All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.common.graph.Traverser Maven / Gradle / Ivy

Go to download

This artifact provides a single jar that contains all classes required to use remote Jakarta Enterprise Beans and Jakarta Messaging, including all dependencies. It is intended for use by those not using maven, maven users should just import the Jakarta Enterprise Beans and Jakarta Messaging BOM's instead (shaded JAR's cause lots of problems with maven, as it is very easy to inadvertently end up with different versions on classes on the class path).

There is a newer version: 35.0.0.Beta1
Show newest version
/*
 * Copyright (C) 2017 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.graph;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;
import static java.util.Objects.requireNonNull;

import com.google.common.annotations.Beta;
import com.google.common.collect.AbstractIterator;
import com.google.common.collect.ImmutableSet;
import com.google.errorprone.annotations.DoNotMock;
import java.util.ArrayDeque;
import java.util.Deque;
import java.util.HashSet;
import java.util.Iterator;
import java.util.Set;
import javax.annotation.CheckForNull;

/**
 * An object that can traverse the nodes that are reachable from a specified (set of) start node(s)
 * using a specified {@link SuccessorsFunction}.
 *
 * 

There are two entry points for creating a {@code Traverser}: {@link * #forTree(SuccessorsFunction)} and {@link #forGraph(SuccessorsFunction)}. You should choose one * based on your answers to the following questions: * *

    *
  1. Is there only one path to any node that's reachable from any start node? (If so, the graph * to be traversed is a tree or forest even if it is a subgraph of a graph which is neither.) *
  2. Are the node objects' implementations of {@code equals()}/{@code hashCode()} recursive? *
* *

If your answers are: * *

    *
  • (1) "no" and (2) "no", use {@link #forGraph(SuccessorsFunction)}. *
  • (1) "yes" and (2) "yes", use {@link #forTree(SuccessorsFunction)}. *
  • (1) "yes" and (2) "no", you can use either, but {@code forTree()} will be more efficient. *
  • (1) "no" and (2) "yes", neither will work, but if you transform your node * objects into a non-recursive form, you can use {@code forGraph()}. *
* * @author Jens Nyman * @param Node parameter type * @since 23.1 */ @Beta @DoNotMock( "Call forGraph or forTree, passing a lambda or a Graph with the desired edges (built with" + " GraphBuilder)") @ElementTypesAreNonnullByDefault public abstract class Traverser { private final SuccessorsFunction successorFunction; private Traverser(SuccessorsFunction successorFunction) { this.successorFunction = checkNotNull(successorFunction); } /** * Creates a new traverser for the given general {@code graph}. * *

Traversers created using this method are guaranteed to visit each node reachable from the * start node(s) at most once. * *

If you know that no node in {@code graph} is reachable by more than one path from the start * node(s), consider using {@link #forTree(SuccessorsFunction)} instead. * *

Performance notes * *

    *
  • Traversals require O(n) time (where n is the number of nodes reachable from * the start node), assuming that the node objects have O(1) {@code equals()} and * {@code hashCode()} implementations. (See the * notes on element objects for more information.) *
  • While traversing, the traverser will use O(n) space (where n is the number * of nodes that have thus far been visited), plus O(H) space (where H is the * number of nodes that have been seen but not yet visited, that is, the "horizon"). *
* * @param graph {@link SuccessorsFunction} representing a general graph that may have cycles. */ public static Traverser forGraph(SuccessorsFunction graph) { return new Traverser(graph) { @Override Traversal newTraversal() { return Traversal.inGraph(graph); } }; } /** * Creates a new traverser for a directed acyclic graph that has at most one path from the start * node(s) to any node reachable from the start node(s), and has no paths from any start node to * any other start node, such as a tree or forest. * *

{@code forTree()} is especially useful (versus {@code forGraph()}) in cases where the data * structure being traversed is, in addition to being a tree/forest, also defined recursively. * This is because the {@code forTree()}-based implementations don't keep track of visited nodes, * and therefore don't need to call `equals()` or `hashCode()` on the node objects; this saves * both time and space versus traversing the same graph using {@code forGraph()}. * *

Providing a graph to be traversed for which there is more than one path from the start * node(s) to any node may lead to: * *

    *
  • Traversal not terminating (if the graph has cycles) *
  • Nodes being visited multiple times (if multiple paths exist from any start node to any * node reachable from any start node) *
* *

Performance notes * *

    *
  • Traversals require O(n) time (where n is the number of nodes reachable from * the start node). *
  • While traversing, the traverser will use O(H) space (where H is the number * of nodes that have been seen but not yet visited, that is, the "horizon"). *
* *

Examples (all edges are directed facing downwards) * *

The graph below would be valid input with start nodes of {@code a, f, c}. However, if {@code * b} were also a start node, then there would be multiple paths to reach {@code e} and * {@code h}. * *

{@code
   *    a     b      c
   *   / \   / \     |
   *  /   \ /   \    |
   * d     e     f   g
   *       |
   *       |
   *       h
   * }
* *

. * *

The graph below would be a valid input with start nodes of {@code a, f}. However, if {@code * b} were a start node, there would be multiple paths to {@code f}. * *

{@code
   *    a     b
   *   / \   / \
   *  /   \ /   \
   * c     d     e
   *        \   /
   *         \ /
   *          f
   * }
* *

Note on binary trees * *

This method can be used to traverse over a binary tree. Given methods {@code * leftChild(node)} and {@code rightChild(node)}, this method can be called as * *

{@code
   * Traverser.forTree(node -> ImmutableList.of(leftChild(node), rightChild(node)));
   * }
* * @param tree {@link SuccessorsFunction} representing a directed acyclic graph that has at most * one path between any two nodes */ public static Traverser forTree(SuccessorsFunction tree) { if (tree instanceof BaseGraph) { checkArgument(((BaseGraph) tree).isDirected(), "Undirected graphs can never be trees."); } if (tree instanceof Network) { checkArgument(((Network) tree).isDirected(), "Undirected networks can never be trees."); } return new Traverser(tree) { @Override Traversal newTraversal() { return Traversal.inTree(tree); } }; } /** * Returns an unmodifiable {@code Iterable} over the nodes reachable from {@code startNode}, in * the order of a breadth-first traversal. That is, all the nodes of depth 0 are returned, then * depth 1, then 2, and so on. * *

Example: The following graph with {@code startNode} {@code a} would return nodes in * the order {@code abcdef} (assuming successors are returned in alphabetical order). * *

{@code
   * b ---- a ---- d
   * |      |
   * |      |
   * e ---- c ---- f
   * }
* *

The behavior of this method is undefined if the nodes, or the topology of the graph, change * while iteration is in progress. * *

The returned {@code Iterable} can be iterated over multiple times. Every iterator will * compute its next element on the fly. It is thus possible to limit the traversal to a certain * number of nodes as follows: * *

{@code
   * Iterables.limit(Traverser.forGraph(graph).breadthFirst(node), maxNumberOfNodes);
   * }
* *

See Wikipedia for more * info. * * @throws IllegalArgumentException if {@code startNode} is not an element of the graph */ public final Iterable breadthFirst(N startNode) { return breadthFirst(ImmutableSet.of(startNode)); } /** * Returns an unmodifiable {@code Iterable} over the nodes reachable from any of the {@code * startNodes}, in the order of a breadth-first traversal. This is equivalent to a breadth-first * traversal of a graph with an additional root node whose successors are the listed {@code * startNodes}. * * @throws IllegalArgumentException if any of {@code startNodes} is not an element of the graph * @see #breadthFirst(Object) * @since 24.1 */ public final Iterable breadthFirst(Iterable startNodes) { ImmutableSet validated = validate(startNodes); return new Iterable() { @Override public Iterator iterator() { return newTraversal().breadthFirst(validated.iterator()); } }; } /** * Returns an unmodifiable {@code Iterable} over the nodes reachable from {@code startNode}, in * the order of a depth-first pre-order traversal. "Pre-order" implies that nodes appear in the * {@code Iterable} in the order in which they are first visited. * *

Example: The following graph with {@code startNode} {@code a} would return nodes in * the order {@code abecfd} (assuming successors are returned in alphabetical order). * *

{@code
   * b ---- a ---- d
   * |      |
   * |      |
   * e ---- c ---- f
   * }
* *

The behavior of this method is undefined if the nodes, or the topology of the graph, change * while iteration is in progress. * *

The returned {@code Iterable} can be iterated over multiple times. Every iterator will * compute its next element on the fly. It is thus possible to limit the traversal to a certain * number of nodes as follows: * *

{@code
   * Iterables.limit(
   *     Traverser.forGraph(graph).depthFirstPreOrder(node), maxNumberOfNodes);
   * }
* *

See Wikipedia for more info. * * @throws IllegalArgumentException if {@code startNode} is not an element of the graph */ public final Iterable depthFirstPreOrder(N startNode) { return depthFirstPreOrder(ImmutableSet.of(startNode)); } /** * Returns an unmodifiable {@code Iterable} over the nodes reachable from any of the {@code * startNodes}, in the order of a depth-first pre-order traversal. This is equivalent to a * depth-first pre-order traversal of a graph with an additional root node whose successors are * the listed {@code startNodes}. * * @throws IllegalArgumentException if any of {@code startNodes} is not an element of the graph * @see #depthFirstPreOrder(Object) * @since 24.1 */ public final Iterable depthFirstPreOrder(Iterable startNodes) { ImmutableSet validated = validate(startNodes); return new Iterable() { @Override public Iterator iterator() { return newTraversal().preOrder(validated.iterator()); } }; } /** * Returns an unmodifiable {@code Iterable} over the nodes reachable from {@code startNode}, in * the order of a depth-first post-order traversal. "Post-order" implies that nodes appear in the * {@code Iterable} in the order in which they are visited for the last time. * *

Example: The following graph with {@code startNode} {@code a} would return nodes in * the order {@code fcebda} (assuming successors are returned in alphabetical order). * *

{@code
   * b ---- a ---- d
   * |      |
   * |      |
   * e ---- c ---- f
   * }
* *

The behavior of this method is undefined if the nodes, or the topology of the graph, change * while iteration is in progress. * *

The returned {@code Iterable} can be iterated over multiple times. Every iterator will * compute its next element on the fly. It is thus possible to limit the traversal to a certain * number of nodes as follows: * *

{@code
   * Iterables.limit(
   *     Traverser.forGraph(graph).depthFirstPostOrder(node), maxNumberOfNodes);
   * }
* *

See Wikipedia for more info. * * @throws IllegalArgumentException if {@code startNode} is not an element of the graph */ public final Iterable depthFirstPostOrder(N startNode) { return depthFirstPostOrder(ImmutableSet.of(startNode)); } /** * Returns an unmodifiable {@code Iterable} over the nodes reachable from any of the {@code * startNodes}, in the order of a depth-first post-order traversal. This is equivalent to a * depth-first post-order traversal of a graph with an additional root node whose successors are * the listed {@code startNodes}. * * @throws IllegalArgumentException if any of {@code startNodes} is not an element of the graph * @see #depthFirstPostOrder(Object) * @since 24.1 */ public final Iterable depthFirstPostOrder(Iterable startNodes) { ImmutableSet validated = validate(startNodes); return new Iterable() { @Override public Iterator iterator() { return newTraversal().postOrder(validated.iterator()); } }; } abstract Traversal newTraversal(); @SuppressWarnings("CheckReturnValue") private ImmutableSet validate(Iterable startNodes) { ImmutableSet copy = ImmutableSet.copyOf(startNodes); for (N node : copy) { successorFunction.successors(node); // Will throw if node doesn't exist } return copy; } /** * Abstracts away the difference between traversing a graph vs. a tree. For a tree, we just take * the next element from the next non-empty iterator; for graph, we need to loop through the next * non-empty iterator to find first unvisited node. */ private abstract static class Traversal { final SuccessorsFunction successorFunction; Traversal(SuccessorsFunction successorFunction) { this.successorFunction = successorFunction; } static Traversal inGraph(SuccessorsFunction graph) { Set visited = new HashSet<>(); return new Traversal(graph) { @Override @CheckForNull N visitNext(Deque> horizon) { Iterator top = horizon.getFirst(); while (top.hasNext()) { N element = top.next(); // requireNonNull is safe because horizon contains only graph nodes. /* * TODO(cpovirk): Replace these two statements with one (`N element = * requireNonNull(top.next())`) once our checker supports it. * * (The problem is likely * https://github.com/jspecify/nullness-checker-for-checker-framework/blob/61aafa4ae52594830cfc2d61c8b113009dbdb045/src/main/java/com/google/jspecify/nullness/NullSpecAnnotatedTypeFactory.java#L896) */ requireNonNull(element); if (visited.add(element)) { return element; } } horizon.removeFirst(); return null; } }; } static Traversal inTree(SuccessorsFunction tree) { return new Traversal(tree) { @CheckForNull @Override N visitNext(Deque> horizon) { Iterator top = horizon.getFirst(); if (top.hasNext()) { return checkNotNull(top.next()); } horizon.removeFirst(); return null; } }; } final Iterator breadthFirst(Iterator startNodes) { return topDown(startNodes, InsertionOrder.BACK); } final Iterator preOrder(Iterator startNodes) { return topDown(startNodes, InsertionOrder.FRONT); } /** * In top-down traversal, an ancestor node is always traversed before any of its descendant * nodes. The traversal order among descendant nodes (particularly aunts and nieces) are * determined by the {@code InsertionOrder} parameter: nieces are placed at the FRONT before * aunts for pre-order; while in BFS they are placed at the BACK after aunts. */ private Iterator topDown(Iterator startNodes, InsertionOrder order) { Deque> horizon = new ArrayDeque<>(); horizon.add(startNodes); return new AbstractIterator() { @Override @CheckForNull protected N computeNext() { do { N next = visitNext(horizon); if (next != null) { Iterator successors = successorFunction.successors(next).iterator(); if (successors.hasNext()) { // BFS: horizon.addLast(successors) // Pre-order: horizon.addFirst(successors) order.insertInto(horizon, successors); } return next; } } while (!horizon.isEmpty()); return endOfData(); } }; } final Iterator postOrder(Iterator startNodes) { Deque ancestorStack = new ArrayDeque<>(); Deque> horizon = new ArrayDeque<>(); horizon.add(startNodes); return new AbstractIterator() { @Override @CheckForNull protected N computeNext() { for (N next = visitNext(horizon); next != null; next = visitNext(horizon)) { Iterator successors = successorFunction.successors(next).iterator(); if (!successors.hasNext()) { return next; } horizon.addFirst(successors); ancestorStack.push(next); } // TODO(b/192579700): Use a ternary once it no longer confuses our nullness checker. if (!ancestorStack.isEmpty()) { return ancestorStack.pop(); } return endOfData(); } }; } /** * Visits the next node from the top iterator of {@code horizon} and returns the visited node. * Null is returned to indicate reaching the end of the top iterator. * *

For example, if horizon is {@code [[a, b], [c, d], [e]]}, {@code visitNext()} will return * {@code [a, b, null, c, d, null, e, null]} sequentially, encoding the topological structure. * (Note, however, that the callers of {@code visitNext()} often insert additional iterators * into {@code horizon} between calls to {@code visitNext()}. This causes them to receive * additional values interleaved with those shown above.) */ @CheckForNull abstract N visitNext(Deque> horizon); } /** Poor man's method reference for {@code Deque::addFirst} and {@code Deque::addLast}. */ private enum InsertionOrder { FRONT { @Override void insertInto(Deque deque, T value) { deque.addFirst(value); } }, BACK { @Override void insertInto(Deque deque, T value) { deque.addLast(value); } }; abstract void insertInto(Deque deque, T value); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy