All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.common.collect.ArrayTable Maven / Gradle / Ivy

Go to download

This artifact provides a single jar that contains all classes required to use remote Jakarta Enterprise Beans and Jakarta Messaging, including all dependencies. It is intended for use by those not using maven, maven users should just import the Jakarta Enterprise Beans and Jakarta Messaging BOM's instead (shaded JAR's cause lots of problems with maven, as it is very easy to inadvertently end up with different versions on classes on the class path).

There is a newer version: 35.0.0.Beta1
Show newest version
/*
 * Copyright (C) 2009 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.collect;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkElementIndex;
import static com.google.common.base.Preconditions.checkNotNull;
import static java.util.Collections.emptyMap;

import com.google.common.annotations.Beta;
import com.google.common.annotations.GwtCompatible;
import com.google.common.annotations.GwtIncompatible;
import com.google.common.base.Objects;
import com.google.common.collect.Maps.IteratorBasedAbstractMap;
import com.google.errorprone.annotations.CanIgnoreReturnValue;
import com.google.errorprone.annotations.DoNotCall;
import com.google.j2objc.annotations.WeakOuter;
import java.io.Serializable;
import java.lang.reflect.Array;
import java.util.Arrays;
import java.util.Collection;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
import java.util.Spliterator;
import javax.annotation.CheckForNull;
import org.checkerframework.checker.nullness.qual.Nullable;

/**
 * Fixed-size {@link Table} implementation backed by a two-dimensional array.
 *
 * 

Warning: {@code ArrayTable} is rarely the {@link Table} implementation you want. First, * it requires that the complete universe of rows and columns be specified at construction time. * Second, it is always backed by an array large enough to hold a value for every possible * combination of row and column keys. (This is rarely optimal unless the table is extremely dense.) * Finally, every possible combination of row and column keys is always considered to have a value * associated with it: It is not possible to "remove" a value, only to replace it with {@code null}, * which will still appear when iterating over the table's contents in a foreach loop or a call to a * null-hostile method like {@link ImmutableTable#copyOf}. For alternatives, please see the wiki. * *

The allowed row and column keys must be supplied when the table is created. The table always * contains a mapping for every row key / column pair. The value corresponding to a given row and * column is null unless another value is provided. * *

The table's size is constant: the product of the number of supplied row keys and the number of * supplied column keys. The {@code remove} and {@code clear} methods are not supported by the table * or its views. The {@link #erase} and {@link #eraseAll} methods may be used instead. * *

The ordering of the row and column keys provided when the table is constructed determines the * iteration ordering across rows and columns in the table's views. None of the view iterators * support {@link Iterator#remove}. If the table is modified after an iterator is created, the * iterator remains valid. * *

This class requires less memory than the {@link HashBasedTable} and {@link TreeBasedTable} * implementations, except when the table is sparse. * *

Null row keys or column keys are not permitted. * *

This class provides methods involving the underlying array structure, where the array indices * correspond to the position of a row or column in the lists of allowed keys and values. See the * {@link #at}, {@link #set}, {@link #toArray}, {@link #rowKeyList}, and {@link #columnKeyList} * methods for more details. * *

Note that this implementation is not synchronized. If multiple threads access the same cell of * an {@code ArrayTable} concurrently and one of the threads modifies its value, there is no * guarantee that the new value will be fully visible to the other threads. To guarantee that * modifications are visible, synchronize access to the table. Unlike other {@code Table} * implementations, synchronization is unnecessary between a thread that writes to one cell and a * thread that reads from another. * *

See the Guava User Guide article on {@code Table}. * * @author Jared Levy * @since 10.0 */ @Beta @GwtCompatible(emulated = true) @ElementTypesAreNonnullByDefault public final class ArrayTable extends AbstractTable implements Serializable { /** * Creates an {@code ArrayTable} filled with {@code null}. * * @param rowKeys row keys that may be stored in the generated table * @param columnKeys column keys that may be stored in the generated table * @throws NullPointerException if any of the provided keys is null * @throws IllegalArgumentException if {@code rowKeys} or {@code columnKeys} contains duplicates * or if exactly one of {@code rowKeys} or {@code columnKeys} is empty. */ public static ArrayTable create( Iterable rowKeys, Iterable columnKeys) { return new ArrayTable<>(rowKeys, columnKeys); } /* * TODO(jlevy): Add factory methods taking an Enum class, instead of an * iterable, to specify the allowed row keys and/or column keys. Note that * custom serialization logic is needed to support different enum sizes during * serialization and deserialization. */ /** * Creates an {@code ArrayTable} with the mappings in the provided table. * *

If {@code table} includes a mapping with row key {@code r} and a separate mapping with * column key {@code c}, the returned table contains a mapping with row key {@code r} and column * key {@code c}. If that row key / column key pair in not in {@code table}, the pair maps to * {@code null} in the generated table. * *

The returned table allows subsequent {@code put} calls with the row keys in {@code * table.rowKeySet()} and the column keys in {@code table.columnKeySet()}. Calling {@link #put} * with other keys leads to an {@code IllegalArgumentException}. * *

The ordering of {@code table.rowKeySet()} and {@code table.columnKeySet()} determines the * row and column iteration ordering of the returned table. * * @throws NullPointerException if {@code table} has a null key */ public static ArrayTable create(Table table) { return (table instanceof ArrayTable) ? new ArrayTable((ArrayTable) table) : new ArrayTable(table); } private final ImmutableList rowList; private final ImmutableList columnList; // TODO(jlevy): Add getters returning rowKeyToIndex and columnKeyToIndex? private final ImmutableMap rowKeyToIndex; private final ImmutableMap columnKeyToIndex; private final @Nullable V[][] array; private ArrayTable(Iterable rowKeys, Iterable columnKeys) { this.rowList = ImmutableList.copyOf(rowKeys); this.columnList = ImmutableList.copyOf(columnKeys); checkArgument(rowList.isEmpty() == columnList.isEmpty()); /* * TODO(jlevy): Support only one of rowKey / columnKey being empty? If we * do, when columnKeys is empty but rowKeys isn't, rowKeyList() can contain * elements but rowKeySet() will be empty and containsRow() won't * acknowledge them. */ rowKeyToIndex = Maps.indexMap(rowList); columnKeyToIndex = Maps.indexMap(columnList); @SuppressWarnings("unchecked") @Nullable V[][] tmpArray = (@Nullable V[][]) new Object[rowList.size()][columnList.size()]; array = tmpArray; // Necessary because in GWT the arrays are initialized with "undefined" instead of null. eraseAll(); } private ArrayTable(Table table) { this(table.rowKeySet(), table.columnKeySet()); putAll(table); } private ArrayTable(ArrayTable table) { rowList = table.rowList; columnList = table.columnList; rowKeyToIndex = table.rowKeyToIndex; columnKeyToIndex = table.columnKeyToIndex; @SuppressWarnings("unchecked") @Nullable V[][] copy = (@Nullable V[][]) new Object[rowList.size()][columnList.size()]; array = copy; for (int i = 0; i < rowList.size(); i++) { System.arraycopy(table.array[i], 0, copy[i], 0, table.array[i].length); } } private abstract static class ArrayMap extends IteratorBasedAbstractMap { private final ImmutableMap keyIndex; private ArrayMap(ImmutableMap keyIndex) { this.keyIndex = keyIndex; } @Override public Set keySet() { return keyIndex.keySet(); } K getKey(int index) { return keyIndex.keySet().asList().get(index); } abstract String getKeyRole(); @ParametricNullness abstract V getValue(int index); @ParametricNullness abstract V setValue(int index, @ParametricNullness V newValue); @Override public int size() { return keyIndex.size(); } @Override public boolean isEmpty() { return keyIndex.isEmpty(); } Entry getEntry(final int index) { checkElementIndex(index, size()); return new AbstractMapEntry() { @Override public K getKey() { return ArrayMap.this.getKey(index); } @Override @ParametricNullness public V getValue() { return ArrayMap.this.getValue(index); } @Override @ParametricNullness public V setValue(@ParametricNullness V value) { return ArrayMap.this.setValue(index, value); } }; } @Override Iterator> entryIterator() { return new AbstractIndexedListIterator>(size()) { @Override protected Entry get(final int index) { return getEntry(index); } }; } @Override Spliterator> entrySpliterator() { return CollectSpliterators.indexed(size(), Spliterator.ORDERED, this::getEntry); } // TODO(lowasser): consider an optimized values() implementation @Override public boolean containsKey(@CheckForNull Object key) { return keyIndex.containsKey(key); } @CheckForNull @Override public V get(@CheckForNull Object key) { Integer index = keyIndex.get(key); if (index == null) { return null; } else { return getValue(index); } } @Override @CheckForNull public V put(K key, @ParametricNullness V value) { Integer index = keyIndex.get(key); if (index == null) { throw new IllegalArgumentException( getKeyRole() + " " + key + " not in " + keyIndex.keySet()); } return setValue(index, value); } @Override @CheckForNull public V remove(@CheckForNull Object key) { throw new UnsupportedOperationException(); } @Override public void clear() { throw new UnsupportedOperationException(); } } /** * Returns, as an immutable list, the row keys provided when the table was constructed, including * those that are mapped to null values only. */ public ImmutableList rowKeyList() { return rowList; } /** * Returns, as an immutable list, the column keys provided when the table was constructed, * including those that are mapped to null values only. */ public ImmutableList columnKeyList() { return columnList; } /** * Returns the value corresponding to the specified row and column indices. The same value is * returned by {@code get(rowKeyList().get(rowIndex), columnKeyList().get(columnIndex))}, but this * method runs more quickly. * * @param rowIndex position of the row key in {@link #rowKeyList()} * @param columnIndex position of the row key in {@link #columnKeyList()} * @return the value with the specified row and column * @throws IndexOutOfBoundsException if either index is negative, {@code rowIndex} is greater than * or equal to the number of allowed row keys, or {@code columnIndex} is greater than or equal * to the number of allowed column keys */ @CheckForNull public V at(int rowIndex, int columnIndex) { // In GWT array access never throws IndexOutOfBoundsException. checkElementIndex(rowIndex, rowList.size()); checkElementIndex(columnIndex, columnList.size()); return array[rowIndex][columnIndex]; } /** * Associates {@code value} with the specified row and column indices. The logic {@code * put(rowKeyList().get(rowIndex), columnKeyList().get(columnIndex), value)} has the same * behavior, but this method runs more quickly. * * @param rowIndex position of the row key in {@link #rowKeyList()} * @param columnIndex position of the row key in {@link #columnKeyList()} * @param value value to store in the table * @return the previous value with the specified row and column * @throws IndexOutOfBoundsException if either index is negative, {@code rowIndex} is greater than * or equal to the number of allowed row keys, or {@code columnIndex} is greater than or equal * to the number of allowed column keys */ @CanIgnoreReturnValue @CheckForNull public V set(int rowIndex, int columnIndex, @CheckForNull V value) { // In GWT array access never throws IndexOutOfBoundsException. checkElementIndex(rowIndex, rowList.size()); checkElementIndex(columnIndex, columnList.size()); V oldValue = array[rowIndex][columnIndex]; array[rowIndex][columnIndex] = value; return oldValue; } /** * Returns a two-dimensional array with the table contents. The row and column indices correspond * to the positions of the row and column in the iterables provided during table construction. If * the table lacks a mapping for a given row and column, the corresponding array element is null. * *

Subsequent table changes will not modify the array, and vice versa. * * @param valueClass class of values stored in the returned array */ @GwtIncompatible // reflection public @Nullable V[][] toArray(Class valueClass) { @SuppressWarnings("unchecked") // TODO: safe? @Nullable V[][] copy = (@Nullable V[][]) Array.newInstance(valueClass, rowList.size(), columnList.size()); for (int i = 0; i < rowList.size(); i++) { System.arraycopy(array[i], 0, copy[i], 0, array[i].length); } return copy; } /** * Not supported. Use {@link #eraseAll} instead. * * @throws UnsupportedOperationException always * @deprecated Use {@link #eraseAll} */ @DoNotCall("Always throws UnsupportedOperationException") @Override @Deprecated public void clear() { throw new UnsupportedOperationException(); } /** Associates the value {@code null} with every pair of allowed row and column keys. */ public void eraseAll() { for (@Nullable V[] row : array) { Arrays.fill(row, null); } } /** * Returns {@code true} if the provided keys are among the keys provided when the table was * constructed. */ @Override public boolean contains(@CheckForNull Object rowKey, @CheckForNull Object columnKey) { return containsRow(rowKey) && containsColumn(columnKey); } /** * Returns {@code true} if the provided column key is among the column keys provided when the * table was constructed. */ @Override public boolean containsColumn(@CheckForNull Object columnKey) { return columnKeyToIndex.containsKey(columnKey); } /** * Returns {@code true} if the provided row key is among the row keys provided when the table was * constructed. */ @Override public boolean containsRow(@CheckForNull Object rowKey) { return rowKeyToIndex.containsKey(rowKey); } @Override public boolean containsValue(@CheckForNull Object value) { for (@Nullable V[] row : array) { for (V element : row) { if (Objects.equal(value, element)) { return true; } } } return false; } @Override @CheckForNull public V get(@CheckForNull Object rowKey, @CheckForNull Object columnKey) { Integer rowIndex = rowKeyToIndex.get(rowKey); Integer columnIndex = columnKeyToIndex.get(columnKey); return (rowIndex == null || columnIndex == null) ? null : at(rowIndex, columnIndex); } /** * Returns {@code true} if {@code rowKeyList().size == 0} or {@code columnKeyList().size() == 0}. */ @Override public boolean isEmpty() { return rowList.isEmpty() || columnList.isEmpty(); } /** * {@inheritDoc} * * @throws IllegalArgumentException if {@code rowKey} is not in {@link #rowKeySet()} or {@code * columnKey} is not in {@link #columnKeySet()}. */ @CanIgnoreReturnValue @Override @CheckForNull public V put(R rowKey, C columnKey, @CheckForNull V value) { checkNotNull(rowKey); checkNotNull(columnKey); Integer rowIndex = rowKeyToIndex.get(rowKey); checkArgument(rowIndex != null, "Row %s not in %s", rowKey, rowList); Integer columnIndex = columnKeyToIndex.get(columnKey); checkArgument(columnIndex != null, "Column %s not in %s", columnKey, columnList); return set(rowIndex, columnIndex, value); } /* * TODO(jlevy): Consider creating a merge() method, similar to putAll() but * copying non-null values only. */ /** * {@inheritDoc} * *

If {@code table} is an {@code ArrayTable}, its null values will be stored in this table, * possibly replacing values that were previously non-null. * * @throws NullPointerException if {@code table} has a null key * @throws IllegalArgumentException if any of the provided table's row keys or column keys is not * in {@link #rowKeySet()} or {@link #columnKeySet()} */ @Override public void putAll(Table table) { super.putAll(table); } /** * Not supported. Use {@link #erase} instead. * * @throws UnsupportedOperationException always * @deprecated Use {@link #erase} */ @DoNotCall("Always throws UnsupportedOperationException") @CanIgnoreReturnValue @Override @Deprecated @CheckForNull public V remove(@CheckForNull Object rowKey, @CheckForNull Object columnKey) { throw new UnsupportedOperationException(); } /** * Associates the value {@code null} with the specified keys, assuming both keys are valid. If * either key is null or isn't among the keys provided during construction, this method has no * effect. * *

This method is equivalent to {@code put(rowKey, columnKey, null)} when both provided keys * are valid. * * @param rowKey row key of mapping to be erased * @param columnKey column key of mapping to be erased * @return the value previously associated with the keys, or {@code null} if no mapping existed * for the keys */ @CanIgnoreReturnValue @CheckForNull public V erase(@CheckForNull Object rowKey, @CheckForNull Object columnKey) { Integer rowIndex = rowKeyToIndex.get(rowKey); Integer columnIndex = columnKeyToIndex.get(columnKey); if (rowIndex == null || columnIndex == null) { return null; } return set(rowIndex, columnIndex, null); } // TODO(jlevy): Add eraseRow and eraseColumn methods? @Override public int size() { return rowList.size() * columnList.size(); } /** * Returns an unmodifiable set of all row key / column key / value triplets. Changes to the table * will update the returned set. * *

The returned set's iterator traverses the mappings with the first row key, the mappings with * the second row key, and so on. * *

The value in the returned cells may change if the table subsequently changes. * * @return set of table cells consisting of row key / column key / value triplets */ @Override public Set> cellSet() { return super.cellSet(); } @Override Iterator> cellIterator() { return new AbstractIndexedListIterator>(size()) { @Override protected Cell get(final int index) { return getCell(index); } }; } @Override Spliterator> cellSpliterator() { return CollectSpliterators.>indexed( size(), Spliterator.ORDERED | Spliterator.NONNULL | Spliterator.DISTINCT, this::getCell); } private Cell getCell(final int index) { return new Tables.AbstractCell() { final int rowIndex = index / columnList.size(); final int columnIndex = index % columnList.size(); @Override public R getRowKey() { return rowList.get(rowIndex); } @Override public C getColumnKey() { return columnList.get(columnIndex); } @Override @CheckForNull public V getValue() { return at(rowIndex, columnIndex); } }; } @CheckForNull private V getValue(int index) { int rowIndex = index / columnList.size(); int columnIndex = index % columnList.size(); return at(rowIndex, columnIndex); } /** * Returns a view of all mappings that have the given column key. If the column key isn't in * {@link #columnKeySet()}, an empty immutable map is returned. * *

Otherwise, for each row key in {@link #rowKeySet()}, the returned map associates the row key * with the corresponding value in the table. Changes to the returned map will update the * underlying table, and vice versa. * * @param columnKey key of column to search for in the table * @return the corresponding map from row keys to values */ @Override public Map column(C columnKey) { checkNotNull(columnKey); Integer columnIndex = columnKeyToIndex.get(columnKey); if (columnIndex == null) { return emptyMap(); } else { return new Column(columnIndex); } } private class Column extends ArrayMap { final int columnIndex; Column(int columnIndex) { super(rowKeyToIndex); this.columnIndex = columnIndex; } @Override String getKeyRole() { return "Row"; } @Override @CheckForNull V getValue(int index) { return at(index, columnIndex); } @Override @CheckForNull V setValue(int index, @CheckForNull V newValue) { return set(index, columnIndex, newValue); } } /** * Returns an immutable set of the valid column keys, including those that are associated with * null values only. * * @return immutable set of column keys */ @Override public ImmutableSet columnKeySet() { return columnKeyToIndex.keySet(); } @CheckForNull private transient ColumnMap columnMap; @Override public Map> columnMap() { ColumnMap map = columnMap; return (map == null) ? columnMap = new ColumnMap() : map; } @WeakOuter private class ColumnMap extends ArrayMap> { private ColumnMap() { super(columnKeyToIndex); } @Override String getKeyRole() { return "Column"; } @Override Map getValue(int index) { return new Column(index); } @Override Map setValue(int index, Map newValue) { throw new UnsupportedOperationException(); } @Override @CheckForNull public Map put(C key, Map value) { throw new UnsupportedOperationException(); } } /** * Returns a view of all mappings that have the given row key. If the row key isn't in {@link * #rowKeySet()}, an empty immutable map is returned. * *

Otherwise, for each column key in {@link #columnKeySet()}, the returned map associates the * column key with the corresponding value in the table. Changes to the returned map will update * the underlying table, and vice versa. * * @param rowKey key of row to search for in the table * @return the corresponding map from column keys to values */ @Override public Map row(R rowKey) { checkNotNull(rowKey); Integer rowIndex = rowKeyToIndex.get(rowKey); if (rowIndex == null) { return emptyMap(); } else { return new Row(rowIndex); } } private class Row extends ArrayMap { final int rowIndex; Row(int rowIndex) { super(columnKeyToIndex); this.rowIndex = rowIndex; } @Override String getKeyRole() { return "Column"; } @Override @CheckForNull V getValue(int index) { return at(rowIndex, index); } @Override @CheckForNull V setValue(int index, @CheckForNull V newValue) { return set(rowIndex, index, newValue); } } /** * Returns an immutable set of the valid row keys, including those that are associated with null * values only. * * @return immutable set of row keys */ @Override public ImmutableSet rowKeySet() { return rowKeyToIndex.keySet(); } @CheckForNull private transient RowMap rowMap; @Override public Map> rowMap() { RowMap map = rowMap; return (map == null) ? rowMap = new RowMap() : map; } @WeakOuter private class RowMap extends ArrayMap> { private RowMap() { super(rowKeyToIndex); } @Override String getKeyRole() { return "Row"; } @Override Map getValue(int index) { return new Row(index); } @Override Map setValue(int index, Map newValue) { throw new UnsupportedOperationException(); } @Override @CheckForNull public Map put(R key, Map value) { throw new UnsupportedOperationException(); } } /** * Returns an unmodifiable collection of all values, which may contain duplicates. Changes to the * table will update the returned collection. * *

The returned collection's iterator traverses the values of the first row key, the values of * the second row key, and so on. * * @return collection of values */ @Override public Collection<@Nullable V> values() { return super.values(); } @Override Iterator<@Nullable V> valuesIterator() { return new AbstractIndexedListIterator<@Nullable V>(size()) { @Override @CheckForNull protected V get(int index) { return getValue(index); } }; } @Override Spliterator<@Nullable V> valuesSpliterator() { return CollectSpliterators.<@Nullable V>indexed(size(), Spliterator.ORDERED, this::getValue); } private static final long serialVersionUID = 0; }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy