io.netty.handler.codec.compression.FastLz Maven / Gradle / Ivy
Go to download
This artifact provides a single jar that contains all classes required to use remote EJB and JMS, including
all dependencies. It is intended for use by those not using maven, maven users should just import the EJB and
JMS BOM's instead (shaded JAR's cause lots of problems with maven, as it is very easy to inadvertently end up
with different versions on classes on the class path).
The newest version!
/*
* Copyright 2014 The Netty Project
*
* The Netty Project licenses this file to you under the Apache License,
* version 2.0 (the "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at:
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*/
package io.netty.handler.codec.compression;
import io.netty.buffer.ByteBuf;
/**
* Core of FastLZ compression algorithm.
*
* This class provides methods for compression and decompression of buffers and saves
* constants which use by {@link FastLzFrameEncoder} and {@link FastLzFrameDecoder}.
*
* This is refactored code of jfastlz
* library written by William Kinney.
*/
final class FastLz {
private static final int MAX_DISTANCE = 8191;
private static final int MAX_FARDISTANCE = 65535 + MAX_DISTANCE - 1;
private static final int HASH_LOG = 13;
private static final int HASH_SIZE = 1 << HASH_LOG; // 8192
private static final int HASH_MASK = HASH_SIZE - 1;
private static final int MAX_COPY = 32;
private static final int MAX_LEN = 256 + 8;
private static final int MIN_RECOMENDED_LENGTH_FOR_LEVEL_2 = 1024 * 64;
static final int MAGIC_NUMBER = 'F' << 16 | 'L' << 8 | 'Z';
static final byte BLOCK_TYPE_NON_COMPRESSED = 0x00;
static final byte BLOCK_TYPE_COMPRESSED = 0x01;
static final byte BLOCK_WITHOUT_CHECKSUM = 0x00;
static final byte BLOCK_WITH_CHECKSUM = 0x10;
static final int OPTIONS_OFFSET = 3;
static final int CHECKSUM_OFFSET = 4;
static final int MAX_CHUNK_LENGTH = 0xFFFF;
/**
* Do not call {@link #compress(ByteBuf, int, int, ByteBuf, int, int)} for input buffers
* which length less than this value.
*/
static final int MIN_LENGTH_TO_COMPRESSION = 32;
/**
* In this case {@link #compress(ByteBuf, int, int, ByteBuf, int, int)} will choose level
* automatically depending on the length of the input buffer. If length less than
* {@link #MIN_RECOMENDED_LENGTH_FOR_LEVEL_2} {@link #LEVEL_1} will be chosen,
* otherwise {@link #LEVEL_2}.
*/
static final int LEVEL_AUTO = 0;
/**
* Level 1 is the fastest compression and generally useful for short data.
*/
static final int LEVEL_1 = 1;
/**
* Level 2 is slightly slower but it gives better compression ratio.
*/
static final int LEVEL_2 = 2;
/**
* The output buffer must be at least 6% larger than the input buffer and can not be smaller than 66 bytes.
* @param inputLength length of input buffer
* @return Maximum output buffer length
*/
static int calculateOutputBufferLength(int inputLength) {
final int outputLength = (int) (inputLength * 1.06);
return Math.max(outputLength, 66);
}
/**
* Compress a block of data in the input buffer and returns the size of compressed block.
* The size of input buffer is specified by length. The minimum input buffer size is 32.
*
* If the input is not compressible, the return value might be larger than length (input buffer size).
*/
@SuppressWarnings("IdentityBinaryExpression")
static int compress(final ByteBuf input, final int inOffset, final int inLength,
final ByteBuf output, final int outOffset, final int proposedLevel) {
final int level;
if (proposedLevel == LEVEL_AUTO) {
level = inLength < MIN_RECOMENDED_LENGTH_FOR_LEVEL_2 ? LEVEL_1 : LEVEL_2;
} else {
level = proposedLevel;
}
int ip = 0;
int ipBound = ip + inLength - 2;
int ipLimit = ip + inLength - 12;
int op = 0;
// const flzuint8* htab[HASH_SIZE];
int[] htab = new int[HASH_SIZE];
// const flzuint8** hslot;
int hslot;
// flzuint32 hval;
// int OK b/c address starting from 0
int hval;
// flzuint32 copy;
// int OK b/c address starting from 0
int copy;
/* sanity check */
if (inLength < 4) {
if (inLength != 0) {
// *op++ = length-1;
output.setByte(outOffset + op++, (byte) (inLength - 1));
ipBound++;
while (ip <= ipBound) {
output.setByte(outOffset + op++, input.getByte(inOffset + ip++));
}
return inLength + 1;
}
// else
return 0;
}
/* initializes hash table */
// for (hslot = htab; hslot < htab + HASH_SIZE; hslot++)
for (hslot = 0; hslot < HASH_SIZE; hslot++) {
//*hslot = ip;
htab[hslot] = ip;
}
/* we start with literal copy */
copy = 2;
output.setByte(outOffset + op++, MAX_COPY - 1);
output.setByte(outOffset + op++, input.getByte(inOffset + ip++));
output.setByte(outOffset + op++, input.getByte(inOffset + ip++));
/* main loop */
while (ip < ipLimit) {
int ref = 0;
long distance = 0;
/* minimum match length */
// flzuint32 len = 3;
// int OK b/c len is 0 and octal based
int len = 3;
/* comparison starting-point */
int anchor = ip;
boolean matchLabel = false;
/* check for a run */
if (level == LEVEL_2) {
//if(ip[0] == ip[-1] && FASTLZ_READU16(ip-1)==FASTLZ_READU16(ip+1))
if (input.getByte(inOffset + ip) == input.getByte(inOffset + ip - 1) &&
readU16(input, inOffset + ip - 1) == readU16(input, inOffset + ip + 1)) {
distance = 1;
ip += 3;
ref = anchor + (3 - 1);
/*
* goto match;
*/
matchLabel = true;
}
}
if (!matchLabel) {
/* find potential match */
// HASH_FUNCTION(hval,ip);
hval = hashFunction(input, inOffset + ip);
// hslot = htab + hval;
hslot = hval;
// ref = htab[hval];
ref = htab[hval];
/* calculate distance to the match */
distance = anchor - ref;
/* update hash table */
//*hslot = anchor;
htab[hslot] = anchor;
/* is this a match? check the first 3 bytes */
if (distance == 0
|| (level == LEVEL_1 ? distance >= MAX_DISTANCE : distance >= MAX_FARDISTANCE)
|| input.getByte(inOffset + ref++) != input.getByte(inOffset + ip++)
|| input.getByte(inOffset + ref++) != input.getByte(inOffset + ip++)
|| input.getByte(inOffset + ref++) != input.getByte(inOffset + ip++)) {
/*
* goto literal;
*/
output.setByte(outOffset + op++, input.getByte(inOffset + anchor++));
ip = anchor;
copy++;
if (copy == MAX_COPY) {
copy = 0;
output.setByte(outOffset + op++, MAX_COPY - 1);
}
continue;
}
if (level == LEVEL_2) {
/* far, needs at least 5-byte match */
if (distance >= MAX_DISTANCE) {
if (input.getByte(inOffset + ip++) != input.getByte(inOffset + ref++)
|| input.getByte(inOffset + ip++) != input.getByte(inOffset + ref++)) {
/*
* goto literal;
*/
output.setByte(outOffset + op++, input.getByte(inOffset + anchor++));
ip = anchor;
copy++;
if (copy == MAX_COPY) {
copy = 0;
output.setByte(outOffset + op++, MAX_COPY - 1);
}
continue;
}
len += 2;
}
}
} // end if(!matchLabel)
/*
* match:
*/
/* last matched byte */
ip = anchor + len;
/* distance is biased */
distance--;
if (distance == 0) {
/* zero distance means a run */
//flzuint8 x = ip[-1];
byte x = input.getByte(inOffset + ip - 1);
while (ip < ipBound) {
if (input.getByte(inOffset + ref++) != x) {
break;
} else {
ip++;
}
}
} else {
/* safe because the outer check against ip limit */
boolean missMatch = false;
for (int i = 0; i < 8; i++) {
if (input.getByte(inOffset + ref++) != input.getByte(inOffset + ip++)) {
missMatch = true;
break;
}
}
if (!missMatch) {
while (ip < ipBound) {
if (input.getByte(inOffset + ref++) != input.getByte(inOffset + ip++)) {
break;
}
}
}
}
/* if we have copied something, adjust the copy count */
if (copy != 0) {
/* copy is biased, '0' means 1 byte copy */
// *(op-copy-1) = copy-1;
output.setByte(outOffset + op - copy - 1, (byte) (copy - 1));
} else {
/* back, to overwrite the copy count */
op--;
}
/* reset literal counter */
copy = 0;
/* length is biased, '1' means a match of 3 bytes */
ip -= 3;
len = ip - anchor;
/* encode the match */
if (level == LEVEL_2) {
if (distance < MAX_DISTANCE) {
if (len < 7) {
output.setByte(outOffset + op++, (byte) ((len << 5) + (distance >>> 8)));
output.setByte(outOffset + op++, (byte) (distance & 255));
} else {
output.setByte(outOffset + op++, (byte) ((7 << 5) + (distance >>> 8)));
for (len -= 7; len >= 255; len -= 255) {
output.setByte(outOffset + op++, (byte) 255);
}
output.setByte(outOffset + op++, (byte) len);
output.setByte(outOffset + op++, (byte) (distance & 255));
}
} else {
/* far away, but not yet in the another galaxy... */
if (len < 7) {
distance -= MAX_DISTANCE;
output.setByte(outOffset + op++, (byte) ((len << 5) + 31));
output.setByte(outOffset + op++, (byte) 255);
output.setByte(outOffset + op++, (byte) (distance >>> 8));
output.setByte(outOffset + op++, (byte) (distance & 255));
} else {
distance -= MAX_DISTANCE;
output.setByte(outOffset + op++, (byte) ((7 << 5) + 31));
for (len -= 7; len >= 255; len -= 255) {
output.setByte(outOffset + op++, (byte) 255);
}
output.setByte(outOffset + op++, (byte) len);
output.setByte(outOffset + op++, (byte) 255);
output.setByte(outOffset + op++, (byte) (distance >>> 8));
output.setByte(outOffset + op++, (byte) (distance & 255));
}
}
} else {
if (len > MAX_LEN - 2) {
while (len > MAX_LEN - 2) {
output.setByte(outOffset + op++, (byte) ((7 << 5) + (distance >>> 8)));
output.setByte(outOffset + op++, (byte) (MAX_LEN - 2 - 7 - 2));
output.setByte(outOffset + op++, (byte) (distance & 255));
len -= MAX_LEN - 2;
}
}
if (len < 7) {
output.setByte(outOffset + op++, (byte) ((len << 5) + (distance >>> 8)));
output.setByte(outOffset + op++, (byte) (distance & 255));
} else {
output.setByte(outOffset + op++, (byte) ((7 << 5) + (distance >>> 8)));
output.setByte(outOffset + op++, (byte) (len - 7));
output.setByte(outOffset + op++, (byte) (distance & 255));
}
}
/* update the hash at match boundary */
//HASH_FUNCTION(hval,ip);
hval = hashFunction(input, inOffset + ip);
htab[hval] = ip++;
//HASH_FUNCTION(hval,ip);
hval = hashFunction(input, inOffset + ip);
htab[hval] = ip++;
/* assuming literal copy */
output.setByte(outOffset + op++, MAX_COPY - 1);
continue;
// Moved to be inline, with a 'continue'
/*
* literal:
*
output[outOffset + op++] = input[inOffset + anchor++];
ip = anchor;
copy++;
if(copy == MAX_COPY){
copy = 0;
output[outOffset + op++] = MAX_COPY-1;
}
*/
}
/* left-over as literal copy */
ipBound++;
while (ip <= ipBound) {
output.setByte(outOffset + op++, input.getByte(inOffset + ip++));
copy++;
if (copy == MAX_COPY) {
copy = 0;
output.setByte(outOffset + op++, MAX_COPY - 1);
}
}
/* if we have copied something, adjust the copy length */
if (copy != 0) {
//*(op-copy-1) = copy-1;
output.setByte(outOffset + op - copy - 1, (byte) (copy - 1));
} else {
op--;
}
if (level == LEVEL_2) {
/* marker for fastlz2 */
output.setByte(outOffset, output.getByte(outOffset) | 1 << 5);
}
return op;
}
/**
* Decompress a block of compressed data and returns the size of the decompressed block.
* If error occurs, e.g. the compressed data is corrupted or the output buffer is not large
* enough, then 0 (zero) will be returned instead.
*
* Decompression is memory safe and guaranteed not to write the output buffer
* more than what is specified in outLength.
*/
static int decompress(final ByteBuf input, final int inOffset, final int inLength,
final ByteBuf output, final int outOffset, final int outLength) {
//int level = ((*(const flzuint8*)input) >> 5) + 1;
final int level = (input.getByte(inOffset) >> 5) + 1;
if (level != LEVEL_1 && level != LEVEL_2) {
throw new DecompressionException(String.format(
"invalid level: %d (expected: %d or %d)", level, LEVEL_1, LEVEL_2
));
}
// const flzuint8* ip = (const flzuint8*) input;
int ip = 0;
// flzuint8* op = (flzuint8*) output;
int op = 0;
// flzuint32 ctrl = (*ip++) & 31;
long ctrl = input.getByte(inOffset + ip++) & 31;
int loop = 1;
do {
// const flzuint8* ref = op;
int ref = op;
// flzuint32 len = ctrl >> 5;
long len = ctrl >> 5;
// flzuint32 ofs = (ctrl & 31) << 8;
long ofs = (ctrl & 31) << 8;
if (ctrl >= 32) {
len--;
// ref -= ofs;
ref -= ofs;
int code;
if (len == 6) {
if (level == LEVEL_1) {
// len += *ip++;
len += input.getUnsignedByte(inOffset + ip++);
} else {
do {
code = input.getUnsignedByte(inOffset + ip++);
len += code;
} while (code == 255);
}
}
if (level == LEVEL_1) {
// ref -= *ip++;
ref -= input.getUnsignedByte(inOffset + ip++);
} else {
code = input.getUnsignedByte(inOffset + ip++);
ref -= code;
/* match from 16-bit distance */
// if(FASTLZ_UNEXPECT_CONDITIONAL(code==255))
// if(FASTLZ_EXPECT_CONDITIONAL(ofs==(31 << 8)))
if (code == 255 && ofs == 31 << 8) {
ofs = input.getUnsignedByte(inOffset + ip++) << 8;
ofs += input.getUnsignedByte(inOffset + ip++);
ref = (int) (op - ofs - MAX_DISTANCE);
}
}
// if the output index + length of block(?) + 3(?) is over the output limit?
if (op + len + 3 > outLength) {
return 0;
}
// if (FASTLZ_UNEXPECT_CONDITIONAL(ref-1 < (flzuint8 *)output))
// if the address space of ref-1 is < the address of output?
// if we are still at the beginning of the output address?
if (ref - 1 < 0) {
return 0;
}
if (ip < inLength) {
ctrl = input.getUnsignedByte(inOffset + ip++);
} else {
loop = 0;
}
if (ref == op) {
/* optimize copy for a run */
// flzuint8 b = ref[-1];
byte b = output.getByte(outOffset + ref - 1);
output.setByte(outOffset + op++, b);
output.setByte(outOffset + op++, b);
output.setByte(outOffset + op++, b);
while (len != 0) {
output.setByte(outOffset + op++, b);
--len;
}
} else {
/* copy from reference */
ref--;
// *op++ = *ref++;
output.setByte(outOffset + op++, output.getByte(outOffset + ref++));
output.setByte(outOffset + op++, output.getByte(outOffset + ref++));
output.setByte(outOffset + op++, output.getByte(outOffset + ref++));
while (len != 0) {
output.setByte(outOffset + op++, output.getByte(outOffset + ref++));
--len;
}
}
} else {
ctrl++;
if (op + ctrl > outLength) {
return 0;
}
if (ip + ctrl > inLength) {
return 0;
}
//*op++ = *ip++;
output.setByte(outOffset + op++, input.getByte(inOffset + ip++));
for (--ctrl; ctrl != 0; ctrl--) {
// *op++ = *ip++;
output.setByte(outOffset + op++, input.getByte(inOffset + ip++));
}
loop = ip < inLength ? 1 : 0;
if (loop != 0) {
// ctrl = *ip++;
ctrl = input.getUnsignedByte(inOffset + ip++);
}
}
// while(FASTLZ_EXPECT_CONDITIONAL(loop));
} while (loop != 0);
// return op - (flzuint8*)output;
return op;
}
private static int hashFunction(ByteBuf p, int offset) {
int v = readU16(p, offset);
v ^= readU16(p, offset + 1) ^ v >> 16 - HASH_LOG;
v &= HASH_MASK;
return v;
}
private static int readU16(ByteBuf data, int offset) {
if (offset + 1 >= data.readableBytes()) {
return data.getUnsignedByte(offset);
}
return data.getUnsignedByte(offset + 1) << 8 | data.getUnsignedByte(offset);
}
private FastLz() { }
}