.stream().map(v -> (v - av)*(v - av)).reduce(0.0, (x, y) -> x + y) / size;
return Math.sqrt(variance);
}
public String toString() {
return count == 0? "n/a" : String.format("min/avg/max=%,d/%,.2f/%,d", min, getAverage(), max);
}
public void writeTo(DataOutput out) throws IOException {
super.writeTo(out);
Bits.writeLong(min, out);
Bits.writeLong(max, out);
}
public void readFrom(DataInput in) throws IOException {
super.readFrom(in);
min=Bits.readLong(in);
max=Bits.readLong(in);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy