All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.common.primitives.Floats Maven / Gradle / Ivy

Go to download

This artifact provides a single jar that contains all classes required to use remote EJB and JMS, including all dependencies. It is intended for use by those not using maven, maven users should just import the EJB and JMS BOM's instead (shaded JAR's cause lots of problems with maven, as it is very easy to inadvertently end up with different versions on classes on the class path).

The newest version!
/*
 * Copyright (C) 2008 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
 * in compliance with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License
 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing permissions and limitations under
 * the License.
 */

package com.google.common.primitives;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkElementIndex;
import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.base.Preconditions.checkPositionIndexes;
import static com.google.common.base.Strings.lenientFormat;
import static java.lang.Float.NEGATIVE_INFINITY;
import static java.lang.Float.POSITIVE_INFINITY;

import com.google.common.annotations.GwtCompatible;
import com.google.common.annotations.GwtIncompatible;
import com.google.common.annotations.J2ktIncompatible;
import com.google.common.base.Converter;
import java.io.Serializable;
import java.util.AbstractList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;
import java.util.RandomAccess;
import javax.annotation.CheckForNull;

/**
 * Static utility methods pertaining to {@code float} primitives, that are not already found in
 * either {@link Float} or {@link Arrays}.
 *
 * 

See the Guava User Guide article on primitive utilities. * * @author Kevin Bourrillion * @since 1.0 */ @GwtCompatible(emulated = true) @ElementTypesAreNonnullByDefault public final class Floats extends FloatsMethodsForWeb { private Floats() {} /** * The number of bytes required to represent a primitive {@code float} value. * *

Java 8 users: use {@link Float#BYTES} instead. * * @since 10.0 */ public static final int BYTES = Float.SIZE / Byte.SIZE; /** * Returns a hash code for {@code value}; equal to the result of invoking {@code ((Float) * value).hashCode()}. * *

Java 8 users: use {@link Float#hashCode(float)} instead. * * @param value a primitive {@code float} value * @return a hash code for the value */ public static int hashCode(float value) { // TODO(kevinb): is there a better way, that's still gwt-safe? return ((Float) value).hashCode(); } /** * Compares the two specified {@code float} values using {@link Float#compare(float, float)}. You * may prefer to invoke that method directly; this method exists only for consistency with the * other utilities in this package. * *

Note: this method simply delegates to the JDK method {@link Float#compare}. It is * provided for consistency with the other primitive types, whose compare methods were not added * to the JDK until JDK 7. * * @param a the first {@code float} to compare * @param b the second {@code float} to compare * @return the result of invoking {@link Float#compare(float, float)} */ public static int compare(float a, float b) { return Float.compare(a, b); } /** * Returns {@code true} if {@code value} represents a real number. This is equivalent to, but not * necessarily implemented as, {@code !(Float.isInfinite(value) || Float.isNaN(value))}. * *

Java 8 users: use {@link Float#isFinite(float)} instead. * * @since 10.0 */ public static boolean isFinite(float value) { return NEGATIVE_INFINITY < value && value < POSITIVE_INFINITY; } /** * Returns {@code true} if {@code target} is present as an element anywhere in {@code array}. Note * that this always returns {@code false} when {@code target} is {@code NaN}. * * @param array an array of {@code float} values, possibly empty * @param target a primitive {@code float} value * @return {@code true} if {@code array[i] == target} for some value of {@code i} */ public static boolean contains(float[] array, float target) { for (float value : array) { if (value == target) { return true; } } return false; } /** * Returns the index of the first appearance of the value {@code target} in {@code array}. Note * that this always returns {@code -1} when {@code target} is {@code NaN}. * * @param array an array of {@code float} values, possibly empty * @param target a primitive {@code float} value * @return the least index {@code i} for which {@code array[i] == target}, or {@code -1} if no * such index exists. */ public static int indexOf(float[] array, float target) { return indexOf(array, target, 0, array.length); } // TODO(kevinb): consider making this public private static int indexOf(float[] array, float target, int start, int end) { for (int i = start; i < end; i++) { if (array[i] == target) { return i; } } return -1; } /** * Returns the start position of the first occurrence of the specified {@code target} within * {@code array}, or {@code -1} if there is no such occurrence. * *

More formally, returns the lowest index {@code i} such that {@code Arrays.copyOfRange(array, * i, i + target.length)} contains exactly the same elements as {@code target}. * *

Note that this always returns {@code -1} when {@code target} contains {@code NaN}. * * @param array the array to search for the sequence {@code target} * @param target the array to search for as a sub-sequence of {@code array} */ public static int indexOf(float[] array, float[] target) { checkNotNull(array, "array"); checkNotNull(target, "target"); if (target.length == 0) { return 0; } outer: for (int i = 0; i < array.length - target.length + 1; i++) { for (int j = 0; j < target.length; j++) { if (array[i + j] != target[j]) { continue outer; } } return i; } return -1; } /** * Returns the index of the last appearance of the value {@code target} in {@code array}. Note * that this always returns {@code -1} when {@code target} is {@code NaN}. * * @param array an array of {@code float} values, possibly empty * @param target a primitive {@code float} value * @return the greatest index {@code i} for which {@code array[i] == target}, or {@code -1} if no * such index exists. */ public static int lastIndexOf(float[] array, float target) { return lastIndexOf(array, target, 0, array.length); } // TODO(kevinb): consider making this public private static int lastIndexOf(float[] array, float target, int start, int end) { for (int i = end - 1; i >= start; i--) { if (array[i] == target) { return i; } } return -1; } /** * Returns the least value present in {@code array}, using the same rules of comparison as {@link * Math#min(float, float)}. * * @param array a nonempty array of {@code float} values * @return the value present in {@code array} that is less than or equal to every other value in * the array * @throws IllegalArgumentException if {@code array} is empty */ @GwtIncompatible( "Available in GWT! Annotation is to avoid conflict with GWT specialization of base class.") public static float min(float... array) { checkArgument(array.length > 0); float min = array[0]; for (int i = 1; i < array.length; i++) { min = Math.min(min, array[i]); } return min; } /** * Returns the greatest value present in {@code array}, using the same rules of comparison as * {@link Math#max(float, float)}. * * @param array a nonempty array of {@code float} values * @return the value present in {@code array} that is greater than or equal to every other value * in the array * @throws IllegalArgumentException if {@code array} is empty */ @GwtIncompatible( "Available in GWT! Annotation is to avoid conflict with GWT specialization of base class.") public static float max(float... array) { checkArgument(array.length > 0); float max = array[0]; for (int i = 1; i < array.length; i++) { max = Math.max(max, array[i]); } return max; } /** * Returns the value nearest to {@code value} which is within the closed range {@code [min..max]}. * *

If {@code value} is within the range {@code [min..max]}, {@code value} is returned * unchanged. If {@code value} is less than {@code min}, {@code min} is returned, and if {@code * value} is greater than {@code max}, {@code max} is returned. * * @param value the {@code float} value to constrain * @param min the lower bound (inclusive) of the range to constrain {@code value} to * @param max the upper bound (inclusive) of the range to constrain {@code value} to * @throws IllegalArgumentException if {@code min > max} * @since 21.0 */ public static float constrainToRange(float value, float min, float max) { // avoid auto-boxing by not using Preconditions.checkArgument(); see Guava issue 3984 // Reject NaN by testing for the good case (min <= max) instead of the bad (min > max). if (min <= max) { return Math.min(Math.max(value, min), max); } throw new IllegalArgumentException( lenientFormat("min (%s) must be less than or equal to max (%s)", min, max)); } /** * Returns the values from each provided array combined into a single array. For example, {@code * concat(new float[] {a, b}, new float[] {}, new float[] {c}} returns the array {@code {a, b, * c}}. * * @param arrays zero or more {@code float} arrays * @return a single array containing all the values from the source arrays, in order */ public static float[] concat(float[]... arrays) { int length = 0; for (float[] array : arrays) { length += array.length; } float[] result = new float[length]; int pos = 0; for (float[] array : arrays) { System.arraycopy(array, 0, result, pos, array.length); pos += array.length; } return result; } private static final class FloatConverter extends Converter implements Serializable { static final Converter INSTANCE = new FloatConverter(); @Override protected Float doForward(String value) { return Float.valueOf(value); } @Override protected String doBackward(Float value) { return value.toString(); } @Override public String toString() { return "Floats.stringConverter()"; } private Object readResolve() { return INSTANCE; } private static final long serialVersionUID = 1; } /** * Returns a serializable converter object that converts between strings and floats using {@link * Float#valueOf} and {@link Float#toString()}. * * @since 16.0 */ public static Converter stringConverter() { return FloatConverter.INSTANCE; } /** * Returns an array containing the same values as {@code array}, but guaranteed to be of a * specified minimum length. If {@code array} already has a length of at least {@code minLength}, * it is returned directly. Otherwise, a new array of size {@code minLength + padding} is * returned, containing the values of {@code array}, and zeroes in the remaining places. * * @param array the source array * @param minLength the minimum length the returned array must guarantee * @param padding an extra amount to "grow" the array by if growth is necessary * @throws IllegalArgumentException if {@code minLength} or {@code padding} is negative * @return an array containing the values of {@code array}, with guaranteed minimum length {@code * minLength} */ public static float[] ensureCapacity(float[] array, int minLength, int padding) { checkArgument(minLength >= 0, "Invalid minLength: %s", minLength); checkArgument(padding >= 0, "Invalid padding: %s", padding); return (array.length < minLength) ? Arrays.copyOf(array, minLength + padding) : array; } /** * Returns a string containing the supplied {@code float} values, converted to strings as * specified by {@link Float#toString(float)}, and separated by {@code separator}. For example, * {@code join("-", 1.0f, 2.0f, 3.0f)} returns the string {@code "1.0-2.0-3.0"}. * *

Note that {@link Float#toString(float)} formats {@code float} differently in GWT. In the * previous example, it returns the string {@code "1-2-3"}. * * @param separator the text that should appear between consecutive values in the resulting string * (but not at the start or end) * @param array an array of {@code float} values, possibly empty */ public static String join(String separator, float... array) { checkNotNull(separator); if (array.length == 0) { return ""; } // For pre-sizing a builder, just get the right order of magnitude StringBuilder builder = new StringBuilder(array.length * 12); builder.append(array[0]); for (int i = 1; i < array.length; i++) { builder.append(separator).append(array[i]); } return builder.toString(); } /** * Returns a comparator that compares two {@code float} arrays lexicographically. That is, it * compares, using {@link #compare(float, float)}), the first pair of values that follow any * common prefix, or when one array is a prefix of the other, treats the shorter array as the * lesser. For example, {@code [] < [1.0f] < [1.0f, 2.0f] < [2.0f]}. * *

The returned comparator is inconsistent with {@link Object#equals(Object)} (since arrays * support only identity equality), but it is consistent with {@link Arrays#equals(float[], * float[])}. * * @since 2.0 */ public static Comparator lexicographicalComparator() { return LexicographicalComparator.INSTANCE; } private enum LexicographicalComparator implements Comparator { INSTANCE; @Override public int compare(float[] left, float[] right) { int minLength = Math.min(left.length, right.length); for (int i = 0; i < minLength; i++) { int result = Float.compare(left[i], right[i]); if (result != 0) { return result; } } return left.length - right.length; } @Override public String toString() { return "Floats.lexicographicalComparator()"; } } /** * Sorts the elements of {@code array} in descending order. * *

Note that this method uses the total order imposed by {@link Float#compare}, which treats * all NaN values as equal and 0.0 as greater than -0.0. * * @since 23.1 */ public static void sortDescending(float[] array) { checkNotNull(array); sortDescending(array, 0, array.length); } /** * Sorts the elements of {@code array} between {@code fromIndex} inclusive and {@code toIndex} * exclusive in descending order. * *

Note that this method uses the total order imposed by {@link Float#compare}, which treats * all NaN values as equal and 0.0 as greater than -0.0. * * @since 23.1 */ public static void sortDescending(float[] array, int fromIndex, int toIndex) { checkNotNull(array); checkPositionIndexes(fromIndex, toIndex, array.length); Arrays.sort(array, fromIndex, toIndex); reverse(array, fromIndex, toIndex); } /** * Reverses the elements of {@code array}. This is equivalent to {@code * Collections.reverse(Floats.asList(array))}, but is likely to be more efficient. * * @since 23.1 */ public static void reverse(float[] array) { checkNotNull(array); reverse(array, 0, array.length); } /** * Reverses the elements of {@code array} between {@code fromIndex} inclusive and {@code toIndex} * exclusive. This is equivalent to {@code * Collections.reverse(Floats.asList(array).subList(fromIndex, toIndex))}, but is likely to be * more efficient. * * @throws IndexOutOfBoundsException if {@code fromIndex < 0}, {@code toIndex > array.length}, or * {@code toIndex > fromIndex} * @since 23.1 */ public static void reverse(float[] array, int fromIndex, int toIndex) { checkNotNull(array); checkPositionIndexes(fromIndex, toIndex, array.length); for (int i = fromIndex, j = toIndex - 1; i < j; i++, j--) { float tmp = array[i]; array[i] = array[j]; array[j] = tmp; } } /** * Performs a right rotation of {@code array} of "distance" places, so that the first element is * moved to index "distance", and the element at index {@code i} ends up at index {@code (distance * + i) mod array.length}. This is equivalent to {@code Collections.rotate(Floats.asList(array), * distance)}, but is considerably faster and avoids allocation and garbage collection. * *

The provided "distance" may be negative, which will rotate left. * * @since 32.0.0 */ public static void rotate(float[] array, int distance) { rotate(array, distance, 0, array.length); } /** * Performs a right rotation of {@code array} between {@code fromIndex} inclusive and {@code * toIndex} exclusive. This is equivalent to {@code * Collections.rotate(Floats.asList(array).subList(fromIndex, toIndex), distance)}, but is * considerably faster and avoids allocations and garbage collection. * *

The provided "distance" may be negative, which will rotate left. * * @throws IndexOutOfBoundsException if {@code fromIndex < 0}, {@code toIndex > array.length}, or * {@code toIndex > fromIndex} * @since 32.0.0 */ public static void rotate(float[] array, int distance, int fromIndex, int toIndex) { // See Ints.rotate for more details about possible algorithms here. checkNotNull(array); checkPositionIndexes(fromIndex, toIndex, array.length); if (array.length <= 1) { return; } int length = toIndex - fromIndex; // Obtain m = (-distance mod length), a non-negative value less than "length". This is how many // places left to rotate. int m = -distance % length; m = (m < 0) ? m + length : m; // The current index of what will become the first element of the rotated section. int newFirstIndex = m + fromIndex; if (newFirstIndex == fromIndex) { return; } reverse(array, fromIndex, newFirstIndex); reverse(array, newFirstIndex, toIndex); reverse(array, fromIndex, toIndex); } /** * Returns an array containing each value of {@code collection}, converted to a {@code float} * value in the manner of {@link Number#floatValue}. * *

Elements are copied from the argument collection as if by {@code collection.toArray()}. * Calling this method is as thread-safe as calling that method. * * @param collection a collection of {@code Number} instances * @return an array containing the same values as {@code collection}, in the same order, converted * to primitives * @throws NullPointerException if {@code collection} or any of its elements is null * @since 1.0 (parameter was {@code Collection} before 12.0) */ public static float[] toArray(Collection collection) { if (collection instanceof FloatArrayAsList) { return ((FloatArrayAsList) collection).toFloatArray(); } Object[] boxedArray = collection.toArray(); int len = boxedArray.length; float[] array = new float[len]; for (int i = 0; i < len; i++) { // checkNotNull for GWT (do not optimize) array[i] = ((Number) checkNotNull(boxedArray[i])).floatValue(); } return array; } /** * Returns a fixed-size list backed by the specified array, similar to {@link * Arrays#asList(Object[])}. The list supports {@link List#set(int, Object)}, but any attempt to * set a value to {@code null} will result in a {@link NullPointerException}. * *

The returned list maintains the values, but not the identities, of {@code Float} objects * written to or read from it. For example, whether {@code list.get(0) == list.get(0)} is true for * the returned list is unspecified. * *

The returned list may have unexpected behavior if it contains {@code NaN}, or if {@code NaN} * is used as a parameter to any of its methods. * *

The returned list is serializable. * * @param backingArray the array to back the list * @return a list view of the array */ public static List asList(float... backingArray) { if (backingArray.length == 0) { return Collections.emptyList(); } return new FloatArrayAsList(backingArray); } @GwtCompatible private static class FloatArrayAsList extends AbstractList implements RandomAccess, Serializable { final float[] array; final int start; final int end; FloatArrayAsList(float[] array) { this(array, 0, array.length); } FloatArrayAsList(float[] array, int start, int end) { this.array = array; this.start = start; this.end = end; } @Override public int size() { return end - start; } @Override public boolean isEmpty() { return false; } @Override public Float get(int index) { checkElementIndex(index, size()); return array[start + index]; } @Override public boolean contains(@CheckForNull Object target) { // Overridden to prevent a ton of boxing return (target instanceof Float) && Floats.indexOf(array, (Float) target, start, end) != -1; } @Override public int indexOf(@CheckForNull Object target) { // Overridden to prevent a ton of boxing if (target instanceof Float) { int i = Floats.indexOf(array, (Float) target, start, end); if (i >= 0) { return i - start; } } return -1; } @Override public int lastIndexOf(@CheckForNull Object target) { // Overridden to prevent a ton of boxing if (target instanceof Float) { int i = Floats.lastIndexOf(array, (Float) target, start, end); if (i >= 0) { return i - start; } } return -1; } @Override public Float set(int index, Float element) { checkElementIndex(index, size()); float oldValue = array[start + index]; // checkNotNull for GWT (do not optimize) array[start + index] = checkNotNull(element); return oldValue; } @Override public List subList(int fromIndex, int toIndex) { int size = size(); checkPositionIndexes(fromIndex, toIndex, size); if (fromIndex == toIndex) { return Collections.emptyList(); } return new FloatArrayAsList(array, start + fromIndex, start + toIndex); } @Override public boolean equals(@CheckForNull Object object) { if (object == this) { return true; } if (object instanceof FloatArrayAsList) { FloatArrayAsList that = (FloatArrayAsList) object; int size = size(); if (that.size() != size) { return false; } for (int i = 0; i < size; i++) { if (array[start + i] != that.array[that.start + i]) { return false; } } return true; } return super.equals(object); } @Override public int hashCode() { int result = 1; for (int i = start; i < end; i++) { result = 31 * result + Floats.hashCode(array[i]); } return result; } @Override public String toString() { StringBuilder builder = new StringBuilder(size() * 12); builder.append('[').append(array[start]); for (int i = start + 1; i < end; i++) { builder.append(", ").append(array[i]); } return builder.append(']').toString(); } float[] toFloatArray() { return Arrays.copyOfRange(array, start, end); } private static final long serialVersionUID = 0; } /** * Parses the specified string as a single-precision floating point value. The ASCII character * {@code '-'} ('\u002D') is recognized as the minus sign. * *

Unlike {@link Float#parseFloat(String)}, this method returns {@code null} instead of * throwing an exception if parsing fails. Valid inputs are exactly those accepted by {@link * Float#valueOf(String)}, except that leading and trailing whitespace is not permitted. * *

This implementation is likely to be faster than {@code Float.parseFloat} if many failures * are expected. * * @param string the string representation of a {@code float} value * @return the floating point value represented by {@code string}, or {@code null} if {@code * string} has a length of zero or cannot be parsed as a {@code float} value * @throws NullPointerException if {@code string} is {@code null} * @since 14.0 */ @J2ktIncompatible @GwtIncompatible // regular expressions @CheckForNull public static Float tryParse(String string) { if (Doubles.FLOATING_POINT_PATTERN.matcher(string).matches()) { // TODO(lowasser): could be potentially optimized, but only with // extensive testing try { return Float.parseFloat(string); } catch (NumberFormatException e) { // Float.parseFloat has changed specs several times, so fall through // gracefully } } return null; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy