All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.common.primitives.Longs Maven / Gradle / Ivy

Go to download

This artifact provides a single jar that contains all classes required to use remote EJB and JMS, including all dependencies. It is intended for use by those not using maven, maven users should just import the EJB and JMS BOM's instead (shaded JAR's cause lots of problems with maven, as it is very easy to inadvertently end up with different versions on classes on the class path).

There is a newer version: 34.0.0.Final
Show newest version
/*
 * Copyright (C) 2008 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
 * in compliance with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License
 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing permissions and limitations under
 * the License.
 */

package com.google.common.primitives;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkElementIndex;
import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.base.Preconditions.checkPositionIndexes;

import com.google.common.annotations.GwtCompatible;
import com.google.common.base.Converter;
import java.io.Serializable;
import java.util.AbstractList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;
import java.util.RandomAccess;
import java.util.Spliterator;
import java.util.Spliterators;
import javax.annotation.CheckForNull;

/**
 * Static utility methods pertaining to {@code long} primitives, that are not already found in
 * either {@link Long} or {@link Arrays}.
 *
 * 

See the Guava User Guide article on primitive utilities. * * @author Kevin Bourrillion * @since 1.0 */ @GwtCompatible @ElementTypesAreNonnullByDefault public final class Longs { private Longs() {} /** * The number of bytes required to represent a primitive {@code long} value. * *

Java 8 users: use {@link Long#BYTES} instead. */ public static final int BYTES = Long.SIZE / Byte.SIZE; /** * The largest power of two that can be represented as a {@code long}. * * @since 10.0 */ public static final long MAX_POWER_OF_TWO = 1L << (Long.SIZE - 2); /** * Returns a hash code for {@code value}; equal to the result of invoking {@code ((Long) * value).hashCode()}. * *

This method always return the value specified by {@link Long#hashCode()} in java, which * might be different from {@code ((Long) value).hashCode()} in GWT because {@link * Long#hashCode()} in GWT does not obey the JRE contract. * *

Java 8 users: use {@link Long#hashCode(long)} instead. * * @param value a primitive {@code long} value * @return a hash code for the value */ public static int hashCode(long value) { return (int) (value ^ (value >>> 32)); } /** * Compares the two specified {@code long} values. The sign of the value returned is the same as * that of {@code ((Long) a).compareTo(b)}. * *

Note for Java 7 and later: this method should be treated as deprecated; use the * equivalent {@link Long#compare} method instead. * * @param a the first {@code long} to compare * @param b the second {@code long} to compare * @return a negative value if {@code a} is less than {@code b}; a positive value if {@code a} is * greater than {@code b}; or zero if they are equal */ public static int compare(long a, long b) { return (a < b) ? -1 : ((a > b) ? 1 : 0); } /** * Returns {@code true} if {@code target} is present as an element anywhere in {@code array}. * * @param array an array of {@code long} values, possibly empty * @param target a primitive {@code long} value * @return {@code true} if {@code array[i] == target} for some value of {@code i} */ public static boolean contains(long[] array, long target) { for (long value : array) { if (value == target) { return true; } } return false; } /** * Returns the index of the first appearance of the value {@code target} in {@code array}. * * @param array an array of {@code long} values, possibly empty * @param target a primitive {@code long} value * @return the least index {@code i} for which {@code array[i] == target}, or {@code -1} if no * such index exists. */ public static int indexOf(long[] array, long target) { return indexOf(array, target, 0, array.length); } // TODO(kevinb): consider making this public private static int indexOf(long[] array, long target, int start, int end) { for (int i = start; i < end; i++) { if (array[i] == target) { return i; } } return -1; } /** * Returns the start position of the first occurrence of the specified {@code target} within * {@code array}, or {@code -1} if there is no such occurrence. * *

More formally, returns the lowest index {@code i} such that {@code Arrays.copyOfRange(array, * i, i + target.length)} contains exactly the same elements as {@code target}. * * @param array the array to search for the sequence {@code target} * @param target the array to search for as a sub-sequence of {@code array} */ public static int indexOf(long[] array, long[] target) { checkNotNull(array, "array"); checkNotNull(target, "target"); if (target.length == 0) { return 0; } outer: for (int i = 0; i < array.length - target.length + 1; i++) { for (int j = 0; j < target.length; j++) { if (array[i + j] != target[j]) { continue outer; } } return i; } return -1; } /** * Returns the index of the last appearance of the value {@code target} in {@code array}. * * @param array an array of {@code long} values, possibly empty * @param target a primitive {@code long} value * @return the greatest index {@code i} for which {@code array[i] == target}, or {@code -1} if no * such index exists. */ public static int lastIndexOf(long[] array, long target) { return lastIndexOf(array, target, 0, array.length); } // TODO(kevinb): consider making this public private static int lastIndexOf(long[] array, long target, int start, int end) { for (int i = end - 1; i >= start; i--) { if (array[i] == target) { return i; } } return -1; } /** * Returns the least value present in {@code array}. * * @param array a nonempty array of {@code long} values * @return the value present in {@code array} that is less than or equal to every other value in * the array * @throws IllegalArgumentException if {@code array} is empty */ public static long min(long... array) { checkArgument(array.length > 0); long min = array[0]; for (int i = 1; i < array.length; i++) { if (array[i] < min) { min = array[i]; } } return min; } /** * Returns the greatest value present in {@code array}. * * @param array a nonempty array of {@code long} values * @return the value present in {@code array} that is greater than or equal to every other value * in the array * @throws IllegalArgumentException if {@code array} is empty */ public static long max(long... array) { checkArgument(array.length > 0); long max = array[0]; for (int i = 1; i < array.length; i++) { if (array[i] > max) { max = array[i]; } } return max; } /** * Returns the value nearest to {@code value} which is within the closed range {@code [min..max]}. * *

If {@code value} is within the range {@code [min..max]}, {@code value} is returned * unchanged. If {@code value} is less than {@code min}, {@code min} is returned, and if {@code * value} is greater than {@code max}, {@code max} is returned. * * @param value the {@code long} value to constrain * @param min the lower bound (inclusive) of the range to constrain {@code value} to * @param max the upper bound (inclusive) of the range to constrain {@code value} to * @throws IllegalArgumentException if {@code min > max} * @since 21.0 */ public static long constrainToRange(long value, long min, long max) { checkArgument(min <= max, "min (%s) must be less than or equal to max (%s)", min, max); return Math.min(Math.max(value, min), max); } /** * Returns the values from each provided array combined into a single array. For example, {@code * concat(new long[] {a, b}, new long[] {}, new long[] {c}} returns the array {@code {a, b, c}}. * * @param arrays zero or more {@code long} arrays * @return a single array containing all the values from the source arrays, in order * @throws IllegalArgumentException if the total number of elements in {@code arrays} does not fit * in an {@code int} */ public static long[] concat(long[]... arrays) { long length = 0; for (long[] array : arrays) { length += array.length; } long[] result = new long[checkNoOverflow(length)]; int pos = 0; for (long[] array : arrays) { System.arraycopy(array, 0, result, pos, array.length); pos += array.length; } return result; } private static int checkNoOverflow(long result) { checkArgument( result == (int) result, "the total number of elements (%s) in the arrays must fit in an int", result); return (int) result; } /** * Returns a big-endian representation of {@code value} in an 8-element byte array; equivalent to * {@code ByteBuffer.allocate(8).putLong(value).array()}. For example, the input value {@code * 0x1213141516171819L} would yield the byte array {@code {0x12, 0x13, 0x14, 0x15, 0x16, 0x17, * 0x18, 0x19}}. * *

If you need to convert and concatenate several values (possibly even of different types), * use a shared {@link java.nio.ByteBuffer} instance, or use {@link * com.google.common.io.ByteStreams#newDataOutput()} to get a growable buffer. */ public static byte[] toByteArray(long value) { // Note that this code needs to stay compatible with GWT, which has known // bugs when narrowing byte casts of long values occur. byte[] result = new byte[8]; for (int i = 7; i >= 0; i--) { result[i] = (byte) (value & 0xffL); value >>= 8; } return result; } /** * Returns the {@code long} value whose big-endian representation is stored in the first 8 bytes * of {@code bytes}; equivalent to {@code ByteBuffer.wrap(bytes).getLong()}. For example, the * input byte array {@code {0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19}} would yield the * {@code long} value {@code 0x1213141516171819L}. * *

Arguably, it's preferable to use {@link java.nio.ByteBuffer}; that library exposes much more * flexibility at little cost in readability. * * @throws IllegalArgumentException if {@code bytes} has fewer than 8 elements */ public static long fromByteArray(byte[] bytes) { checkArgument(bytes.length >= BYTES, "array too small: %s < %s", bytes.length, BYTES); return fromBytes( bytes[0], bytes[1], bytes[2], bytes[3], bytes[4], bytes[5], bytes[6], bytes[7]); } /** * Returns the {@code long} value whose byte representation is the given 8 bytes, in big-endian * order; equivalent to {@code Longs.fromByteArray(new byte[] {b1, b2, b3, b4, b5, b6, b7, b8})}. * * @since 7.0 */ public static long fromBytes( byte b1, byte b2, byte b3, byte b4, byte b5, byte b6, byte b7, byte b8) { return (b1 & 0xFFL) << 56 | (b2 & 0xFFL) << 48 | (b3 & 0xFFL) << 40 | (b4 & 0xFFL) << 32 | (b5 & 0xFFL) << 24 | (b6 & 0xFFL) << 16 | (b7 & 0xFFL) << 8 | (b8 & 0xFFL); } /* * Moving asciiDigits into this static holder class lets ProGuard eliminate and inline the Longs * class. */ static final class AsciiDigits { private AsciiDigits() {} private static final byte[] asciiDigits; static { byte[] result = new byte[128]; Arrays.fill(result, (byte) -1); for (int i = 0; i < 10; i++) { result['0' + i] = (byte) i; } for (int i = 0; i < 26; i++) { result['A' + i] = (byte) (10 + i); result['a' + i] = (byte) (10 + i); } asciiDigits = result; } static int digit(char c) { return (c < 128) ? asciiDigits[c] : -1; } } /** * Parses the specified string as a signed decimal long value. The ASCII character {@code '-'} ( * '\u002D') is recognized as the minus sign. * *

Unlike {@link Long#parseLong(String)}, this method returns {@code null} instead of throwing * an exception if parsing fails. Additionally, this method only accepts ASCII digits, and returns * {@code null} if non-ASCII digits are present in the string. * *

Note that strings prefixed with ASCII {@code '+'} are rejected, even under JDK 7, despite * the change to {@link Long#parseLong(String)} for that version. * * @param string the string representation of a long value * @return the long value represented by {@code string}, or {@code null} if {@code string} has a * length of zero or cannot be parsed as a long value * @throws NullPointerException if {@code string} is {@code null} * @since 14.0 */ @CheckForNull public static Long tryParse(String string) { return tryParse(string, 10); } /** * Parses the specified string as a signed long value using the specified radix. The ASCII * character {@code '-'} ('\u002D') is recognized as the minus sign. * *

Unlike {@link Long#parseLong(String, int)}, this method returns {@code null} instead of * throwing an exception if parsing fails. Additionally, this method only accepts ASCII digits, * and returns {@code null} if non-ASCII digits are present in the string. * *

Note that strings prefixed with ASCII {@code '+'} are rejected, even under JDK 7, despite * the change to {@link Long#parseLong(String, int)} for that version. * * @param string the string representation of a long value * @param radix the radix to use when parsing * @return the long value represented by {@code string} using {@code radix}, or {@code null} if * {@code string} has a length of zero or cannot be parsed as a long value * @throws IllegalArgumentException if {@code radix < Character.MIN_RADIX} or {@code radix > * Character.MAX_RADIX} * @throws NullPointerException if {@code string} is {@code null} * @since 19.0 */ @CheckForNull public static Long tryParse(String string, int radix) { if (checkNotNull(string).isEmpty()) { return null; } if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX) { throw new IllegalArgumentException( "radix must be between MIN_RADIX and MAX_RADIX but was " + radix); } boolean negative = string.charAt(0) == '-'; int index = negative ? 1 : 0; if (index == string.length()) { return null; } int digit = AsciiDigits.digit(string.charAt(index++)); if (digit < 0 || digit >= radix) { return null; } long accum = -digit; long cap = Long.MIN_VALUE / radix; while (index < string.length()) { digit = AsciiDigits.digit(string.charAt(index++)); if (digit < 0 || digit >= radix || accum < cap) { return null; } accum *= radix; if (accum < Long.MIN_VALUE + digit) { return null; } accum -= digit; } if (negative) { return accum; } else if (accum == Long.MIN_VALUE) { return null; } else { return -accum; } } private static final class LongConverter extends Converter implements Serializable { static final LongConverter INSTANCE = new LongConverter(); @Override protected Long doForward(String value) { return Long.decode(value); } @Override protected String doBackward(Long value) { return value.toString(); } @Override public String toString() { return "Longs.stringConverter()"; } private Object readResolve() { return INSTANCE; } private static final long serialVersionUID = 1; } /** * Returns a serializable converter object that converts between strings and longs using {@link * Long#decode} and {@link Long#toString()}. The returned converter throws {@link * NumberFormatException} if the input string is invalid. * *

Warning: please see {@link Long#decode} to understand exactly how strings are parsed. * For example, the string {@code "0123"} is treated as octal and converted to the value * {@code 83L}. * * @since 16.0 */ public static Converter stringConverter() { return LongConverter.INSTANCE; } /** * Returns an array containing the same values as {@code array}, but guaranteed to be of a * specified minimum length. If {@code array} already has a length of at least {@code minLength}, * it is returned directly. Otherwise, a new array of size {@code minLength + padding} is * returned, containing the values of {@code array}, and zeroes in the remaining places. * * @param array the source array * @param minLength the minimum length the returned array must guarantee * @param padding an extra amount to "grow" the array by if growth is necessary * @throws IllegalArgumentException if {@code minLength} or {@code padding} is negative * @return an array containing the values of {@code array}, with guaranteed minimum length {@code * minLength} */ public static long[] ensureCapacity(long[] array, int minLength, int padding) { checkArgument(minLength >= 0, "Invalid minLength: %s", minLength); checkArgument(padding >= 0, "Invalid padding: %s", padding); return (array.length < minLength) ? Arrays.copyOf(array, minLength + padding) : array; } /** * Returns a string containing the supplied {@code long} values separated by {@code separator}. * For example, {@code join("-", 1L, 2L, 3L)} returns the string {@code "1-2-3"}. * * @param separator the text that should appear between consecutive values in the resulting string * (but not at the start or end) * @param array an array of {@code long} values, possibly empty */ public static String join(String separator, long... array) { checkNotNull(separator); if (array.length == 0) { return ""; } // For pre-sizing a builder, just get the right order of magnitude StringBuilder builder = new StringBuilder(array.length * 10); builder.append(array[0]); for (int i = 1; i < array.length; i++) { builder.append(separator).append(array[i]); } return builder.toString(); } /** * Returns a comparator that compares two {@code long} arrays lexicographically. That is, it * compares, using {@link #compare(long, long)}), the first pair of values that follow any common * prefix, or when one array is a prefix of the other, treats the shorter array as the lesser. For * example, {@code [] < [1L] < [1L, 2L] < [2L]}. * *

The returned comparator is inconsistent with {@link Object#equals(Object)} (since arrays * support only identity equality), but it is consistent with {@link Arrays#equals(long[], * long[])}. * * @since 2.0 */ public static Comparator lexicographicalComparator() { return LexicographicalComparator.INSTANCE; } private enum LexicographicalComparator implements Comparator { INSTANCE; @Override public int compare(long[] left, long[] right) { int minLength = Math.min(left.length, right.length); for (int i = 0; i < minLength; i++) { int result = Longs.compare(left[i], right[i]); if (result != 0) { return result; } } return left.length - right.length; } @Override public String toString() { return "Longs.lexicographicalComparator()"; } } /** * Sorts the elements of {@code array} in descending order. * * @since 23.1 */ public static void sortDescending(long[] array) { checkNotNull(array); sortDescending(array, 0, array.length); } /** * Sorts the elements of {@code array} between {@code fromIndex} inclusive and {@code toIndex} * exclusive in descending order. * * @since 23.1 */ public static void sortDescending(long[] array, int fromIndex, int toIndex) { checkNotNull(array); checkPositionIndexes(fromIndex, toIndex, array.length); Arrays.sort(array, fromIndex, toIndex); reverse(array, fromIndex, toIndex); } /** * Reverses the elements of {@code array}. This is equivalent to {@code * Collections.reverse(Longs.asList(array))}, but is likely to be more efficient. * * @since 23.1 */ public static void reverse(long[] array) { checkNotNull(array); reverse(array, 0, array.length); } /** * Reverses the elements of {@code array} between {@code fromIndex} inclusive and {@code toIndex} * exclusive. This is equivalent to {@code * Collections.reverse(Longs.asList(array).subList(fromIndex, toIndex))}, but is likely to be more * efficient. * * @throws IndexOutOfBoundsException if {@code fromIndex < 0}, {@code toIndex > array.length}, or * {@code toIndex > fromIndex} * @since 23.1 */ public static void reverse(long[] array, int fromIndex, int toIndex) { checkNotNull(array); checkPositionIndexes(fromIndex, toIndex, array.length); for (int i = fromIndex, j = toIndex - 1; i < j; i++, j--) { long tmp = array[i]; array[i] = array[j]; array[j] = tmp; } } /** * Performs a right rotation of {@code array} of "distance" places, so that the first element is * moved to index "distance", and the element at index {@code i} ends up at index {@code (distance * + i) mod array.length}. This is equivalent to {@code Collections.rotate(Longs.asList(array), * distance)}, but is considerably faster and avoids allocation and garbage collection. * *

The provided "distance" may be negative, which will rotate left. * * @since 32.0.0 */ public static void rotate(long[] array, int distance) { rotate(array, distance, 0, array.length); } /** * Performs a right rotation of {@code array} between {@code fromIndex} inclusive and {@code * toIndex} exclusive. This is equivalent to {@code * Collections.rotate(Longs.asList(array).subList(fromIndex, toIndex), distance)}, but is * considerably faster and avoids allocations and garbage collection. * *

The provided "distance" may be negative, which will rotate left. * * @throws IndexOutOfBoundsException if {@code fromIndex < 0}, {@code toIndex > array.length}, or * {@code toIndex > fromIndex} * @since 32.0.0 */ public static void rotate(long[] array, int distance, int fromIndex, int toIndex) { // See Ints.rotate for more details about possible algorithms here. checkNotNull(array); checkPositionIndexes(fromIndex, toIndex, array.length); if (array.length <= 1) { return; } int length = toIndex - fromIndex; // Obtain m = (-distance mod length), a non-negative value less than "length". This is how many // places left to rotate. int m = -distance % length; m = (m < 0) ? m + length : m; // The current index of what will become the first element of the rotated section. int newFirstIndex = m + fromIndex; if (newFirstIndex == fromIndex) { return; } reverse(array, fromIndex, newFirstIndex); reverse(array, newFirstIndex, toIndex); reverse(array, fromIndex, toIndex); } /** * Returns an array containing each value of {@code collection}, converted to a {@code long} value * in the manner of {@link Number#longValue}. * *

Elements are copied from the argument collection as if by {@code collection.toArray()}. * Calling this method is as thread-safe as calling that method. * * @param collection a collection of {@code Number} instances * @return an array containing the same values as {@code collection}, in the same order, converted * to primitives * @throws NullPointerException if {@code collection} or any of its elements is null * @since 1.0 (parameter was {@code Collection} before 12.0) */ public static long[] toArray(Collection collection) { if (collection instanceof LongArrayAsList) { return ((LongArrayAsList) collection).toLongArray(); } Object[] boxedArray = collection.toArray(); int len = boxedArray.length; long[] array = new long[len]; for (int i = 0; i < len; i++) { // checkNotNull for GWT (do not optimize) array[i] = ((Number) checkNotNull(boxedArray[i])).longValue(); } return array; } /** * Returns a fixed-size list backed by the specified array, similar to {@link * Arrays#asList(Object[])}. The list supports {@link List#set(int, Object)}, but any attempt to * set a value to {@code null} will result in a {@link NullPointerException}. * *

The returned list maintains the values, but not the identities, of {@code Long} objects * written to or read from it. For example, whether {@code list.get(0) == list.get(0)} is true for * the returned list is unspecified. * *

The returned list is serializable. * *

Note: when possible, you should represent your data as an {@link ImmutableLongArray} * instead, which has an {@link ImmutableLongArray#asList asList} view. * * @param backingArray the array to back the list * @return a list view of the array */ public static List asList(long... backingArray) { if (backingArray.length == 0) { return Collections.emptyList(); } return new LongArrayAsList(backingArray); } @GwtCompatible private static class LongArrayAsList extends AbstractList implements RandomAccess, Serializable { final long[] array; final int start; final int end; LongArrayAsList(long[] array) { this(array, 0, array.length); } LongArrayAsList(long[] array, int start, int end) { this.array = array; this.start = start; this.end = end; } @Override public int size() { return end - start; } @Override public boolean isEmpty() { return false; } @Override public Long get(int index) { checkElementIndex(index, size()); return array[start + index]; } @Override public Spliterator.OfLong spliterator() { return Spliterators.spliterator(array, start, end, 0); } @Override public boolean contains(@CheckForNull Object target) { // Overridden to prevent a ton of boxing return (target instanceof Long) && Longs.indexOf(array, (Long) target, start, end) != -1; } @Override public int indexOf(@CheckForNull Object target) { // Overridden to prevent a ton of boxing if (target instanceof Long) { int i = Longs.indexOf(array, (Long) target, start, end); if (i >= 0) { return i - start; } } return -1; } @Override public int lastIndexOf(@CheckForNull Object target) { // Overridden to prevent a ton of boxing if (target instanceof Long) { int i = Longs.lastIndexOf(array, (Long) target, start, end); if (i >= 0) { return i - start; } } return -1; } @Override public Long set(int index, Long element) { checkElementIndex(index, size()); long oldValue = array[start + index]; // checkNotNull for GWT (do not optimize) array[start + index] = checkNotNull(element); return oldValue; } @Override public List subList(int fromIndex, int toIndex) { int size = size(); checkPositionIndexes(fromIndex, toIndex, size); if (fromIndex == toIndex) { return Collections.emptyList(); } return new LongArrayAsList(array, start + fromIndex, start + toIndex); } @Override public boolean equals(@CheckForNull Object object) { if (object == this) { return true; } if (object instanceof LongArrayAsList) { LongArrayAsList that = (LongArrayAsList) object; int size = size(); if (that.size() != size) { return false; } for (int i = 0; i < size; i++) { if (array[start + i] != that.array[that.start + i]) { return false; } } return true; } return super.equals(object); } @Override public int hashCode() { int result = 1; for (int i = start; i < end; i++) { result = 31 * result + Longs.hashCode(array[i]); } return result; } @Override public String toString() { StringBuilder builder = new StringBuilder(size() * 10); builder.append('[').append(array[start]); for (int i = start + 1; i < end; i++) { builder.append(", ").append(array[i]); } return builder.append(']').toString(); } long[] toLongArray() { return Arrays.copyOfRange(array, start, end); } private static final long serialVersionUID = 0; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy