org.apache.commons.collections.bidimap.TreeBidiMap Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.collections.bidimap;
import java.util.AbstractSet;
import java.util.Collection;
import java.util.ConcurrentModificationException;
import java.util.Iterator;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Set;
import org.apache.commons.collections.BidiMap;
import org.apache.commons.collections.KeyValue;
import org.apache.commons.collections.MapIterator;
import org.apache.commons.collections.OrderedBidiMap;
import org.apache.commons.collections.OrderedIterator;
import org.apache.commons.collections.OrderedMapIterator;
import org.apache.commons.collections.iterators.EmptyOrderedMapIterator;
import org.apache.commons.collections.keyvalue.UnmodifiableMapEntry;
/**
* Red-Black tree-based implementation of BidiMap where all objects added
* implement the Comparable
interface.
*
* This class guarantees that the map will be in both ascending key order
* and ascending value order, sorted according to the natural order for
* the key's and value's classes.
*
* This Map is intended for applications that need to be able to look
* up a key-value pairing by either key or value, and need to do so
* with equal efficiency.
*
* While that goal could be accomplished by taking a pair of TreeMaps
* and redirecting requests to the appropriate TreeMap (e.g.,
* containsKey would be directed to the TreeMap that maps values to
* keys, containsValue would be directed to the TreeMap that maps keys
* to values), there are problems with that implementation.
* If the data contained in the TreeMaps is large, the cost of redundant
* storage becomes significant. The {@link DualTreeBidiMap} and
* {@link DualHashBidiMap} implementations use this approach.
*
* This solution keeps minimizes the data storage by holding data only once.
* The red-black algorithm is based on java util TreeMap, but has been modified
* to simultaneously map a tree node by key and by value. This doubles the
* cost of put operations (but so does using two TreeMaps), and nearly doubles
* the cost of remove operations (there is a savings in that the lookup of the
* node to be removed only has to be performed once). And since only one node
* contains the key and value, storage is significantly less than that
* required by two TreeMaps.
*
* The Map.Entry instances returned by the appropriate methods will
* not allow setValue() and will throw an
* UnsupportedOperationException on attempts to call that method.
*
* @since Commons Collections 3.0 (previously DoubleOrderedMap v2.0)
* @version $Revision: 1713173 $ $Date: 2015-11-07 21:31:09 +0100 (Sat, 07 Nov 2015) $
*
* @author Marc Johnson
* @author Stephen Colebourne
*/
public class TreeBidiMap implements OrderedBidiMap {
private static final int KEY = 0;
private static final int VALUE = 1;
private static final int MAPENTRY = 2;
private static final int INVERSEMAPENTRY = 3;
private static final int SUM_OF_INDICES = KEY + VALUE;
private static final int FIRST_INDEX = 0;
private static final int NUMBER_OF_INDICES = 2;
private static final String[] dataName = new String[] { "key", "value" };
private Node[] rootNode = new Node[2];
private int nodeCount = 0;
private int modifications = 0;
private Set keySet;
private Set valuesSet;
private Set entrySet;
private TreeBidiMap.Inverse inverse = null;
//-----------------------------------------------------------------------
/**
* Constructs a new empty TreeBidiMap.
*/
public TreeBidiMap() {
super();
}
/**
* Constructs a new TreeBidiMap by copying an existing Map.
*
* @param map the map to copy
* @throws ClassCastException if the keys/values in the map are
* not Comparable or are not mutually comparable
* @throws NullPointerException if any key or value in the map is null
*/
public TreeBidiMap(final Map map) {
super();
putAll(map);
}
//-----------------------------------------------------------------------
/**
* Returns the number of key-value mappings in this map.
*
* @return the number of key-value mappings in this map
*/
public int size() {
return nodeCount;
}
/**
* Checks whether the map is empty or not.
*
* @return true if the map is empty
*/
public boolean isEmpty() {
return (nodeCount == 0);
}
/**
* Checks whether this map contains the a mapping for the specified key.
*
* The key must implement Comparable
.
*
* @param key key whose presence in this map is to be tested
* @return true if this map contains a mapping for the specified key
* @throws ClassCastException if the key is of an inappropriate type
* @throws NullPointerException if the key is null
*/
public boolean containsKey(final Object key) {
checkKey(key);
return (lookup((Comparable) key, KEY) != null);
}
/**
* Checks whether this map contains the a mapping for the specified value.
*
* The value must implement Comparable
.
*
* @param value value whose presence in this map is to be tested
* @return true if this map contains a mapping for the specified value
* @throws ClassCastException if the value is of an inappropriate type
* @throws NullPointerException if the value is null
*/
public boolean containsValue(final Object value) {
checkValue(value);
return (lookup((Comparable) value, VALUE) != null);
}
/**
* Gets the value to which this map maps the specified key.
* Returns null if the map contains no mapping for this key.
*
* The key must implement Comparable
.
*
* @param key key whose associated value is to be returned
* @return the value to which this map maps the specified key,
* or null if the map contains no mapping for this key
* @throws ClassCastException if the key is of an inappropriate type
* @throws NullPointerException if the key is null
*/
public Object get(final Object key) {
return doGet((Comparable) key, KEY);
}
/**
* Puts the key-value pair into the map, replacing any previous pair.
*
* When adding a key-value pair, the value may already exist in the map
* against a different key. That mapping is removed, to ensure that the
* value only occurs once in the inverse map.
*
* BidiMap map1 = new TreeBidiMap();
* map.put("A","B"); // contains A mapped to B, as per Map
* map.put("A","C"); // contains A mapped to C, as per Map
*
* BidiMap map2 = new TreeBidiMap();
* map.put("A","B"); // contains A mapped to B, as per Map
* map.put("C","B"); // contains C mapped to B, key A is removed
*
*
* Both key and value must implement Comparable
.
*
* @param key key with which the specified value is to be associated
* @param value value to be associated with the specified key
* @return the previous value for the key
* @throws ClassCastException if the key is of an inappropriate type
* @throws NullPointerException if the key is null
*/
public Object put(final Object key, final Object value) {
return doPut((Comparable) key, (Comparable) value, KEY);
}
/**
* Puts all the mappings from the specified map into this map.
*
* All keys and values must implement Comparable
.
*
* @param map the map to copy from
*/
public void putAll(Map map) {
Iterator it = map.entrySet().iterator();
while (it.hasNext()) {
Map.Entry entry = (Map.Entry) it.next();
put(entry.getKey(), entry.getValue());
}
}
/**
* Removes the mapping for this key from this map if present.
*
* The key must implement Comparable
.
*
* @param key key whose mapping is to be removed from the map.
* @return previous value associated with specified key,
* or null if there was no mapping for key.
* @throws ClassCastException if the key is of an inappropriate type
* @throws NullPointerException if the key is null
*/
public Object remove(final Object key) {
return doRemove((Comparable) key, KEY);
}
/**
* Removes all mappings from this map.
*/
public void clear() {
modify();
nodeCount = 0;
rootNode[KEY] = null;
rootNode[VALUE] = null;
}
//-----------------------------------------------------------------------
/**
* Returns the key to which this map maps the specified value.
* Returns null if the map contains no mapping for this value.
*
* The value must implement Comparable
.
*
* @param value value whose associated key is to be returned.
* @return the key to which this map maps the specified value,
* or null if the map contains no mapping for this value.
* @throws ClassCastException if the value is of an inappropriate type
* @throws NullPointerException if the value is null
*/
public Object getKey(final Object value) {
return doGet((Comparable) value, VALUE);
}
/**
* Removes the mapping for this value from this map if present.
*
* The value must implement Comparable
.
*
* @param value value whose mapping is to be removed from the map
* @return previous key associated with specified value,
* or null if there was no mapping for value.
* @throws ClassCastException if the value is of an inappropriate type
* @throws NullPointerException if the value is null
*/
public Object removeValue(final Object value) {
return doRemove((Comparable) value, VALUE);
}
//-----------------------------------------------------------------------
/**
* Gets the first (lowest) key currently in this map.
*
* @return the first (lowest) key currently in this sorted map
* @throws NoSuchElementException if this map is empty
*/
public Object firstKey() {
if (nodeCount == 0) {
throw new NoSuchElementException("Map is empty");
}
return leastNode(rootNode[KEY], KEY).getKey();
}
/**
* Gets the last (highest) key currently in this map.
*
* @return the last (highest) key currently in this sorted map
* @throws NoSuchElementException if this map is empty
*/
public Object lastKey() {
if (nodeCount == 0) {
throw new NoSuchElementException("Map is empty");
}
return greatestNode(rootNode[KEY], KEY).getKey();
}
/**
* Gets the next key after the one specified.
*
* The key must implement Comparable
.
*
* @param key the key to search for next from
* @return the next key, null if no match or at end
*/
public Object nextKey(Object key) {
checkKey(key);
Node node = nextGreater(lookup((Comparable) key, KEY), KEY);
return (node == null ? null : node.getKey());
}
/**
* Gets the previous key before the one specified.
*
* The key must implement Comparable
.
*
* @param key the key to search for previous from
* @return the previous key, null if no match or at start
*/
public Object previousKey(Object key) {
checkKey(key);
Node node = nextSmaller(lookup((Comparable) key, KEY), KEY);
return (node == null ? null : node.getKey());
}
//-----------------------------------------------------------------------
/**
* Returns a set view of the keys contained in this map in key order.
*
* The set is backed by the map, so changes to the map are reflected in
* the set, and vice-versa. If the map is modified while an iteration over
* the set is in progress, the results of the iteration are undefined.
*
* The set supports element removal, which removes the corresponding mapping
* from the map. It does not support the add or addAll operations.
*
* @return a set view of the keys contained in this map.
*/
public Set keySet() {
if (keySet == null) {
keySet = new View(this, KEY, KEY);
}
return keySet;
}
//-----------------------------------------------------------------------
/**
* Returns a set view of the values contained in this map in key order.
* The returned object can be cast to a Set.
*
* The set is backed by the map, so changes to the map are reflected in
* the set, and vice-versa. If the map is modified while an iteration over
* the set is in progress, the results of the iteration are undefined.
*
* The set supports element removal, which removes the corresponding mapping
* from the map. It does not support the add or addAll operations.
*
* @return a set view of the values contained in this map.
*/
public Collection values() {
if (valuesSet == null) {
valuesSet = new View(this, KEY, VALUE);
}
return valuesSet;
}
//-----------------------------------------------------------------------
/**
* Returns a set view of the entries contained in this map in key order.
* For simple iteration through the map, the MapIterator is quicker.
*
* The set is backed by the map, so changes to the map are reflected in
* the set, and vice-versa. If the map is modified while an iteration over
* the set is in progress, the results of the iteration are undefined.
*
* The set supports element removal, which removes the corresponding mapping
* from the map. It does not support the add or addAll operations.
* The returned MapEntry objects do not support setValue.
*
* @return a set view of the values contained in this map.
*/
public Set entrySet() {
if (entrySet == null) {
entrySet = new EntryView(this, KEY, MAPENTRY);
}
return entrySet;
}
//-----------------------------------------------------------------------
/**
* Gets an iterator over the map entries.
*
* For this map, this iterator is the fastest way to iterate over the entries.
*
* @return an iterator
*/
public MapIterator mapIterator() {
if (isEmpty()) {
return EmptyOrderedMapIterator.INSTANCE;
}
return new ViewMapIterator(this, KEY);
}
/**
* Gets an ordered iterator over the map entries.
*
* This iterator allows both forward and reverse iteration over the entries.
*
* @return an iterator
*/
public OrderedMapIterator orderedMapIterator() {
if (isEmpty()) {
return EmptyOrderedMapIterator.INSTANCE;
}
return new ViewMapIterator(this, KEY);
}
//-----------------------------------------------------------------------
/**
* Gets the inverse map for comparison.
*
* @return the inverse map
*/
public BidiMap inverseBidiMap() {
return inverseOrderedBidiMap();
}
/**
* Gets the inverse map for comparison.
*
* @return the inverse map
*/
public OrderedBidiMap inverseOrderedBidiMap() {
if (inverse == null) {
inverse = new Inverse(this);
}
return inverse;
}
//-----------------------------------------------------------------------
/**
* Compares for equals as per the API.
*
* @param obj the object to compare to
* @return true if equal
*/
public boolean equals(Object obj) {
return this.doEquals(obj, KEY);
}
/**
* Gets the hash code value for this map as per the API.
*
* @return the hash code value for this map
*/
public int hashCode() {
return this.doHashCode(KEY);
}
/**
* Returns a string version of this Map in standard format.
*
* @return a standard format string version of the map
*/
public String toString() {
return this.doToString(KEY);
}
//-----------------------------------------------------------------------
/**
* Common get logic, used to get by key or get by value
*
* @param obj the key or value that we're looking for
* @param index the KEY or VALUE int
* @return the key (if the value was mapped) or the value (if the
* key was mapped); null if we couldn't find the specified
* object
*/
private Object doGet(final Comparable obj, final int index) {
checkNonNullComparable(obj, index);
Node node = lookup(obj, index);
return ((node == null) ? null : node.getData(oppositeIndex(index)));
}
/**
* Common put logic, differing only in the return value.
*
* @param key the key, always the main map key
* @param value the value, always the main map value
* @param index the KEY or VALUE int, for the return value only
* @return the previously mapped value
*/
private Object doPut(final Comparable key, final Comparable value, final int index) {
checkKeyAndValue(key, value);
// store previous and remove previous mappings
Object prev = (index == KEY ? doGet(key, KEY) : doGet(value, VALUE));
doRemove(key, KEY);
doRemove(value, VALUE);
Node node = rootNode[KEY];
if (node == null) {
// map is empty
Node root = new Node(key, value);
rootNode[KEY] = root;
rootNode[VALUE] = root;
grow();
} else {
// add new mapping
while (true) {
int cmp = compare(key, node.getData(KEY));
if (cmp == 0) {
// shouldn't happen
throw new IllegalArgumentException("Cannot store a duplicate key (\"" + key + "\") in this Map");
} else if (cmp < 0) {
if (node.getLeft(KEY) != null) {
node = node.getLeft(KEY);
} else {
Node newNode = new Node(key, value);
insertValue(newNode);
node.setLeft(newNode, KEY);
newNode.setParent(node, KEY);
doRedBlackInsert(newNode, KEY);
grow();
break;
}
} else { // cmp > 0
if (node.getRight(KEY) != null) {
node = node.getRight(KEY);
} else {
Node newNode = new Node(key, value);
insertValue(newNode);
node.setRight(newNode, KEY);
newNode.setParent(node, KEY);
doRedBlackInsert(newNode, KEY);
grow();
break;
}
}
}
}
return prev;
}
/**
* Remove by object (remove by key or remove by value)
*
* @param o the key, or value, that we're looking for
* @param index the KEY or VALUE int
*
* @return the key, if remove by value, or the value, if remove by
* key. null if the specified key or value could not be
* found
*/
private Object doRemove(final Comparable o, final int index) {
Node node = lookup(o, index);
Object rval = null;
if (node != null) {
rval = node.getData(oppositeIndex(index));
doRedBlackDelete(node);
}
return rval;
}
/**
* do the actual lookup of a piece of data
*
* @param data the key or value to be looked up
* @param index the KEY or VALUE int
* @return the desired Node, or null if there is no mapping of the
* specified data
*/
private Node lookup(final Comparable data, final int index) {
Node rval = null;
Node node = rootNode[index];
while (node != null) {
int cmp = compare(data, node.getData(index));
if (cmp == 0) {
rval = node;
break;
} else {
node = (cmp < 0) ? node.getLeft(index) : node.getRight(index);
}
}
return rval;
}
/**
* get the next larger node from the specified node
*
* @param node the node to be searched from
* @param index the KEY or VALUE int
* @return the specified node
*/
private Node nextGreater(final Node node, final int index) {
Node rval = null;
if (node == null) {
rval = null;
} else if (node.getRight(index) != null) {
// everything to the node's right is larger. The least of
// the right node's descendants is the next larger node
rval = leastNode(node.getRight(index), index);
} else {
// traverse up our ancestry until we find an ancestor that
// is null or one whose left child is our ancestor. If we
// find a null, then this node IS the largest node in the
// tree, and there is no greater node. Otherwise, we are
// the largest node in the subtree on that ancestor's left
// ... and that ancestor is the next greatest node
Node parent = node.getParent(index);
Node child = node;
while ((parent != null) && (child == parent.getRight(index))) {
child = parent;
parent = parent.getParent(index);
}
rval = parent;
}
return rval;
}
/**
* get the next larger node from the specified node
*
* @param node the node to be searched from
* @param index the KEY or VALUE int
* @return the specified node
*/
private Node nextSmaller(final Node node, final int index) {
Node rval = null;
if (node == null) {
rval = null;
} else if (node.getLeft(index) != null) {
// everything to the node's left is smaller. The greatest of
// the left node's descendants is the next smaller node
rval = greatestNode(node.getLeft(index), index);
} else {
// traverse up our ancestry until we find an ancestor that
// is null or one whose right child is our ancestor. If we
// find a null, then this node IS the largest node in the
// tree, and there is no greater node. Otherwise, we are
// the largest node in the subtree on that ancestor's right
// ... and that ancestor is the next greatest node
Node parent = node.getParent(index);
Node child = node;
while ((parent != null) && (child == parent.getLeft(index))) {
child = parent;
parent = parent.getParent(index);
}
rval = parent;
}
return rval;
}
//-----------------------------------------------------------------------
/**
* Get the opposite index of the specified index
*
* @param index the KEY or VALUE int
* @return VALUE (if KEY was specified), else KEY
*/
private static int oppositeIndex(final int index) {
// old trick ... to find the opposite of a value, m or n,
// subtract the value from the sum of the two possible
// values. (m + n) - m = n; (m + n) - n = m
return SUM_OF_INDICES - index;
}
/**
* Compare two objects
*
* @param o1 the first object
* @param o2 the second object
*
* @return negative value if o1 < o2; 0 if o1 == o2; positive
* value if o1 > o2
*/
private static int compare(final Comparable o1, final Comparable o2) {
return o1.compareTo(o2);
}
/**
* Find the least node from a given node.
*
* @param node the node from which we will start searching
* @param index the KEY or VALUE int
* @return the smallest node, from the specified node, in the
* specified mapping
*/
private static Node leastNode(final Node node, final int index) {
Node rval = node;
if (rval != null) {
while (rval.getLeft(index) != null) {
rval = rval.getLeft(index);
}
}
return rval;
}
/**
* Find the greatest node from a given node.
*
* @param node the node from which we will start searching
* @param index the KEY or VALUE int
* @return the greatest node, from the specified node
*/
private static Node greatestNode(final Node node, final int index) {
Node rval = node;
if (rval != null) {
while (rval.getRight(index) != null) {
rval = rval.getRight(index);
}
}
return rval;
}
/**
* copy the color from one node to another, dealing with the fact
* that one or both nodes may, in fact, be null
*
* @param from the node whose color we're copying; may be null
* @param to the node whose color we're changing; may be null
* @param index the KEY or VALUE int
*/
private static void copyColor(final Node from, final Node to, final int index) {
if (to != null) {
if (from == null) {
// by default, make it black
to.setBlack(index);
} else {
to.copyColor(from, index);
}
}
}
/**
* is the specified node red? if the node does not exist, no, it's
* black, thank you
*
* @param node the node (may be null) in question
* @param index the KEY or VALUE int
*/
private static boolean isRed(final Node node, final int index) {
return ((node == null) ? false : node.isRed(index));
}
/**
* is the specified black red? if the node does not exist, sure,
* it's black, thank you
*
* @param node the node (may be null) in question
* @param index the KEY or VALUE int
*/
private static boolean isBlack(final Node node, final int index) {
return ((node == null) ? true : node.isBlack(index));
}
/**
* force a node (if it exists) red
*
* @param node the node (may be null) in question
* @param index the KEY or VALUE int
*/
private static void makeRed(final Node node, final int index) {
if (node != null) {
node.setRed(index);
}
}
/**
* force a node (if it exists) black
*
* @param node the node (may be null) in question
* @param index the KEY or VALUE int
*/
private static void makeBlack(final Node node, final int index) {
if (node != null) {
node.setBlack(index);
}
}
/**
* get a node's grandparent. mind you, the node, its parent, or
* its grandparent may not exist. no problem
*
* @param node the node (may be null) in question
* @param index the KEY or VALUE int
*/
private static Node getGrandParent(final Node node, final int index) {
return getParent(getParent(node, index), index);
}
/**
* get a node's parent. mind you, the node, or its parent, may not
* exist. no problem
*
* @param node the node (may be null) in question
* @param index the KEY or VALUE int
*/
private static Node getParent(final Node node, final int index) {
return ((node == null) ? null : node.getParent(index));
}
/**
* get a node's right child. mind you, the node may not exist. no
* problem
*
* @param node the node (may be null) in question
* @param index the KEY or VALUE int
*/
private static Node getRightChild(final Node node, final int index) {
return (node == null) ? null : node.getRight(index);
}
/**
* get a node's left child. mind you, the node may not exist. no
* problem
*
* @param node the node (may be null) in question
* @param index the KEY or VALUE int
*/
private static Node getLeftChild(final Node node, final int index) {
return (node == null) ? null : node.getLeft(index);
}
/**
* is this node its parent's left child? mind you, the node, or
* its parent, may not exist. no problem. if the node doesn't
* exist ... it's its non-existent parent's left child. If the
* node does exist but has no parent ... no, we're not the
* non-existent parent's left child. Otherwise (both the specified
* node AND its parent exist), check.
*
* @param node the node (may be null) in question
* @param index the KEY or VALUE int
*/
private static boolean isLeftChild(final Node node, final int index) {
return (node == null)
? true
: ((node.getParent(index) == null) ?
false : (node == node.getParent(index).getLeft(index)));
}
/**
* is this node its parent's right child? mind you, the node, or
* its parent, may not exist. no problem. if the node doesn't
* exist ... it's its non-existent parent's right child. If the
* node does exist but has no parent ... no, we're not the
* non-existent parent's right child. Otherwise (both the
* specified node AND its parent exist), check.
*
* @param node the node (may be null) in question
* @param index the KEY or VALUE int
*/
private static boolean isRightChild(final Node node, final int index) {
return (node == null)
? true
: ((node.getParent(index) == null) ?
false : (node == node.getParent(index).getRight(index)));
}
/**
* do a rotate left. standard fare in the world of balanced trees
*
* @param node the node to be rotated
* @param index the KEY or VALUE int
*/
private void rotateLeft(final Node node, final int index) {
Node rightChild = node.getRight(index);
node.setRight(rightChild.getLeft(index), index);
if (rightChild.getLeft(index) != null) {
rightChild.getLeft(index).setParent(node, index);
}
rightChild.setParent(node.getParent(index), index);
if (node.getParent(index) == null) {
// node was the root ... now its right child is the root
rootNode[index] = rightChild;
} else if (node.getParent(index).getLeft(index) == node) {
node.getParent(index).setLeft(rightChild, index);
} else {
node.getParent(index).setRight(rightChild, index);
}
rightChild.setLeft(node, index);
node.setParent(rightChild, index);
}
/**
* do a rotate right. standard fare in the world of balanced trees
*
* @param node the node to be rotated
* @param index the KEY or VALUE int
*/
private void rotateRight(final Node node, final int index) {
Node leftChild = node.getLeft(index);
node.setLeft(leftChild.getRight(index), index);
if (leftChild.getRight(index) != null) {
leftChild.getRight(index).setParent(node, index);
}
leftChild.setParent(node.getParent(index), index);
if (node.getParent(index) == null) {
// node was the root ... now its left child is the root
rootNode[index] = leftChild;
} else if (node.getParent(index).getRight(index) == node) {
node.getParent(index).setRight(leftChild, index);
} else {
node.getParent(index).setLeft(leftChild, index);
}
leftChild.setRight(node, index);
node.setParent(leftChild, index);
}
/**
* complicated red-black insert stuff. Based on Sun's TreeMap
* implementation, though it's barely recognizable any more
*
* @param insertedNode the node to be inserted
* @param index the KEY or VALUE int
*/
private void doRedBlackInsert(final Node insertedNode, final int index) {
Node currentNode = insertedNode;
makeRed(currentNode, index);
while ((currentNode != null)
&& (currentNode != rootNode[index])
&& (isRed(currentNode.getParent(index), index))) {
if (isLeftChild(getParent(currentNode, index), index)) {
Node y = getRightChild(getGrandParent(currentNode, index), index);
if (isRed(y, index)) {
makeBlack(getParent(currentNode, index), index);
makeBlack(y, index);
makeRed(getGrandParent(currentNode, index), index);
currentNode = getGrandParent(currentNode, index);
} else {
if (isRightChild(currentNode, index)) {
currentNode = getParent(currentNode, index);
rotateLeft(currentNode, index);
}
makeBlack(getParent(currentNode, index), index);
makeRed(getGrandParent(currentNode, index), index);
if (getGrandParent(currentNode, index) != null) {
rotateRight(getGrandParent(currentNode, index), index);
}
}
} else {
// just like clause above, except swap left for right
Node y = getLeftChild(getGrandParent(currentNode, index), index);
if (isRed(y, index)) {
makeBlack(getParent(currentNode, index), index);
makeBlack(y, index);
makeRed(getGrandParent(currentNode, index), index);
currentNode = getGrandParent(currentNode, index);
} else {
if (isLeftChild(currentNode, index)) {
currentNode = getParent(currentNode, index);
rotateRight(currentNode, index);
}
makeBlack(getParent(currentNode, index), index);
makeRed(getGrandParent(currentNode, index), index);
if (getGrandParent(currentNode, index) != null) {
rotateLeft(getGrandParent(currentNode, index), index);
}
}
}
}
makeBlack(rootNode[index], index);
}
/**
* complicated red-black delete stuff. Based on Sun's TreeMap
* implementation, though it's barely recognizable any more
*
* @param deletedNode the node to be deleted
*/
private void doRedBlackDelete(final Node deletedNode) {
for (int index = FIRST_INDEX; index < NUMBER_OF_INDICES; index++) {
// if deleted node has both left and children, swap with
// the next greater node
if ((deletedNode.getLeft(index) != null) && (deletedNode.getRight(index) != null)) {
swapPosition(nextGreater(deletedNode, index), deletedNode, index);
}
Node replacement =
((deletedNode.getLeft(index) != null) ? deletedNode.getLeft(index) : deletedNode.getRight(index));
if (replacement != null) {
replacement.setParent(deletedNode.getParent(index), index);
if (deletedNode.getParent(index) == null) {
rootNode[index] = replacement;
} else if (deletedNode == deletedNode.getParent(index).getLeft(index)) {
deletedNode.getParent(index).setLeft(replacement, index);
} else {
deletedNode.getParent(index).setRight(replacement, index);
}
deletedNode.setLeft(null, index);
deletedNode.setRight(null, index);
deletedNode.setParent(null, index);
if (isBlack(deletedNode, index)) {
doRedBlackDeleteFixup(replacement, index);
}
} else {
// replacement is null
if (deletedNode.getParent(index) == null) {
// empty tree
rootNode[index] = null;
} else {
// deleted node had no children
if (isBlack(deletedNode, index)) {
doRedBlackDeleteFixup(deletedNode, index);
}
if (deletedNode.getParent(index) != null) {
if (deletedNode == deletedNode.getParent(index).getLeft(index)) {
deletedNode.getParent(index).setLeft(null, index);
} else {
deletedNode.getParent(index).setRight(null, index);
}
deletedNode.setParent(null, index);
}
}
}
}
shrink();
}
/**
* complicated red-black delete stuff. Based on Sun's TreeMap
* implementation, though it's barely recognizable any more. This
* rebalances the tree (somewhat, as red-black trees are not
* perfectly balanced -- perfect balancing takes longer)
*
* @param replacementNode the node being replaced
* @param index the KEY or VALUE int
*/
private void doRedBlackDeleteFixup(final Node replacementNode, final int index) {
Node currentNode = replacementNode;
while ((currentNode != rootNode[index]) && (isBlack(currentNode, index))) {
if (isLeftChild(currentNode, index)) {
Node siblingNode = getRightChild(getParent(currentNode, index), index);
if (isRed(siblingNode, index)) {
makeBlack(siblingNode, index);
makeRed(getParent(currentNode, index), index);
rotateLeft(getParent(currentNode, index), index);
siblingNode = getRightChild(getParent(currentNode, index), index);
}
if (isBlack(getLeftChild(siblingNode, index), index)
&& isBlack(getRightChild(siblingNode, index), index)) {
makeRed(siblingNode, index);
currentNode = getParent(currentNode, index);
} else {
if (isBlack(getRightChild(siblingNode, index), index)) {
makeBlack(getLeftChild(siblingNode, index), index);
makeRed(siblingNode, index);
rotateRight(siblingNode, index);
siblingNode = getRightChild(getParent(currentNode, index), index);
}
copyColor(getParent(currentNode, index), siblingNode, index);
makeBlack(getParent(currentNode, index), index);
makeBlack(getRightChild(siblingNode, index), index);
rotateLeft(getParent(currentNode, index), index);
currentNode = rootNode[index];
}
} else {
Node siblingNode = getLeftChild(getParent(currentNode, index), index);
if (isRed(siblingNode, index)) {
makeBlack(siblingNode, index);
makeRed(getParent(currentNode, index), index);
rotateRight(getParent(currentNode, index), index);
siblingNode = getLeftChild(getParent(currentNode, index), index);
}
if (isBlack(getRightChild(siblingNode, index), index)
&& isBlack(getLeftChild(siblingNode, index), index)) {
makeRed(siblingNode, index);
currentNode = getParent(currentNode, index);
} else {
if (isBlack(getLeftChild(siblingNode, index), index)) {
makeBlack(getRightChild(siblingNode, index), index);
makeRed(siblingNode, index);
rotateLeft(siblingNode, index);
siblingNode = getLeftChild(getParent(currentNode, index), index);
}
copyColor(getParent(currentNode, index), siblingNode, index);
makeBlack(getParent(currentNode, index), index);
makeBlack(getLeftChild(siblingNode, index), index);
rotateRight(getParent(currentNode, index), index);
currentNode = rootNode[index];
}
}
}
makeBlack(currentNode, index);
}
/**
* swap two nodes (except for their content), taking care of
* special cases where one is the other's parent ... hey, it
* happens.
*
* @param x one node
* @param y another node
* @param index the KEY or VALUE int
*/
private void swapPosition(final Node x, final Node y, final int index) {
// Save initial values.
Node xFormerParent = x.getParent(index);
Node xFormerLeftChild = x.getLeft(index);
Node xFormerRightChild = x.getRight(index);
Node yFormerParent = y.getParent(index);
Node yFormerLeftChild = y.getLeft(index);
Node yFormerRightChild = y.getRight(index);
boolean xWasLeftChild = (x.getParent(index) != null) && (x == x.getParent(index).getLeft(index));
boolean yWasLeftChild = (y.getParent(index) != null) && (y == y.getParent(index).getLeft(index));
// Swap, handling special cases of one being the other's parent.
if (x == yFormerParent) { // x was y's parent
x.setParent(y, index);
if (yWasLeftChild) {
y.setLeft(x, index);
y.setRight(xFormerRightChild, index);
} else {
y.setRight(x, index);
y.setLeft(xFormerLeftChild, index);
}
} else {
x.setParent(yFormerParent, index);
if (yFormerParent != null) {
if (yWasLeftChild) {
yFormerParent.setLeft(x, index);
} else {
yFormerParent.setRight(x, index);
}
}
y.setLeft(xFormerLeftChild, index);
y.setRight(xFormerRightChild, index);
}
if (y == xFormerParent) { // y was x's parent
y.setParent(x, index);
if (xWasLeftChild) {
x.setLeft(y, index);
x.setRight(yFormerRightChild, index);
} else {
x.setRight(y, index);
x.setLeft(yFormerLeftChild, index);
}
} else {
y.setParent(xFormerParent, index);
if (xFormerParent != null) {
if (xWasLeftChild) {
xFormerParent.setLeft(y, index);
} else {
xFormerParent.setRight(y, index);
}
}
x.setLeft(yFormerLeftChild, index);
x.setRight(yFormerRightChild, index);
}
// Fix children's parent pointers
if (x.getLeft(index) != null) {
x.getLeft(index).setParent(x, index);
}
if (x.getRight(index) != null) {
x.getRight(index).setParent(x, index);
}
if (y.getLeft(index) != null) {
y.getLeft(index).setParent(y, index);
}
if (y.getRight(index) != null) {
y.getRight(index).setParent(y, index);
}
x.swapColors(y, index);
// Check if root changed
if (rootNode[index] == x) {
rootNode[index] = y;
} else if (rootNode[index] == y) {
rootNode[index] = x;
}
}
/**
* check if an object is fit to be proper input ... has to be
* Comparable and non-null
*
* @param o the object being checked
* @param index the KEY or VALUE int (used to put the right word in the
* exception message)
*
* @throws NullPointerException if o is null
* @throws ClassCastException if o is not Comparable
*/
private static void checkNonNullComparable(final Object o, final int index) {
if (o == null) {
throw new NullPointerException(dataName[index] + " cannot be null");
}
if (!(o instanceof Comparable)) {
throw new ClassCastException(dataName[index] + " must be Comparable");
}
}
/**
* check a key for validity (non-null and implements Comparable)
*
* @param key the key to be checked
*
* @throws NullPointerException if key is null
* @throws ClassCastException if key is not Comparable
*/
private static void checkKey(final Object key) {
checkNonNullComparable(key, KEY);
}
/**
* check a value for validity (non-null and implements Comparable)
*
* @param value the value to be checked
*
* @throws NullPointerException if value is null
* @throws ClassCastException if value is not Comparable
*/
private static void checkValue(final Object value) {
checkNonNullComparable(value, VALUE);
}
/**
* check a key and a value for validity (non-null and implements
* Comparable)
*
* @param key the key to be checked
* @param value the value to be checked
*
* @throws NullPointerException if key or value is null
* @throws ClassCastException if key or value is not Comparable
*/
private static void checkKeyAndValue(final Object key, final Object value) {
checkKey(key);
checkValue(value);
}
/**
* increment the modification count -- used to check for
* concurrent modification of the map through the map and through
* an Iterator from one of its Set or Collection views
*/
private void modify() {
modifications++;
}
/**
* bump up the size and note that the map has changed
*/
private void grow() {
modify();
nodeCount++;
}
/**
* decrement the size and note that the map has changed
*/
private void shrink() {
modify();
nodeCount--;
}
/**
* insert a node by its value
*
* @param newNode the node to be inserted
*
* @throws IllegalArgumentException if the node already exists
* in the value mapping
*/
private void insertValue(final Node newNode) throws IllegalArgumentException {
Node node = rootNode[VALUE];
while (true) {
int cmp = compare(newNode.getData(VALUE), node.getData(VALUE));
if (cmp == 0) {
throw new IllegalArgumentException(
"Cannot store a duplicate value (\"" + newNode.getData(VALUE) + "\") in this Map");
} else if (cmp < 0) {
if (node.getLeft(VALUE) != null) {
node = node.getLeft(VALUE);
} else {
node.setLeft(newNode, VALUE);
newNode.setParent(node, VALUE);
doRedBlackInsert(newNode, VALUE);
break;
}
} else { // cmp > 0
if (node.getRight(VALUE) != null) {
node = node.getRight(VALUE);
} else {
node.setRight(newNode, VALUE);
newNode.setParent(node, VALUE);
doRedBlackInsert(newNode, VALUE);
break;
}
}
}
}
//-----------------------------------------------------------------------
/**
* Compares for equals as per the API.
*
* @param obj the object to compare to
* @param type the KEY or VALUE int
* @return true if equal
*/
private boolean doEquals(Object obj, final int type) {
if (obj == this) {
return true;
}
if (obj instanceof Map == false) {
return false;
}
Map other = (Map) obj;
if (other.size() != size()) {
return false;
}
if (nodeCount > 0) {
try {
for (MapIterator it = new ViewMapIterator(this, type); it.hasNext(); ) {
Object key = it.next();
Object value = it.getValue();
if (value.equals(other.get(key)) == false) {
return false;
}
}
} catch (ClassCastException ex) {
return false;
} catch (NullPointerException ex) {
return false;
}
}
return true;
}
/**
* Gets the hash code value for this map as per the API.
*
* @param type the KEY or VALUE int
* @return the hash code value for this map
*/
private int doHashCode(final int type) {
int total = 0;
if (nodeCount > 0) {
for (MapIterator it = new ViewMapIterator(this, type); it.hasNext(); ) {
Object key = it.next();
Object value = it.getValue();
total += (key.hashCode() ^ value.hashCode());
}
}
return total;
}
/**
* Gets the string form of this map as per AbstractMap.
*
* @param type the KEY or VALUE int
* @return the string form of this map
*/
private String doToString(final int type) {
if (nodeCount == 0) {
return "{}";
}
StringBuffer buf = new StringBuffer(nodeCount * 32);
buf.append('{');
MapIterator it = new ViewMapIterator(this, type);
boolean hasNext = it.hasNext();
while (hasNext) {
Object key = it.next();
Object value = it.getValue();
buf.append(key == this ? "(this Map)" : key)
.append('=')
.append(value == this ? "(this Map)" : value);
hasNext = it.hasNext();
if (hasNext) {
buf.append(", ");
}
}
buf.append('}');
return buf.toString();
}
//-----------------------------------------------------------------------
/**
* A view of this map.
*/
static class View extends AbstractSet {
/** The parent map. */
protected final TreeBidiMap main;
/** Whether to return KEY or VALUE order. */
protected final int orderType;
/** Whether to return KEY, VALUE, MAPENTRY or INVERSEMAPENTRY data. */
protected final int dataType;
/**
* Constructor.
*
* @param main the main map
* @param orderType the KEY or VALUE int for the order
* @param dataType the KEY, VALUE, MAPENTRY or INVERSEMAPENTRY int
*/
View(final TreeBidiMap main, final int orderType, final int dataType) {
super();
this.main = main;
this.orderType = orderType;
this.dataType = dataType;
}
public Iterator iterator() {
return new ViewIterator(main, orderType, dataType);
}
public int size() {
return main.size();
}
public boolean contains(final Object obj) {
checkNonNullComparable(obj, dataType);
return (main.lookup((Comparable) obj, dataType) != null);
}
public boolean remove(final Object obj) {
return (main.doRemove((Comparable) obj, dataType) != null);
}
public void clear() {
main.clear();
}
}
//-----------------------------------------------------------------------
/**
* An iterator over the map.
*/
static class ViewIterator implements OrderedIterator {
/** The parent map. */
protected final TreeBidiMap main;
/** Whether to return KEY or VALUE order. */
protected final int orderType;
/** Whether to return KEY, VALUE, MAPENTRY or INVERSEMAPENTRY data. */
protected final int dataType;
/** The last node returned by the iterator. */
protected Node lastReturnedNode;
/** The next node to be returned by the iterator. */
protected Node nextNode;
/** The previous node in the sequence returned by the iterator. */
protected Node previousNode;
/** The modification count. */
private int expectedModifications;
/**
* Constructor.
*
* @param main the main map
* @param orderType the KEY or VALUE int for the order
* @param dataType the KEY, VALUE, MAPENTRY or INVERSEMAPENTRY int
*/
ViewIterator(final TreeBidiMap main, final int orderType, final int dataType) {
super();
this.main = main;
this.orderType = orderType;
this.dataType = dataType;
expectedModifications = main.modifications;
nextNode = leastNode(main.rootNode[orderType], orderType);
lastReturnedNode = null;
previousNode = null;
}
public final boolean hasNext() {
return (nextNode != null);
}
public final Object next() {
if (nextNode == null) {
throw new NoSuchElementException();
}
if (main.modifications != expectedModifications) {
throw new ConcurrentModificationException();
}
lastReturnedNode = nextNode;
previousNode = nextNode;
nextNode = main.nextGreater(nextNode, orderType);
return doGetData();
}
public boolean hasPrevious() {
return (previousNode != null);
}
public Object previous() {
if (previousNode == null) {
throw new NoSuchElementException();
}
if (main.modifications != expectedModifications) {
throw new ConcurrentModificationException();
}
nextNode = lastReturnedNode;
if (nextNode == null) {
nextNode = main.nextGreater(previousNode, orderType);
}
lastReturnedNode = previousNode;
previousNode = main.nextSmaller(previousNode, orderType);
return doGetData();
}
/**
* Gets the data value for the lastReturnedNode field.
* @return the data value
*/
protected Object doGetData() {
switch (dataType) {
case KEY:
return lastReturnedNode.getKey();
case VALUE:
return lastReturnedNode.getValue();
case MAPENTRY:
return lastReturnedNode;
case INVERSEMAPENTRY:
return new UnmodifiableMapEntry(lastReturnedNode.getValue(), lastReturnedNode.getKey());
}
return null;
}
public final void remove() {
if (lastReturnedNode == null) {
throw new IllegalStateException();
}
if (main.modifications != expectedModifications) {
throw new ConcurrentModificationException();
}
main.doRedBlackDelete(lastReturnedNode);
expectedModifications++;
lastReturnedNode = null;
if (nextNode == null) {
previousNode = TreeBidiMap.greatestNode(main.rootNode[orderType], orderType);
} else {
previousNode = main.nextSmaller(nextNode, orderType);
}
}
}
//-----------------------------------------------------------------------
/**
* An iterator over the map.
*/
static class ViewMapIterator extends ViewIterator implements OrderedMapIterator {
private final int oppositeType;
/**
* Constructor.
*
* @param main the main map
* @param orderType the KEY or VALUE int for the order
*/
ViewMapIterator(final TreeBidiMap main, final int orderType) {
super(main, orderType, orderType);
this.oppositeType = oppositeIndex(dataType);
}
public Object getKey() {
if (lastReturnedNode == null) {
throw new IllegalStateException("Iterator getKey() can only be called after next() and before remove()");
}
return lastReturnedNode.getData(dataType);
}
public Object getValue() {
if (lastReturnedNode == null) {
throw new IllegalStateException("Iterator getValue() can only be called after next() and before remove()");
}
return lastReturnedNode.getData(oppositeType);
}
public Object setValue(final Object obj) {
throw new UnsupportedOperationException();
}
}
//-----------------------------------------------------------------------
/**
* A view of this map.
*/
static class EntryView extends View {
private final int oppositeType;
/**
* Constructor.
*
* @param main the main map
* @param orderType the KEY or VALUE int for the order
* @param dataType the MAPENTRY or INVERSEMAPENTRY int for the returned data
*/
EntryView(final TreeBidiMap main, final int orderType, final int dataType) {
super(main, orderType, dataType);
this.oppositeType = TreeBidiMap.oppositeIndex(orderType);
}
public boolean contains(Object obj) {
if (obj instanceof Map.Entry == false) {
return false;
}
Map.Entry entry = (Map.Entry) obj;
Object value = entry.getValue();
Node node = main.lookup((Comparable) entry.getKey(), orderType);
return (node != null && node.getData(oppositeType).equals(value));
}
public boolean remove(Object obj) {
if (obj instanceof Map.Entry == false) {
return false;
}
Map.Entry entry = (Map.Entry) obj;
Object value = entry.getValue();
Node node = main.lookup((Comparable) entry.getKey(), orderType);
if (node != null && node.getData(oppositeType).equals(value)) {
main.doRedBlackDelete(node);
return true;
}
return false;
}
}
//-----------------------------------------------------------------------
/**
* A node used to store the data.
*/
static class Node implements Map.Entry, KeyValue {
private Comparable[] data;
private Node[] leftNode;
private Node[] rightNode;
private Node[] parentNode;
private boolean[] blackColor;
private int hashcodeValue;
private boolean calculatedHashCode;
/**
* Make a new cell with given key and value, and with null
* links, and black (true) colors.
*
* @param key
* @param value
*/
Node(final Comparable key, final Comparable value) {
super();
data = new Comparable[] { key, value };
leftNode = new Node[2];
rightNode = new Node[2];
parentNode = new Node[2];
blackColor = new boolean[] { true, true };
calculatedHashCode = false;
}
/**
* Get the specified data.
*
* @param index the KEY or VALUE int
* @return the key or value
*/
private Comparable getData(final int index) {
return data[index];
}
/**
* Set this node's left node.
*
* @param node the new left node
* @param index the KEY or VALUE int
*/
private void setLeft(final Node node, final int index) {
leftNode[index] = node;
}
/**
* Get the left node.
*
* @param index the KEY or VALUE int
* @return the left node, may be null
*/
private Node getLeft(final int index) {
return leftNode[index];
}
/**
* Set this node's right node.
*
* @param node the new right node
* @param index the KEY or VALUE int
*/
private void setRight(final Node node, final int index) {
rightNode[index] = node;
}
/**
* Get the right node.
*
* @param index the KEY or VALUE int
* @return the right node, may be null
*/
private Node getRight(final int index) {
return rightNode[index];
}
/**
* Set this node's parent node.
*
* @param node the new parent node
* @param index the KEY or VALUE int
*/
private void setParent(final Node node, final int index) {
parentNode[index] = node;
}
/**
* Get the parent node.
*
* @param index the KEY or VALUE int
* @return the parent node, may be null
*/
private Node getParent(final int index) {
return parentNode[index];
}
/**
* Exchange colors with another node.
*
* @param node the node to swap with
* @param index the KEY or VALUE int
*/
private void swapColors(final Node node, final int index) {
// Swap colors -- old hacker's trick
blackColor[index] ^= node.blackColor[index];
node.blackColor[index] ^= blackColor[index];
blackColor[index] ^= node.blackColor[index];
}
/**
* Is this node black?
*
* @param index the KEY or VALUE int
* @return true if black (which is represented as a true boolean)
*/
private boolean isBlack(final int index) {
return blackColor[index];
}
/**
* Is this node red?
*
* @param index the KEY or VALUE int
* @return true if non-black
*/
private boolean isRed(final int index) {
return !blackColor[index];
}
/**
* Make this node black.
*
* @param index the KEY or VALUE int
*/
private void setBlack(final int index) {
blackColor[index] = true;
}
/**
* Make this node red.
*
* @param index the KEY or VALUE int
*/
private void setRed(final int index) {
blackColor[index] = false;
}
/**
* Make this node the same color as another
*
* @param node the node whose color we're adopting
* @param index the KEY or VALUE int
*/
private void copyColor(final Node node, final int index) {
blackColor[index] = node.blackColor[index];
}
//-------------------------------------------------------------------
/**
* Gets the key.
*
* @return the key corresponding to this entry.
*/
public Object getKey() {
return data[KEY];
}
/**
* Gets the value.
*
* @return the value corresponding to this entry.
*/
public Object getValue() {
return data[VALUE];
}
/**
* Optional operation that is not permitted in this implementation
*
* @param ignored
* @return does not return
* @throws UnsupportedOperationException always
*/
public Object setValue(final Object ignored)
throws UnsupportedOperationException {
throw new UnsupportedOperationException(
"Map.Entry.setValue is not supported");
}
/**
* Compares the specified object with this entry for equality.
* Returns true if the given object is also a map entry and
* the two entries represent the same mapping.
*
* @param obj the object to be compared for equality with this entry.
* @return true if the specified object is equal to this entry.
*/
public boolean equals(final Object obj) {
if (obj == this) {
return true;
}
if (!(obj instanceof Map.Entry)) {
return false;
}
Map.Entry e = (Map.Entry) obj;
return data[KEY].equals(e.getKey()) && data[VALUE].equals(e.getValue());
}
/**
* @return the hash code value for this map entry.
*/
public int hashCode() {
if (!calculatedHashCode) {
hashcodeValue = data[KEY].hashCode() ^ data[VALUE].hashCode();
calculatedHashCode = true;
}
return hashcodeValue;
}
}
//-----------------------------------------------------------------------
/**
* A node used to store the data.
*/
static class Inverse implements OrderedBidiMap {
/** The parent map. */
private final TreeBidiMap main;
/** Store the keySet once created. */
private Set keySet;
/** Store the valuesSet once created. */
private Set valuesSet;
/** Store the entrySet once created. */
private Set entrySet;
/**
* Constructor.
* @param main the main map
*/
Inverse(final TreeBidiMap main) {
super();
this.main = main;
}
public int size() {
return main.size();
}
public boolean isEmpty() {
return main.isEmpty();
}
public Object get(final Object key) {
return main.getKey(key);
}
public Object getKey(final Object value) {
return main.get(value);
}
public boolean containsKey(final Object key) {
return main.containsValue(key);
}
public boolean containsValue(final Object value) {
return main.containsKey(value);
}
public Object firstKey() {
if (main.nodeCount == 0) {
throw new NoSuchElementException("Map is empty");
}
return TreeBidiMap.leastNode(main.rootNode[VALUE], VALUE).getValue();
}
public Object lastKey() {
if (main.nodeCount == 0) {
throw new NoSuchElementException("Map is empty");
}
return TreeBidiMap.greatestNode(main.rootNode[VALUE], VALUE).getValue();
}
public Object nextKey(Object key) {
checkKey(key);
Node node = main.nextGreater(main.lookup((Comparable) key, VALUE), VALUE);
return (node == null ? null : node.getValue());
}
public Object previousKey(Object key) {
checkKey(key);
Node node = main.nextSmaller(main.lookup((Comparable) key, VALUE), VALUE);
return (node == null ? null : node.getValue());
}
public Object put(final Object key, final Object value) {
return main.doPut((Comparable) value, (Comparable) key, VALUE);
}
public void putAll(Map map) {
Iterator it = map.entrySet().iterator();
while (it.hasNext()) {
Map.Entry entry = (Map.Entry) it.next();
put(entry.getKey(), entry.getValue());
}
}
public Object remove(final Object key) {
return main.removeValue(key);
}
public Object removeValue(final Object value) {
return main.remove(value);
}
public void clear() {
main.clear();
}
public Set keySet() {
if (keySet == null) {
keySet = new View(main, VALUE, VALUE);
}
return keySet;
}
public Collection values() {
if (valuesSet == null) {
valuesSet = new View(main, VALUE, KEY);
}
return valuesSet;
}
public Set entrySet() {
if (entrySet == null) {
return new EntryView(main, VALUE, INVERSEMAPENTRY);
}
return entrySet;
}
public MapIterator mapIterator() {
if (isEmpty()) {
return EmptyOrderedMapIterator.INSTANCE;
}
return new ViewMapIterator(main, VALUE);
}
public OrderedMapIterator orderedMapIterator() {
if (isEmpty()) {
return EmptyOrderedMapIterator.INSTANCE;
}
return new ViewMapIterator(main, VALUE);
}
public BidiMap inverseBidiMap() {
return main;
}
public OrderedBidiMap inverseOrderedBidiMap() {
return main;
}
public boolean equals(Object obj) {
return main.doEquals(obj, VALUE);
}
public int hashCode() {
return main.doHashCode(VALUE);
}
public String toString() {
return main.doToString(VALUE);
}
}
}