All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.common.primitives.UnsignedLongs Maven / Gradle / Ivy

Go to download

This artifact provides a single jar that contains all classes required to use remote EJB and JMS, including all dependencies. It is intended for use by those not using maven, maven users should just import the EJB and JMS BOM's instead (shaded JAR's cause lots of problems with maven, as it is very easy to inadvertently end up with different versions on classes on the class path).

The newest version!
/*
 * Copyright (C) 2011 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
 * in compliance with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License
 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing permissions and limitations under
 * the License.
 */

package com.google.common.primitives;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.base.Preconditions.checkPositionIndexes;

import com.google.common.annotations.GwtCompatible;
import com.google.errorprone.annotations.CanIgnoreReturnValue;
import java.math.BigInteger;
import java.util.Arrays;
import java.util.Comparator;

/**
 * Static utility methods pertaining to {@code long} primitives that interpret values as
 * unsigned (that is, any negative value {@code x} is treated as the positive value {@code
 * 2^64 + x}). The methods for which signedness is not an issue are in {@link Longs}, as well as
 * signed versions of methods for which signedness is an issue.
 *
 * 

In addition, this class provides several static methods for converting a {@code long} to a * {@code String} and a {@code String} to a {@code long} that treat the {@code long} as an unsigned * number. * *

Users of these utilities must be extremely careful not to mix up signed and unsigned * {@code long} values. When possible, it is recommended that the {@link UnsignedLong} wrapper class * be used, at a small efficiency penalty, to enforce the distinction in the type system. * *

See the Guava User Guide article on unsigned * primitive utilities. * * @author Louis Wasserman * @author Brian Milch * @author Colin Evans * @since 10.0 */ @GwtCompatible @ElementTypesAreNonnullByDefault public final class UnsignedLongs { private UnsignedLongs() {} public static final long MAX_VALUE = -1L; // Equivalent to 2^64 - 1 /** * A (self-inverse) bijection which converts the ordering on unsigned longs to the ordering on * longs, that is, {@code a <= b} as unsigned longs if and only if {@code flip(a) <= flip(b)} as * signed longs. */ private static long flip(long a) { return a ^ Long.MIN_VALUE; } /** * Compares the two specified {@code long} values, treating them as unsigned values between {@code * 0} and {@code 2^64 - 1} inclusive. * *

Java 8 users: use {@link Long#compareUnsigned(long, long)} instead. * * @param a the first unsigned {@code long} to compare * @param b the second unsigned {@code long} to compare * @return a negative value if {@code a} is less than {@code b}; a positive value if {@code a} is * greater than {@code b}; or zero if they are equal */ public static int compare(long a, long b) { return Longs.compare(flip(a), flip(b)); } /** * Returns the least value present in {@code array}, treating values as unsigned. * * @param array a nonempty array of unsigned {@code long} values * @return the value present in {@code array} that is less than or equal to every other value in * the array according to {@link #compare} * @throws IllegalArgumentException if {@code array} is empty */ public static long min(long... array) { checkArgument(array.length > 0); long min = flip(array[0]); for (int i = 1; i < array.length; i++) { long next = flip(array[i]); if (next < min) { min = next; } } return flip(min); } /** * Returns the greatest value present in {@code array}, treating values as unsigned. * * @param array a nonempty array of unsigned {@code long} values * @return the value present in {@code array} that is greater than or equal to every other value * in the array according to {@link #compare} * @throws IllegalArgumentException if {@code array} is empty */ public static long max(long... array) { checkArgument(array.length > 0); long max = flip(array[0]); for (int i = 1; i < array.length; i++) { long next = flip(array[i]); if (next > max) { max = next; } } return flip(max); } /** * Returns a string containing the supplied unsigned {@code long} values separated by {@code * separator}. For example, {@code join("-", 1, 2, 3)} returns the string {@code "1-2-3"}. * * @param separator the text that should appear between consecutive values in the resulting string * (but not at the start or end) * @param array an array of unsigned {@code long} values, possibly empty */ public static String join(String separator, long... array) { checkNotNull(separator); if (array.length == 0) { return ""; } // For pre-sizing a builder, just get the right order of magnitude StringBuilder builder = new StringBuilder(array.length * 5); builder.append(toString(array[0])); for (int i = 1; i < array.length; i++) { builder.append(separator).append(toString(array[i])); } return builder.toString(); } /** * Returns a comparator that compares two arrays of unsigned {@code long} values lexicographically. That is, it * compares, using {@link #compare(long, long)}), the first pair of values that follow any common * prefix, or when one array is a prefix of the other, treats the shorter array as the lesser. For * example, {@code [] < [1L] < [1L, 2L] < [2L] < [1L << 63]}. * *

The returned comparator is inconsistent with {@link Object#equals(Object)} (since arrays * support only identity equality), but it is consistent with {@link Arrays#equals(long[], * long[])}. */ public static Comparator lexicographicalComparator() { return LexicographicalComparator.INSTANCE; } enum LexicographicalComparator implements Comparator { INSTANCE; @Override public int compare(long[] left, long[] right) { int minLength = Math.min(left.length, right.length); for (int i = 0; i < minLength; i++) { if (left[i] != right[i]) { return UnsignedLongs.compare(left[i], right[i]); } } return left.length - right.length; } @Override public String toString() { return "UnsignedLongs.lexicographicalComparator()"; } } /** * Sorts the array, treating its elements as unsigned 64-bit integers. * * @since 23.1 */ public static void sort(long[] array) { checkNotNull(array); sort(array, 0, array.length); } /** * Sorts the array between {@code fromIndex} inclusive and {@code toIndex} exclusive, treating its * elements as unsigned 64-bit integers. * * @since 23.1 */ public static void sort(long[] array, int fromIndex, int toIndex) { checkNotNull(array); checkPositionIndexes(fromIndex, toIndex, array.length); for (int i = fromIndex; i < toIndex; i++) { array[i] = flip(array[i]); } Arrays.sort(array, fromIndex, toIndex); for (int i = fromIndex; i < toIndex; i++) { array[i] = flip(array[i]); } } /** * Sorts the elements of {@code array} in descending order, interpreting them as unsigned 64-bit * integers. * * @since 23.1 */ public static void sortDescending(long[] array) { checkNotNull(array); sortDescending(array, 0, array.length); } /** * Sorts the elements of {@code array} between {@code fromIndex} inclusive and {@code toIndex} * exclusive in descending order, interpreting them as unsigned 64-bit integers. * * @since 23.1 */ public static void sortDescending(long[] array, int fromIndex, int toIndex) { checkNotNull(array); checkPositionIndexes(fromIndex, toIndex, array.length); for (int i = fromIndex; i < toIndex; i++) { array[i] ^= Long.MAX_VALUE; } Arrays.sort(array, fromIndex, toIndex); for (int i = fromIndex; i < toIndex; i++) { array[i] ^= Long.MAX_VALUE; } } /** * Returns dividend / divisor, where the dividend and divisor are treated as unsigned 64-bit * quantities. * *

Java 8 users: use {@link Long#divideUnsigned(long, long)} instead. * * @param dividend the dividend (numerator) * @param divisor the divisor (denominator) * @throws ArithmeticException if divisor is 0 */ public static long divide(long dividend, long divisor) { if (divisor < 0) { // i.e., divisor >= 2^63: if (compare(dividend, divisor) < 0) { return 0; // dividend < divisor } else { return 1; // dividend >= divisor } } // Optimization - use signed division if dividend < 2^63 if (dividend >= 0) { return dividend / divisor; } /* * Otherwise, approximate the quotient, check, and correct if necessary. Our approximation is * guaranteed to be either exact or one less than the correct value. This follows from fact that * floor(floor(x)/i) == floor(x/i) for any real x and integer i != 0. The proof is not quite * trivial. */ long quotient = ((dividend >>> 1) / divisor) << 1; long rem = dividend - quotient * divisor; return quotient + (compare(rem, divisor) >= 0 ? 1 : 0); } /** * Returns dividend % divisor, where the dividend and divisor are treated as unsigned 64-bit * quantities. * *

Java 8 users: use {@link Long#remainderUnsigned(long, long)} instead. * * @param dividend the dividend (numerator) * @param divisor the divisor (denominator) * @throws ArithmeticException if divisor is 0 * @since 11.0 */ public static long remainder(long dividend, long divisor) { if (divisor < 0) { // i.e., divisor >= 2^63: if (compare(dividend, divisor) < 0) { return dividend; // dividend < divisor } else { return dividend - divisor; // dividend >= divisor } } // Optimization - use signed modulus if dividend < 2^63 if (dividend >= 0) { return dividend % divisor; } /* * Otherwise, approximate the quotient, check, and correct if necessary. Our approximation is * guaranteed to be either exact or one less than the correct value. This follows from the fact * that floor(floor(x)/i) == floor(x/i) for any real x and integer i != 0. The proof is not * quite trivial. */ long quotient = ((dividend >>> 1) / divisor) << 1; long rem = dividend - quotient * divisor; return rem - (compare(rem, divisor) >= 0 ? divisor : 0); } /** * Returns the unsigned {@code long} value represented by the given decimal string. * *

Java 8 users: use {@link Long#parseUnsignedLong(String)} instead. * * @throws NumberFormatException if the string does not contain a valid unsigned {@code long} * value * @throws NullPointerException if {@code string} is null (in contrast to {@link * Long#parseLong(String)}) */ @CanIgnoreReturnValue public static long parseUnsignedLong(String string) { return parseUnsignedLong(string, 10); } /** * Returns the unsigned {@code long} value represented by a string with the given radix. * *

Java 8 users: use {@link Long#parseUnsignedLong(String, int)} instead. * * @param string the string containing the unsigned {@code long} representation to be parsed. * @param radix the radix to use while parsing {@code string} * @throws NumberFormatException if the string does not contain a valid unsigned {@code long} with * the given radix, or if {@code radix} is not between {@link Character#MIN_RADIX} and {@link * Character#MAX_RADIX}. * @throws NullPointerException if {@code string} is null (in contrast to {@link * Long#parseLong(String)}) */ @CanIgnoreReturnValue public static long parseUnsignedLong(String string, int radix) { checkNotNull(string); if (string.length() == 0) { throw new NumberFormatException("empty string"); } if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX) { throw new NumberFormatException("illegal radix: " + radix); } int maxSafePos = ParseOverflowDetection.maxSafeDigits[radix] - 1; long value = 0; for (int pos = 0; pos < string.length(); pos++) { int digit = Character.digit(string.charAt(pos), radix); if (digit == -1) { throw new NumberFormatException(string); } if (pos > maxSafePos && ParseOverflowDetection.overflowInParse(value, digit, radix)) { throw new NumberFormatException("Too large for unsigned long: " + string); } value = (value * radix) + digit; } return value; } /** * Returns the unsigned {@code long} value represented by the given string. * *

Accepts a decimal, hexadecimal, or octal number given by specifying the following prefix: * *

    *
  • {@code 0x}HexDigits *
  • {@code 0X}HexDigits *
  • {@code #}HexDigits *
  • {@code 0}OctalDigits *
* * @throws NumberFormatException if the string does not contain a valid unsigned {@code long} * value * @since 13.0 */ @CanIgnoreReturnValue public static long decode(String stringValue) { ParseRequest request = ParseRequest.fromString(stringValue); try { return parseUnsignedLong(request.rawValue, request.radix); } catch (NumberFormatException e) { NumberFormatException decodeException = new NumberFormatException("Error parsing value: " + stringValue); decodeException.initCause(e); throw decodeException; } } /* * We move the static constants into this class so ProGuard can inline UnsignedLongs entirely * unless the user is actually calling a parse method. */ private static final class ParseOverflowDetection { private ParseOverflowDetection() {} // calculated as 0xffffffffffffffff / radix static final long[] maxValueDivs = new long[Character.MAX_RADIX + 1]; static final int[] maxValueMods = new int[Character.MAX_RADIX + 1]; static final int[] maxSafeDigits = new int[Character.MAX_RADIX + 1]; static { BigInteger overflow = new BigInteger("10000000000000000", 16); for (int i = Character.MIN_RADIX; i <= Character.MAX_RADIX; i++) { maxValueDivs[i] = divide(MAX_VALUE, i); maxValueMods[i] = (int) remainder(MAX_VALUE, i); maxSafeDigits[i] = overflow.toString(i).length() - 1; } } /** * Returns true if (current * radix) + digit is a number too large to be represented by an * unsigned long. This is useful for detecting overflow while parsing a string representation of * a number. Does not verify whether supplied radix is valid, passing an invalid radix will give * undefined results or an ArrayIndexOutOfBoundsException. */ static boolean overflowInParse(long current, int digit, int radix) { if (current >= 0) { if (current < maxValueDivs[radix]) { return false; } if (current > maxValueDivs[radix]) { return true; } // current == maxValueDivs[radix] return (digit > maxValueMods[radix]); } // current < 0: high bit is set return true; } } /** * Returns a string representation of x, where x is treated as unsigned. * *

Java 8 users: use {@link Long#toUnsignedString(long)} instead. */ public static String toString(long x) { return toString(x, 10); } /** * Returns a string representation of {@code x} for the given radix, where {@code x} is treated as * unsigned. * *

Java 8 users: use {@link Long#toUnsignedString(long, int)} instead. * * @param x the value to convert to a string. * @param radix the radix to use while working with {@code x} * @throws IllegalArgumentException if {@code radix} is not between {@link Character#MIN_RADIX} * and {@link Character#MAX_RADIX}. */ public static String toString(long x, int radix) { checkArgument( radix >= Character.MIN_RADIX && radix <= Character.MAX_RADIX, "radix (%s) must be between Character.MIN_RADIX and Character.MAX_RADIX", radix); if (x == 0) { // Simply return "0" return "0"; } else if (x > 0) { return Long.toString(x, radix); } else { char[] buf = new char[64]; int i = buf.length; if ((radix & (radix - 1)) == 0) { // Radix is a power of two so we can avoid division. int shift = Integer.numberOfTrailingZeros(radix); int mask = radix - 1; do { buf[--i] = Character.forDigit(((int) x) & mask, radix); x >>>= shift; } while (x != 0); } else { // Separate off the last digit using unsigned division. That will leave // a number that is nonnegative as a signed integer. long quotient; if ((radix & 1) == 0) { // Fast path for the usual case where the radix is even. quotient = (x >>> 1) / (radix >>> 1); } else { quotient = divide(x, radix); } long rem = x - quotient * radix; buf[--i] = Character.forDigit((int) rem, radix); x = quotient; // Simple modulo/division approach while (x > 0) { buf[--i] = Character.forDigit((int) (x % radix), radix); x /= radix; } } // Generate string return new String(buf, i, buf.length - i); } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy