All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.common.primitives.Ints Maven / Gradle / Ivy

Go to download

This artifact provides a single jar that contains all classes required to use remote EJB and JMS, including all dependencies. It is intended for use by those not using maven, maven users should just import the EJB and JMS BOM's instead (shaded JAR's cause lots of problems with maven, as it is very easy to inadvertently end up with different versions on classes on the class path).

The newest version!
/*
 * Copyright (C) 2008 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
 * in compliance with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License
 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing permissions and limitations under
 * the License.
 */

package com.google.common.primitives;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkElementIndex;
import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.base.Preconditions.checkPositionIndexes;

import com.google.common.annotations.GwtCompatible;
import com.google.common.annotations.GwtIncompatible;
import com.google.common.base.Converter;
import java.io.Serializable;
import java.util.AbstractList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;
import java.util.RandomAccess;
import java.util.Spliterator;
import java.util.Spliterators;
import javax.annotation.CheckForNull;

/**
 * Static utility methods pertaining to {@code int} primitives, that are not already found in either
 * {@link Integer} or {@link Arrays}.
 *
 * 

See the Guava User Guide article on primitive utilities. * * @author Kevin Bourrillion * @since 1.0 */ @GwtCompatible(emulated = true) @ElementTypesAreNonnullByDefault public final class Ints extends IntsMethodsForWeb { private Ints() {} /** * The number of bytes required to represent a primitive {@code int} value. * *

Java 8 users: use {@link Integer#BYTES} instead. */ public static final int BYTES = Integer.SIZE / Byte.SIZE; /** * The largest power of two that can be represented as an {@code int}. * * @since 10.0 */ public static final int MAX_POWER_OF_TWO = 1 << (Integer.SIZE - 2); /** * Returns a hash code for {@code value}; equal to the result of invoking {@code ((Integer) * value).hashCode()}. * *

Java 8 users: use {@link Integer#hashCode(int)} instead. * * @param value a primitive {@code int} value * @return a hash code for the value */ public static int hashCode(int value) { return value; } /** * Returns the {@code int} value that is equal to {@code value}, if possible. * * @param value any value in the range of the {@code int} type * @return the {@code int} value that equals {@code value} * @throws IllegalArgumentException if {@code value} is greater than {@link Integer#MAX_VALUE} or * less than {@link Integer#MIN_VALUE} */ public static int checkedCast(long value) { int result = (int) value; checkArgument(result == value, "Out of range: %s", value); return result; } /** * Returns the {@code int} nearest in value to {@code value}. * * @param value any {@code long} value * @return the same value cast to {@code int} if it is in the range of the {@code int} type, * {@link Integer#MAX_VALUE} if it is too large, or {@link Integer#MIN_VALUE} if it is too * small */ public static int saturatedCast(long value) { if (value > Integer.MAX_VALUE) { return Integer.MAX_VALUE; } if (value < Integer.MIN_VALUE) { return Integer.MIN_VALUE; } return (int) value; } /** * Compares the two specified {@code int} values. The sign of the value returned is the same as * that of {@code ((Integer) a).compareTo(b)}. * *

Note for Java 7 and later: this method should be treated as deprecated; use the * equivalent {@link Integer#compare} method instead. * * @param a the first {@code int} to compare * @param b the second {@code int} to compare * @return a negative value if {@code a} is less than {@code b}; a positive value if {@code a} is * greater than {@code b}; or zero if they are equal */ public static int compare(int a, int b) { return (a < b) ? -1 : ((a > b) ? 1 : 0); } /** * Returns {@code true} if {@code target} is present as an element anywhere in {@code array}. * * @param array an array of {@code int} values, possibly empty * @param target a primitive {@code int} value * @return {@code true} if {@code array[i] == target} for some value of {@code i} */ public static boolean contains(int[] array, int target) { for (int value : array) { if (value == target) { return true; } } return false; } /** * Returns the index of the first appearance of the value {@code target} in {@code array}. * * @param array an array of {@code int} values, possibly empty * @param target a primitive {@code int} value * @return the least index {@code i} for which {@code array[i] == target}, or {@code -1} if no * such index exists. */ public static int indexOf(int[] array, int target) { return indexOf(array, target, 0, array.length); } // TODO(kevinb): consider making this public private static int indexOf(int[] array, int target, int start, int end) { for (int i = start; i < end; i++) { if (array[i] == target) { return i; } } return -1; } /** * Returns the start position of the first occurrence of the specified {@code target} within * {@code array}, or {@code -1} if there is no such occurrence. * *

More formally, returns the lowest index {@code i} such that {@code Arrays.copyOfRange(array, * i, i + target.length)} contains exactly the same elements as {@code target}. * * @param array the array to search for the sequence {@code target} * @param target the array to search for as a sub-sequence of {@code array} */ public static int indexOf(int[] array, int[] target) { checkNotNull(array, "array"); checkNotNull(target, "target"); if (target.length == 0) { return 0; } outer: for (int i = 0; i < array.length - target.length + 1; i++) { for (int j = 0; j < target.length; j++) { if (array[i + j] != target[j]) { continue outer; } } return i; } return -1; } /** * Returns the index of the last appearance of the value {@code target} in {@code array}. * * @param array an array of {@code int} values, possibly empty * @param target a primitive {@code int} value * @return the greatest index {@code i} for which {@code array[i] == target}, or {@code -1} if no * such index exists. */ public static int lastIndexOf(int[] array, int target) { return lastIndexOf(array, target, 0, array.length); } // TODO(kevinb): consider making this public private static int lastIndexOf(int[] array, int target, int start, int end) { for (int i = end - 1; i >= start; i--) { if (array[i] == target) { return i; } } return -1; } /** * Returns the least value present in {@code array}. * * @param array a nonempty array of {@code int} values * @return the value present in {@code array} that is less than or equal to every other value in * the array * @throws IllegalArgumentException if {@code array} is empty */ @GwtIncompatible( "Available in GWT! Annotation is to avoid conflict with GWT specialization of base class.") public static int min(int... array) { checkArgument(array.length > 0); int min = array[0]; for (int i = 1; i < array.length; i++) { if (array[i] < min) { min = array[i]; } } return min; } /** * Returns the greatest value present in {@code array}. * * @param array a nonempty array of {@code int} values * @return the value present in {@code array} that is greater than or equal to every other value * in the array * @throws IllegalArgumentException if {@code array} is empty */ @GwtIncompatible( "Available in GWT! Annotation is to avoid conflict with GWT specialization of base class.") public static int max(int... array) { checkArgument(array.length > 0); int max = array[0]; for (int i = 1; i < array.length; i++) { if (array[i] > max) { max = array[i]; } } return max; } /** * Returns the value nearest to {@code value} which is within the closed range {@code [min..max]}. * *

If {@code value} is within the range {@code [min..max]}, {@code value} is returned * unchanged. If {@code value} is less than {@code min}, {@code min} is returned, and if {@code * value} is greater than {@code max}, {@code max} is returned. * * @param value the {@code int} value to constrain * @param min the lower bound (inclusive) of the range to constrain {@code value} to * @param max the upper bound (inclusive) of the range to constrain {@code value} to * @throws IllegalArgumentException if {@code min > max} * @since 21.0 */ public static int constrainToRange(int value, int min, int max) { checkArgument(min <= max, "min (%s) must be less than or equal to max (%s)", min, max); return Math.min(Math.max(value, min), max); } /** * Returns the values from each provided array combined into a single array. For example, {@code * concat(new int[] {a, b}, new int[] {}, new int[] {c}} returns the array {@code {a, b, c}}. * * @param arrays zero or more {@code int} arrays * @return a single array containing all the values from the source arrays, in order */ public static int[] concat(int[]... arrays) { int length = 0; for (int[] array : arrays) { length += array.length; } int[] result = new int[length]; int pos = 0; for (int[] array : arrays) { System.arraycopy(array, 0, result, pos, array.length); pos += array.length; } return result; } /** * Returns a big-endian representation of {@code value} in a 4-element byte array; equivalent to * {@code ByteBuffer.allocate(4).putInt(value).array()}. For example, the input value {@code * 0x12131415} would yield the byte array {@code {0x12, 0x13, 0x14, 0x15}}. * *

If you need to convert and concatenate several values (possibly even of different types), * use a shared {@link java.nio.ByteBuffer} instance, or use {@link * com.google.common.io.ByteStreams#newDataOutput()} to get a growable buffer. */ public static byte[] toByteArray(int value) { return new byte[] { (byte) (value >> 24), (byte) (value >> 16), (byte) (value >> 8), (byte) value }; } /** * Returns the {@code int} value whose big-endian representation is stored in the first 4 bytes of * {@code bytes}; equivalent to {@code ByteBuffer.wrap(bytes).getInt()}. For example, the input * byte array {@code {0x12, 0x13, 0x14, 0x15, 0x33}} would yield the {@code int} value {@code * 0x12131415}. * *

Arguably, it's preferable to use {@link java.nio.ByteBuffer}; that library exposes much more * flexibility at little cost in readability. * * @throws IllegalArgumentException if {@code bytes} has fewer than 4 elements */ public static int fromByteArray(byte[] bytes) { checkArgument(bytes.length >= BYTES, "array too small: %s < %s", bytes.length, BYTES); return fromBytes(bytes[0], bytes[1], bytes[2], bytes[3]); } /** * Returns the {@code int} value whose byte representation is the given 4 bytes, in big-endian * order; equivalent to {@code Ints.fromByteArray(new byte[] {b1, b2, b3, b4})}. * * @since 7.0 */ public static int fromBytes(byte b1, byte b2, byte b3, byte b4) { return b1 << 24 | (b2 & 0xFF) << 16 | (b3 & 0xFF) << 8 | (b4 & 0xFF); } private static final class IntConverter extends Converter implements Serializable { static final Converter INSTANCE = new IntConverter(); @Override protected Integer doForward(String value) { return Integer.decode(value); } @Override protected String doBackward(Integer value) { return value.toString(); } @Override public String toString() { return "Ints.stringConverter()"; } private Object readResolve() { return INSTANCE; } private static final long serialVersionUID = 1; } /** * Returns a serializable converter object that converts between strings and integers using {@link * Integer#decode} and {@link Integer#toString()}. The returned converter throws {@link * NumberFormatException} if the input string is invalid. * *

Warning: please see {@link Integer#decode} to understand exactly how strings are * parsed. For example, the string {@code "0123"} is treated as octal and converted to the * value {@code 83}. * * @since 16.0 */ public static Converter stringConverter() { return IntConverter.INSTANCE; } /** * Returns an array containing the same values as {@code array}, but guaranteed to be of a * specified minimum length. If {@code array} already has a length of at least {@code minLength}, * it is returned directly. Otherwise, a new array of size {@code minLength + padding} is * returned, containing the values of {@code array}, and zeroes in the remaining places. * * @param array the source array * @param minLength the minimum length the returned array must guarantee * @param padding an extra amount to "grow" the array by if growth is necessary * @throws IllegalArgumentException if {@code minLength} or {@code padding} is negative * @return an array containing the values of {@code array}, with guaranteed minimum length {@code * minLength} */ public static int[] ensureCapacity(int[] array, int minLength, int padding) { checkArgument(minLength >= 0, "Invalid minLength: %s", minLength); checkArgument(padding >= 0, "Invalid padding: %s", padding); return (array.length < minLength) ? Arrays.copyOf(array, minLength + padding) : array; } /** * Returns a string containing the supplied {@code int} values separated by {@code separator}. For * example, {@code join("-", 1, 2, 3)} returns the string {@code "1-2-3"}. * * @param separator the text that should appear between consecutive values in the resulting string * (but not at the start or end) * @param array an array of {@code int} values, possibly empty */ public static String join(String separator, int... array) { checkNotNull(separator); if (array.length == 0) { return ""; } // For pre-sizing a builder, just get the right order of magnitude StringBuilder builder = new StringBuilder(array.length * 5); builder.append(array[0]); for (int i = 1; i < array.length; i++) { builder.append(separator).append(array[i]); } return builder.toString(); } /** * Returns a comparator that compares two {@code int} arrays lexicographically. That is, it * compares, using {@link #compare(int, int)}), the first pair of values that follow any common * prefix, or when one array is a prefix of the other, treats the shorter array as the lesser. For * example, {@code [] < [1] < [1, 2] < [2]}. * *

The returned comparator is inconsistent with {@link Object#equals(Object)} (since arrays * support only identity equality), but it is consistent with {@link Arrays#equals(int[], int[])}. * * @since 2.0 */ public static Comparator lexicographicalComparator() { return LexicographicalComparator.INSTANCE; } private enum LexicographicalComparator implements Comparator { INSTANCE; @Override public int compare(int[] left, int[] right) { int minLength = Math.min(left.length, right.length); for (int i = 0; i < minLength; i++) { int result = Ints.compare(left[i], right[i]); if (result != 0) { return result; } } return left.length - right.length; } @Override public String toString() { return "Ints.lexicographicalComparator()"; } } /** * Sorts the elements of {@code array} in descending order. * * @since 23.1 */ public static void sortDescending(int[] array) { checkNotNull(array); sortDescending(array, 0, array.length); } /** * Sorts the elements of {@code array} between {@code fromIndex} inclusive and {@code toIndex} * exclusive in descending order. * * @since 23.1 */ public static void sortDescending(int[] array, int fromIndex, int toIndex) { checkNotNull(array); checkPositionIndexes(fromIndex, toIndex, array.length); Arrays.sort(array, fromIndex, toIndex); reverse(array, fromIndex, toIndex); } /** * Reverses the elements of {@code array}. This is equivalent to {@code * Collections.reverse(Ints.asList(array))}, but is likely to be more efficient. * * @since 23.1 */ public static void reverse(int[] array) { checkNotNull(array); reverse(array, 0, array.length); } /** * Reverses the elements of {@code array} between {@code fromIndex} inclusive and {@code toIndex} * exclusive. This is equivalent to {@code * Collections.reverse(Ints.asList(array).subList(fromIndex, toIndex))}, but is likely to be more * efficient. * * @throws IndexOutOfBoundsException if {@code fromIndex < 0}, {@code toIndex > array.length}, or * {@code toIndex > fromIndex} * @since 23.1 */ public static void reverse(int[] array, int fromIndex, int toIndex) { checkNotNull(array); checkPositionIndexes(fromIndex, toIndex, array.length); for (int i = fromIndex, j = toIndex - 1; i < j; i++, j--) { int tmp = array[i]; array[i] = array[j]; array[j] = tmp; } } /** * Performs a right rotation of {@code array} of "distance" places, so that the first element is * moved to index "distance", and the element at index {@code i} ends up at index {@code (distance * + i) mod array.length}. This is equivalent to {@code Collections.rotate(Ints.asList(array), * distance)}, but is considerably faster and avoids allocation and garbage collection. * *

The provided "distance" may be negative, which will rotate left. * * @since 32.0.0 */ public static void rotate(int[] array, int distance) { rotate(array, distance, 0, array.length); } /** * Performs a right rotation of {@code array} between {@code fromIndex} inclusive and {@code * toIndex} exclusive. This is equivalent to {@code * Collections.rotate(Ints.asList(array).subList(fromIndex, toIndex), distance)}, but is * considerably faster and avoids allocations and garbage collection. * *

The provided "distance" may be negative, which will rotate left. * * @throws IndexOutOfBoundsException if {@code fromIndex < 0}, {@code toIndex > array.length}, or * {@code toIndex > fromIndex} * @since 32.0.0 */ public static void rotate(int[] array, int distance, int fromIndex, int toIndex) { // There are several well-known algorithms for rotating part of an array (or, equivalently, // exchanging two blocks of memory). This classic text by Gries and Mills mentions several: // https://ecommons.cornell.edu/bitstream/handle/1813/6292/81-452.pdf. // (1) "Reversal", the one we have here. // (2) "Dolphin". If we're rotating an array a of size n by a distance of d, then element a[0] // ends up at a[d], which in turn ends up at a[2d], and so on until we get back to a[0]. // (All indices taken mod n.) If d and n are mutually prime, all elements will have been // moved at that point. Otherwise, we can rotate the cycle a[1], a[1 + d], a[1 + 2d], etc, // then a[2] etc, and so on until we have rotated all elements. There are gcd(d, n) cycles // in all. // (3) "Successive". We can consider that we are exchanging a block of size d (a[0..d-1]) with a // block of size n-d (a[d..n-1]), where in general these blocks have different sizes. If we // imagine a line separating the first block from the second, we can proceed by exchanging // the smaller of these blocks with the far end of the other one. That leaves us with a // smaller version of the same problem. // Say we are rotating abcdefgh by 5. We start with abcde|fgh. The smaller block is [fgh]: // [abc]de|[fgh] -> [fgh]de|[abc]. Now [fgh] is in the right place, but we need to swap [de] // with [abc]: fgh[de]|a[bc] -> fgh[bc]|a[de]. Now we need to swap [a] with [bc]: // fgh[b]c|[a]de -> fgh[a]c|[b]de. Finally we need to swap [c] with [b]: // fgha[c]|[b]de -> fgha[b]|[c]de. Because these two blocks are the same size, we are done. // The Dolphin algorithm is attractive because it does the fewest array reads and writes: each // array slot is read and written exactly once. However, it can have very poor memory locality: // benchmarking shows it can take 7 times longer than the other two in some cases. The other two // do n swaps, minus a delta (0 or 2 for Reversal, gcd(d, n) for Successive), so that's about // twice as many reads and writes. But benchmarking shows that they usually perform better than // Dolphin. Reversal is about as good as Successive on average, and it is much simpler, // especially since we already have a `reverse` method. checkNotNull(array); checkPositionIndexes(fromIndex, toIndex, array.length); if (array.length <= 1) { return; } int length = toIndex - fromIndex; // Obtain m = (-distance mod length), a non-negative value less than "length". This is how many // places left to rotate. int m = -distance % length; m = (m < 0) ? m + length : m; // The current index of what will become the first element of the rotated section. int newFirstIndex = m + fromIndex; if (newFirstIndex == fromIndex) { return; } reverse(array, fromIndex, newFirstIndex); reverse(array, newFirstIndex, toIndex); reverse(array, fromIndex, toIndex); } /** * Returns an array containing each value of {@code collection}, converted to a {@code int} value * in the manner of {@link Number#intValue}. * *

Elements are copied from the argument collection as if by {@code collection.toArray()}. * Calling this method is as thread-safe as calling that method. * * @param collection a collection of {@code Number} instances * @return an array containing the same values as {@code collection}, in the same order, converted * to primitives * @throws NullPointerException if {@code collection} or any of its elements is null * @since 1.0 (parameter was {@code Collection} before 12.0) */ public static int[] toArray(Collection collection) { if (collection instanceof IntArrayAsList) { return ((IntArrayAsList) collection).toIntArray(); } Object[] boxedArray = collection.toArray(); int len = boxedArray.length; int[] array = new int[len]; for (int i = 0; i < len; i++) { // checkNotNull for GWT (do not optimize) array[i] = ((Number) checkNotNull(boxedArray[i])).intValue(); } return array; } /** * Returns a fixed-size list backed by the specified array, similar to {@link * Arrays#asList(Object[])}. The list supports {@link List#set(int, Object)}, but any attempt to * set a value to {@code null} will result in a {@link NullPointerException}. * *

The returned list maintains the values, but not the identities, of {@code Integer} objects * written to or read from it. For example, whether {@code list.get(0) == list.get(0)} is true for * the returned list is unspecified. * *

The returned list is serializable. * *

Note: when possible, you should represent your data as an {@link ImmutableIntArray} * instead, which has an {@link ImmutableIntArray#asList asList} view. * * @param backingArray the array to back the list * @return a list view of the array */ public static List asList(int... backingArray) { if (backingArray.length == 0) { return Collections.emptyList(); } return new IntArrayAsList(backingArray); } @GwtCompatible private static class IntArrayAsList extends AbstractList implements RandomAccess, Serializable { final int[] array; final int start; final int end; IntArrayAsList(int[] array) { this(array, 0, array.length); } IntArrayAsList(int[] array, int start, int end) { this.array = array; this.start = start; this.end = end; } @Override public int size() { return end - start; } @Override public boolean isEmpty() { return false; } @Override public Integer get(int index) { checkElementIndex(index, size()); return array[start + index]; } @Override public Spliterator.OfInt spliterator() { return Spliterators.spliterator(array, start, end, 0); } @Override public boolean contains(@CheckForNull Object target) { // Overridden to prevent a ton of boxing return (target instanceof Integer) && Ints.indexOf(array, (Integer) target, start, end) != -1; } @Override public int indexOf(@CheckForNull Object target) { // Overridden to prevent a ton of boxing if (target instanceof Integer) { int i = Ints.indexOf(array, (Integer) target, start, end); if (i >= 0) { return i - start; } } return -1; } @Override public int lastIndexOf(@CheckForNull Object target) { // Overridden to prevent a ton of boxing if (target instanceof Integer) { int i = Ints.lastIndexOf(array, (Integer) target, start, end); if (i >= 0) { return i - start; } } return -1; } @Override public Integer set(int index, Integer element) { checkElementIndex(index, size()); int oldValue = array[start + index]; // checkNotNull for GWT (do not optimize) array[start + index] = checkNotNull(element); return oldValue; } @Override public List subList(int fromIndex, int toIndex) { int size = size(); checkPositionIndexes(fromIndex, toIndex, size); if (fromIndex == toIndex) { return Collections.emptyList(); } return new IntArrayAsList(array, start + fromIndex, start + toIndex); } @Override public boolean equals(@CheckForNull Object object) { if (object == this) { return true; } if (object instanceof IntArrayAsList) { IntArrayAsList that = (IntArrayAsList) object; int size = size(); if (that.size() != size) { return false; } for (int i = 0; i < size; i++) { if (array[start + i] != that.array[that.start + i]) { return false; } } return true; } return super.equals(object); } @Override public int hashCode() { int result = 1; for (int i = start; i < end; i++) { result = 31 * result + Ints.hashCode(array[i]); } return result; } @Override public String toString() { StringBuilder builder = new StringBuilder(size() * 5); builder.append('[').append(array[start]); for (int i = start + 1; i < end; i++) { builder.append(", ").append(array[i]); } return builder.append(']').toString(); } int[] toIntArray() { return Arrays.copyOfRange(array, start, end); } private static final long serialVersionUID = 0; } /** * Parses the specified string as a signed decimal integer value. The ASCII character {@code '-'} * ('\u002D') is recognized as the minus sign. * *

Unlike {@link Integer#parseInt(String)}, this method returns {@code null} instead of * throwing an exception if parsing fails. Additionally, this method only accepts ASCII digits, * and returns {@code null} if non-ASCII digits are present in the string. * *

Note that strings prefixed with ASCII {@code '+'} are rejected, even under JDK 7, despite * the change to {@link Integer#parseInt(String)} for that version. * * @param string the string representation of an integer value * @return the integer value represented by {@code string}, or {@code null} if {@code string} has * a length of zero or cannot be parsed as an integer value * @throws NullPointerException if {@code string} is {@code null} * @since 11.0 */ @CheckForNull public static Integer tryParse(String string) { return tryParse(string, 10); } /** * Parses the specified string as a signed integer value using the specified radix. The ASCII * character {@code '-'} ('\u002D') is recognized as the minus sign. * *

Unlike {@link Integer#parseInt(String, int)}, this method returns {@code null} instead of * throwing an exception if parsing fails. Additionally, this method only accepts ASCII digits, * and returns {@code null} if non-ASCII digits are present in the string. * *

Note that strings prefixed with ASCII {@code '+'} are rejected, even under JDK 7, despite * the change to {@link Integer#parseInt(String, int)} for that version. * * @param string the string representation of an integer value * @param radix the radix to use when parsing * @return the integer value represented by {@code string} using {@code radix}, or {@code null} if * {@code string} has a length of zero or cannot be parsed as an integer value * @throws IllegalArgumentException if {@code radix < Character.MIN_RADIX} or {@code radix > * Character.MAX_RADIX} * @throws NullPointerException if {@code string} is {@code null} * @since 19.0 */ @CheckForNull public static Integer tryParse(String string, int radix) { Long result = Longs.tryParse(string, radix); if (result == null || result.longValue() != result.intValue()) { return null; } else { return result.intValue(); } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy