All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.common.util.concurrent.ExecutionSequencer Maven / Gradle / Ivy

Go to download

This artifact provides a single jar that contains all classes required to use remote Jakarta Enterprise Beans and Jakarta Messaging, including all dependencies. It is intended for use by those not using maven, maven users should just import the Jakarta Enterprise Beans and Jakarta Messaging BOM's instead (shaded JAR's cause lots of problems with maven, as it is very easy to inadvertently end up with different versions on classes on the class path).

There is a newer version: 35.0.0.Final
Show newest version
/*
 * Copyright (C) 2018 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
 * in compliance with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License
 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing permissions and limitations under
 * the License.
 */

package com.google.common.util.concurrent;

import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.base.Preconditions.checkState;
import static com.google.common.util.concurrent.ExecutionSequencer.RunningState.CANCELLED;
import static com.google.common.util.concurrent.ExecutionSequencer.RunningState.NOT_RUN;
import static com.google.common.util.concurrent.ExecutionSequencer.RunningState.STARTED;
import static com.google.common.util.concurrent.Futures.immediateCancelledFuture;
import static com.google.common.util.concurrent.Futures.immediateFuture;
import static com.google.common.util.concurrent.Futures.immediateVoidFuture;
import static com.google.common.util.concurrent.MoreExecutors.directExecutor;
import static java.util.Objects.requireNonNull;

import java.util.concurrent.Callable;
import java.util.concurrent.Executor;
import java.util.concurrent.atomic.AtomicReference;
import javax.annotation.CheckForNull;
import org.checkerframework.checker.nullness.qual.Nullable;

/**
 * Serializes execution of tasks, somewhat like an "asynchronous {@code synchronized} block." Each
 * {@linkplain #submit enqueued} callable will not be submitted to its associated executor until the
 * previous callable has returned -- and, if the previous callable was an {@link AsyncCallable}, not
 * until the {@code Future} it returned is {@linkplain Future#isDone done} (successful, failed, or
 * cancelled).
 *
 * 

This class serializes execution of submitted tasks but not any listeners of * those tasks. * *

Submitted tasks have a happens-before order as defined in the Java Language Specification. * Tasks execute with the same happens-before order that the function calls to {@link #submit} and * {@link #submitAsync} that submitted those tasks had. * *

This class has limited support for cancellation and other "early completions": * *

    *
  • While calls to {@code submit} and {@code submitAsync} return a {@code Future} that can be * cancelled, cancellation never propagates to a task that has started to run -- neither to * the callable itself nor to any {@code Future} returned by an {@code AsyncCallable}. * (However, cancellation can prevent an unstarted task from running.) Therefore, the * next task will wait for any running callable (or pending {@code Future} returned by an * {@code AsyncCallable}) to complete, without interrupting it (and without calling {@code * cancel} on the {@code Future}). So beware: Even if you cancel every precededing {@code * Future} returned by this class, the next task may still have to wait.. *
  • Once an {@code AsyncCallable} returns a {@code Future}, this class considers that task to * be "done" as soon as that {@code Future} completes in any way. Notably, a {@code * Future} is "completed" even if it is cancelled while its underlying work continues on a * thread, an RPC, etc. The {@code Future} is also "completed" if it fails "early" -- for * example, if the deadline expires on a {@code Future} returned from {@link * Futures#withTimeout} while the {@code Future} it wraps continues its underlying work. So * beware: Your {@code AsyncCallable} should not complete its {@code Future} until it is * safe for the next task to start. *
* *

This class is similar to {@link MoreExecutors#newSequentialExecutor}. This class is different * in a few ways: * *

    *
  • Each task may be associated with a different executor. *
  • Tasks may be of type {@code AsyncCallable}. *
  • Running tasks cannot be interrupted. (Note that {@code newSequentialExecutor} does * not return {@code Future} objects, so it doesn't support interruption directly, either. * However, utilities that use that executor have the ability to interrupt tasks * running on it. This class, by contrast, does not expose an {@code Executor} API.) *
* *

If you don't need the features of this class, you may prefer {@code newSequentialExecutor} for * its simplicity and ability to accommodate interruption. * * @since 26.0 */ @ElementTypesAreNonnullByDefault public final class ExecutionSequencer { private ExecutionSequencer() {} /** Creates a new instance. */ public static ExecutionSequencer create() { return new ExecutionSequencer(); } /** This reference acts as a pointer tracking the head of a linked list of ListenableFutures. */ private final AtomicReference> ref = new AtomicReference<>(immediateVoidFuture()); private ThreadConfinedTaskQueue latestTaskQueue = new ThreadConfinedTaskQueue(); /** * This object is unsafely published, but avoids problematic races by relying exclusively on the * identity equality of its Thread field so that the task field is only accessed by a single * thread. */ private static final class ThreadConfinedTaskQueue { /** * This field is only used for identity comparisons with the current thread. Field assignments * are atomic, but do not provide happens-before ordering; however: * *

    *
  • If this field's value == currentThread, we know that it's up to date, because write * operations in a thread always happen-before subsequent read operations in the same * thread *
  • If this field's value == null because of unsafe publication, we know that it isn't the * object associated with our thread, because if it was the publication wouldn't have been * unsafe and we'd have seen our thread as the value. This state is also why a new * ThreadConfinedTaskQueue object must be created for each inline execution, because * observing a null thread does not mean the object is safe to reuse. *
  • If this field's value is some other thread object, we know that it's not our thread. *
  • If this field's value == null because it originally belonged to another thread and that * thread cleared it, we still know that it's not associated with our thread *
  • If this field's value == null because it was associated with our thread and was * cleared, we know that we're not executing inline any more *
* * All the states where thread != currentThread are identical for our purposes, and so even * though it's racy, we don't care which of those values we get, so no need to synchronize. */ @CheckForNull Thread thread; /** Only used by the thread associated with this object */ @CheckForNull Runnable nextTask; /** Only used by the thread associated with this object */ @CheckForNull Executor nextExecutor; } /** * Enqueues a task to run when the previous task (if any) completes. * *

Cancellation does not propagate from the output future to a callable that has begun to * execute, but if the output future is cancelled before {@link Callable#call()} is invoked, * {@link Callable#call()} will not be invoked. */ public ListenableFuture submit( Callable callable, Executor executor) { checkNotNull(callable); checkNotNull(executor); return submitAsync( new AsyncCallable() { @Override public ListenableFuture call() throws Exception { return immediateFuture(callable.call()); } @Override public String toString() { return callable.toString(); } }, executor); } /** * Enqueues a task to run when the previous task (if any) completes. * *

Cancellation does not propagate from the output future to the future returned from {@code * callable} or a callable that has begun to execute, but if the output future is cancelled before * {@link AsyncCallable#call()} is invoked, {@link AsyncCallable#call()} will not be invoked. */ public ListenableFuture submitAsync( AsyncCallable callable, Executor executor) { checkNotNull(callable); checkNotNull(executor); TaskNonReentrantExecutor taskExecutor = new TaskNonReentrantExecutor(executor, this); AsyncCallable task = new AsyncCallable() { @Override public ListenableFuture call() throws Exception { if (!taskExecutor.trySetStarted()) { return immediateCancelledFuture(); } return callable.call(); } @Override public String toString() { return callable.toString(); } }; /* * Four futures are at play here: * taskFuture is the future tracking the result of the callable. * newFuture is a future that completes after this and all prior tasks are done. * oldFuture is the previous task's newFuture. * outputFuture is the future we return to the caller, a nonCancellationPropagating taskFuture. * * newFuture is guaranteed to only complete once all tasks previously submitted to this instance * have completed - namely after oldFuture is done, and taskFuture has either completed or been * cancelled before the callable started execution. */ SettableFuture<@Nullable Void> newFuture = SettableFuture.create(); ListenableFuture<@Nullable Void> oldFuture = ref.getAndSet(newFuture); // Invoke our task once the previous future completes. TrustedListenableFutureTask taskFuture = TrustedListenableFutureTask.create(task); oldFuture.addListener(taskFuture, taskExecutor); ListenableFuture outputFuture = Futures.nonCancellationPropagating(taskFuture); // newFuture's lifetime is determined by taskFuture, which can't complete before oldFuture // unless taskFuture is cancelled, in which case it falls back to oldFuture. This ensures that // if the future we return is cancelled, we don't begin execution of the next task until after // oldFuture completes. Runnable listener = () -> { if (taskFuture.isDone()) { // Since the value of oldFuture can only ever be immediateFuture(null) or setFuture of // a future that eventually came from immediateFuture(null), this doesn't leak // throwables or completion values. newFuture.setFuture(oldFuture); } else if (outputFuture.isCancelled() && taskExecutor.trySetCancelled()) { // If this CAS succeeds, we know that the provided callable will never be invoked, // so when oldFuture completes it is safe to allow the next submitted task to // proceed. Doing this immediately here lets the next task run without waiting for // the cancelled task's executor to run the noop AsyncCallable. // // --- // // If the CAS fails, the provided callable already started running (or it is about // to). Our contract promises: // // 1. not to execute a new callable until the old one has returned // // If we were to cancel taskFuture, that would let the next task start while the old // one is still running. // // Now, maybe we could tweak our implementation to not start the next task until the // callable actually completes. (We could detect completion in our wrapper // `AsyncCallable task`.) However, our contract also promises: // // 2. not to cancel any Future the user returned from an AsyncCallable // // We promise this because, once we cancel that Future, we would no longer be able to // tell when any underlying work it is doing is done. Thus, we might start a new task // while that underlying work is still running. // // So that is why we cancel only in the case of CAS success. taskFuture.cancel(false); } }; // Adding the listener to both futures guarantees that newFuture will aways be set. Adding to // taskFuture guarantees completion if the callable is invoked, and adding to outputFuture // propagates cancellation if the callable has not yet been invoked. outputFuture.addListener(listener, directExecutor()); taskFuture.addListener(listener, directExecutor()); return outputFuture; } enum RunningState { NOT_RUN, CANCELLED, STARTED, } /** * This class helps avoid a StackOverflowError when large numbers of tasks are submitted with * {@link MoreExecutors#directExecutor}. Normally, when the first future completes, all the other * tasks would be called recursively. Here, we detect that the delegate executor is executing * inline, and maintain a queue to dispatch tasks iteratively. There is one instance of this class * per call to submit() or submitAsync(), and each instance supports only one call to execute(). * *

This class would certainly be simpler and easier to reason about if it were built with * ThreadLocal; however, ThreadLocal is not well optimized for the case where the ThreadLocal is * non-static, and is initialized/removed frequently - this causes churn in the Thread specific * hashmaps. Using a static ThreadLocal to avoid that overhead would mean that different * ExecutionSequencer objects interfere with each other, which would be undesirable, in addition * to increasing the memory footprint of every thread that interacted with it. In order to release * entries in thread-specific maps when the ThreadLocal object itself is no longer referenced, * ThreadLocal is usually implemented with a WeakReference, which can have negative performance * properties; for example, calling WeakReference.get() on Android will block during an * otherwise-concurrent GC cycle. */ private static final class TaskNonReentrantExecutor extends AtomicReference implements Executor, Runnable { /** * Used to update and read the latestTaskQueue field. Set to null once the runnable has been run * or queued. */ @CheckForNull ExecutionSequencer sequencer; /** * Executor the task was set to run on. Set to null when the task has been queued, run, or * cancelled. */ @CheckForNull Executor delegate; /** * Set before calling delegate.execute(); set to null once run, so that it can be GCed; this * object may live on after, if submitAsync returns an incomplete future. */ @CheckForNull Runnable task; /** Thread that called execute(). Set in execute, cleared when delegate.execute() returns. */ @CheckForNull Thread submitting; private TaskNonReentrantExecutor(Executor delegate, ExecutionSequencer sequencer) { super(NOT_RUN); this.delegate = delegate; this.sequencer = sequencer; } @Override public void execute(Runnable task) { // If this operation was successfully cancelled already, calling the runnable will be a noop. // This also avoids a race where if outputFuture is cancelled, it will call taskFuture.cancel, // which will call newFuture.setFuture(oldFuture), to allow the next task in the queue to run // without waiting for the user's executor to run our submitted Runnable. However, this can // interact poorly with the reentrancy-avoiding behavior of this executor - when the operation // before the cancelled future completes, it will synchronously complete both the newFuture // from the cancelled operation and its own. This can cause one runnable to queue two tasks, // breaking the invariant this method relies on to iteratively run the next task after the // previous one completes. if (get() == RunningState.CANCELLED) { delegate = null; sequencer = null; return; } submitting = Thread.currentThread(); try { /* * requireNonNull is safe because we don't null out `sequencer` except: * * - above, where we return (in which case we never get here) * * - in `run`, which can't run until this Runnable is submitted to an executor, which * doesn't happen until below. (And this Executor -- yes, the object is both a Runnable * and an Executor -- is used for only a single `execute` call.) */ ThreadConfinedTaskQueue submittingTaskQueue = requireNonNull(sequencer).latestTaskQueue; if (submittingTaskQueue.thread == submitting) { sequencer = null; // Submit from inside a reentrant submit. We don't know if this one will be reentrant (and // can't know without submitting something to the executor) so queue to run iteratively. // Task must be null, since each execution on this executor can only produce one more // execution. checkState(submittingTaskQueue.nextTask == null); submittingTaskQueue.nextTask = task; // requireNonNull(delegate) is safe for reasons similar to requireNonNull(sequencer). submittingTaskQueue.nextExecutor = requireNonNull(delegate); delegate = null; } else { // requireNonNull(delegate) is safe for reasons similar to requireNonNull(sequencer). Executor localDelegate = requireNonNull(delegate); delegate = null; this.task = task; localDelegate.execute(this); } } finally { // Important to null this out here - if we did *not* execute inline, we might still // run() on the same thread that called execute() - such as in a thread pool, and think // that it was happening inline. As a side benefit, avoids holding on to the Thread object // longer than necessary. submitting = null; } } @SuppressWarnings("ShortCircuitBoolean") @Override public void run() { Thread currentThread = Thread.currentThread(); if (currentThread != submitting) { /* * requireNonNull is safe because we set `task` before submitting this Runnable to an * Executor, and we don't null it out until here. */ Runnable localTask = requireNonNull(task); task = null; localTask.run(); return; } // Executor called reentrantly! Make sure that further calls don't overflow stack. Further // reentrant calls will see that their current thread is the same as the one set in // latestTaskQueue, and queue rather than calling execute() directly. ThreadConfinedTaskQueue executingTaskQueue = new ThreadConfinedTaskQueue(); executingTaskQueue.thread = currentThread; /* * requireNonNull is safe because we don't null out `sequencer` except: * * - after the requireNonNull call below. (And this object has its Runnable.run override * called only once, just as it has its Executor.execute override called only once.) * * - if we return immediately from `execute` (in which case we never get here) * * - in the "reentrant submit" case of `execute` (in which case we must have started running a * user task -- which means that we already got past this code (or else we exited early * above)) */ // Unconditionally set; there is no risk of throwing away a queued task from another thread, // because in order for the current task to run on this executor the previous task must have // already started execution. Because each task on a TaskNonReentrantExecutor can only produce // one execute() call to another instance from the same ExecutionSequencer, we know by // induction that the task that launched this one must not have added any other runnables to // that thread's queue, and thus we cannot be replacing a TaskAndThread object that would // otherwise have another task queued on to it. Note the exception to this, cancellation, is // specially handled in execute() - execute() calls triggered by cancellation are no-ops, and // thus don't count. requireNonNull(sequencer).latestTaskQueue = executingTaskQueue; sequencer = null; try { // requireNonNull is safe, as discussed above. Runnable localTask = requireNonNull(task); task = null; localTask.run(); // Now check if our task attempted to reentrantly execute the next task. Runnable queuedTask; Executor queuedExecutor; // Intentionally using non-short-circuit operator while ((queuedTask = executingTaskQueue.nextTask) != null && (queuedExecutor = executingTaskQueue.nextExecutor) != null) { executingTaskQueue.nextTask = null; executingTaskQueue.nextExecutor = null; queuedExecutor.execute(queuedTask); } } finally { // Null out the thread field, so that we don't leak a reference to Thread, and so that // future `thread == currentThread()` calls from this thread don't incorrectly queue instead // of executing. Don't null out the latestTaskQueue field, because the work done here // may have scheduled more operations on another thread, and if those operations then // trigger reentrant calls that thread will have updated the latestTaskQueue field, and // we'd be interfering with their operation. executingTaskQueue.thread = null; } } private boolean trySetStarted() { return compareAndSet(NOT_RUN, STARTED); } private boolean trySetCancelled() { return compareAndSet(NOT_RUN, CANCELLED); } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy