All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.common.collect.CompactHashMap Maven / Gradle / Ivy

Go to download

This artifact provides a single jar that contains all classes required to use remote Jakarta Enterprise Beans and Jakarta Messaging, including all dependencies. It is intended for use by those not using maven, maven users should just import the Jakarta Enterprise Beans and Jakarta Messaging BOM's instead (shaded JAR's cause lots of problems with maven, as it is very easy to inadvertently end up with different versions on classes on the class path).

There is a newer version: 35.0.0.Beta1
Show newest version
/*
 * Copyright (C) 2012 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.collect;

import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.collect.CollectPreconditions.checkRemove;
import static com.google.common.collect.CompactHashing.UNSET;
import static com.google.common.collect.Hashing.smearedHash;
import static com.google.common.collect.NullnessCasts.uncheckedCastNullableTToT;
import static com.google.common.collect.NullnessCasts.unsafeNull;
import static java.util.Objects.requireNonNull;

import com.google.common.annotations.GwtIncompatible;
import com.google.common.annotations.J2ktIncompatible;
import com.google.common.annotations.VisibleForTesting;
import com.google.common.base.Objects;
import com.google.common.base.Preconditions;
import com.google.common.primitives.Ints;
import com.google.errorprone.annotations.CanIgnoreReturnValue;
import com.google.errorprone.annotations.concurrent.LazyInit;
import com.google.j2objc.annotations.WeakOuter;
import java.io.IOException;
import java.io.InvalidObjectException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;
import java.util.AbstractMap;
import java.util.Arrays;
import java.util.Collection;
import java.util.ConcurrentModificationException;
import java.util.Iterator;
import java.util.LinkedHashMap;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Set;
import java.util.Spliterator;
import java.util.Spliterators;
import java.util.function.BiConsumer;
import java.util.function.BiFunction;
import java.util.function.Consumer;
import javax.annotation.CheckForNull;
import org.checkerframework.checker.nullness.qual.Nullable;

/**
 * CompactHashMap is an implementation of a Map. All optional operations (put and remove) are
 * supported. Null keys and values are supported.
 *
 * 

{@code containsKey(k)}, {@code put(k, v)} and {@code remove(k)} are all (expected and * amortized) constant time operations. Expected in the hashtable sense (depends on the hash * function doing a good job of distributing the elements to the buckets to a distribution not far * from uniform), and amortized since some operations can trigger a hash table resize. * *

Unlike {@code java.util.HashMap}, iteration is only proportional to the actual {@code size()}, * which is optimal, and not the size of the internal hashtable, which could be much larger * than {@code size()}. Furthermore, this structure places significantly reduced load on the garbage * collector by only using a constant number of internal objects. * *

If there are no removals, then iteration order for the {@link #entrySet}, {@link #keySet}, and * {@link #values} views is the same as insertion order. Any removal invalidates any ordering * guarantees. * *

This class should not be assumed to be universally superior to {@code java.util.HashMap}. * Generally speaking, this class reduces object allocation and memory consumption at the price of * moderately increased constant factors of CPU. Only use this class when there is a specific reason * to prioritize memory over CPU. * * @author Louis Wasserman * @author Jon Noack */ @GwtIncompatible // not worth using in GWT for now @ElementTypesAreNonnullByDefault class CompactHashMap extends AbstractMap implements Serializable { /* * TODO: Make this a drop-in replacement for j.u. versions, actually drop them in, and test the * world. Figure out what sort of space-time tradeoff we're actually going to get here with the * *Map variants. This class is particularly hard to benchmark, because the benefit is not only in * less allocation, but also having the GC do less work to scan the heap because of fewer * references, which is particularly hard to quantify. */ /** Creates an empty {@code CompactHashMap} instance. */ public static CompactHashMap create() { return new CompactHashMap<>(); } /** * Creates a {@code CompactHashMap} instance, with a high enough "initial capacity" that it * should hold {@code expectedSize} elements without growth. * * @param expectedSize the number of elements you expect to add to the returned set * @return a new, empty {@code CompactHashMap} with enough capacity to hold {@code expectedSize} * elements without resizing * @throws IllegalArgumentException if {@code expectedSize} is negative */ public static CompactHashMap createWithExpectedSize(int expectedSize) { return new CompactHashMap<>(expectedSize); } private static final Object NOT_FOUND = new Object(); /** * Maximum allowed false positive probability of detecting a hash flooding attack given random * input. */ @VisibleForTesting( ) static final double HASH_FLOODING_FPP = 0.001; /** * Maximum allowed length of a hash table bucket before falling back to a j.u.LinkedHashMap-based * implementation. Experimentally determined. */ private static final int MAX_HASH_BUCKET_LENGTH = 9; // The way the `table`, `entries`, `keys`, and `values` arrays work together is as follows. // // The `table` array always has a size that is a power of 2. The hashcode of a key in the map // is masked in order to correspond to the current table size. For example, if the table size // is 128 then the mask is 127 == 0x7f, keeping the bottom 7 bits of the hash value. // If a key hashes to 0x89abcdef the mask reduces it to 0x89abcdef & 0x7f == 0x6f. We'll call this // the "short hash". // // The `keys`, `values`, and `entries` arrays always have the same size as each other. They can be // seen as fields of an imaginary `Entry` object like this: // // class Entry { // int hash; // Entry next; // K key; // V value; // } // // The imaginary `hash` and `next` values are combined into a single `int` value in the `entries` // array. The top bits of this value are the remaining bits of the hash value that were not used // in the short hash. We saw that a mask of 0x7f would keep the 7-bit value 0x6f from a full // hashcode of 0x89abcdef. The imaginary `hash` value would then be the remaining top 25 bits, // 0x89abcd80. To this is added (or'd) the `next` value, which is an index within `entries` // (and therefore within `keys` and `values`) of another entry that has the same short hash // value. In our example, it would be another entry for a key whose short hash is also 0x6f. // // Essentially, then, `table[h]` gives us the start of a linked list in `entries`, where every // element of the list has the short hash value h. // // A wrinkle here is that the value 0 (called UNSET in the code) is used as the equivalent of a // null pointer. If `table[h] == 0` that means there are no keys in the map whose short hash is h. // If the `next` bits in `entries[i]` are 0 that means there are no further entries for the given // short hash. But 0 is also a valid index in `entries`, so we add 1 to these indices before // putting them in `table` or in `next` bits, and subtract 1 again when we need an index value. // // The elements of `keys`, `values`, and `entries` are added sequentially, so that elements 0 to // `size() - 1` are used and remaining elements are not. This makes iteration straightforward. // Removing an entry generally involves moving the last element of each array to where the removed // entry was, and adjusting index links accordingly. /** * The hashtable object. This can be either: * *

    *
  • a byte[], short[], or int[], with size a power of two, created by * CompactHashing.createTable, whose values are either *
      *
    • UNSET, meaning "null pointer" *
    • one plus an index into the keys, values, and entries arrays *
    *
  • another java.util.Map delegate implementation. In most modern JDKs, normal java.util hash * collections intelligently fall back to a binary search tree if hash table collisions are * detected. Rather than going to all the trouble of reimplementing this ourselves, we * simply switch over to use the JDK implementation wholesale if probable hash flooding is * detected, sacrificing the compactness guarantee in very rare cases in exchange for much * more reliable worst-case behavior. *
  • null, if no entries have yet been added to the map *
*/ @CheckForNull private transient Object table; /** * Contains the logical entries, in the range of [0, size()). The high bits of each int are the * part of the smeared hash of the key not covered by the hashtable mask, whereas the low bits are * the "next" pointer (pointing to the next entry in the bucket chain), which will always be less * than or equal to the hashtable mask. * *
   * hash  = aaaaaaaa
   * mask  = 00000fff
   * next  = 00000bbb
   * entry = aaaaabbb
   * 
* *

The pointers in [size(), entries.length) are all "null" (UNSET). */ @VisibleForTesting @CheckForNull transient int[] entries; /** * The keys of the entries in the map, in the range of [0, size()). The keys in [size(), * keys.length) are all {@code null}. */ @VisibleForTesting @CheckForNull transient @Nullable Object[] keys; /** * The values of the entries in the map, in the range of [0, size()). The values in [size(), * values.length) are all {@code null}. */ @VisibleForTesting @CheckForNull transient @Nullable Object[] values; /** * Keeps track of metadata like the number of hash table bits and modifications of this data * structure (to make it possible to throw ConcurrentModificationException in the iterator). Note * that we choose not to make this volatile, so we do less of a "best effort" to track such * errors, for better performance. * *

For a new instance, where the arrays above have not yet been allocated, the value of {@code * metadata} is the size that the arrays should be allocated with. Once the arrays have been * allocated, the value of {@code metadata} combines the number of bits in the "short hash", in * its bottom {@value CompactHashing#HASH_TABLE_BITS_MAX_BITS} bits, with a modification count in * the remaining bits that is used to detect concurrent modification during iteration. */ private transient int metadata; /** The number of elements contained in the set. */ private transient int size; /** Constructs a new empty instance of {@code CompactHashMap}. */ CompactHashMap() { init(CompactHashing.DEFAULT_SIZE); } /** * Constructs a new instance of {@code CompactHashMap} with the specified capacity. * * @param expectedSize the initial capacity of this {@code CompactHashMap}. */ CompactHashMap(int expectedSize) { init(expectedSize); } /** Pseudoconstructor for serialization support. */ void init(int expectedSize) { Preconditions.checkArgument(expectedSize >= 0, "Expected size must be >= 0"); // Save expectedSize for use in allocArrays() this.metadata = Ints.constrainToRange(expectedSize, 1, CompactHashing.MAX_SIZE); } /** Returns whether arrays need to be allocated. */ @VisibleForTesting boolean needsAllocArrays() { return table == null; } /** Handle lazy allocation of arrays. */ @CanIgnoreReturnValue int allocArrays() { Preconditions.checkState(needsAllocArrays(), "Arrays already allocated"); int expectedSize = metadata; int buckets = CompactHashing.tableSize(expectedSize); this.table = CompactHashing.createTable(buckets); setHashTableMask(buckets - 1); this.entries = new int[expectedSize]; this.keys = new Object[expectedSize]; this.values = new Object[expectedSize]; return expectedSize; } @SuppressWarnings("unchecked") @VisibleForTesting @CheckForNull Map delegateOrNull() { if (table instanceof Map) { return (Map) table; } return null; } Map createHashFloodingResistantDelegate(int tableSize) { return new LinkedHashMap<>(tableSize, 1.0f); } @VisibleForTesting @CanIgnoreReturnValue Map convertToHashFloodingResistantImplementation() { Map newDelegate = createHashFloodingResistantDelegate(hashTableMask() + 1); for (int i = firstEntryIndex(); i >= 0; i = getSuccessor(i)) { newDelegate.put(key(i), value(i)); } this.table = newDelegate; this.entries = null; this.keys = null; this.values = null; incrementModCount(); return newDelegate; } /** Stores the hash table mask as the number of bits needed to represent an index. */ private void setHashTableMask(int mask) { int hashTableBits = Integer.SIZE - Integer.numberOfLeadingZeros(mask); metadata = CompactHashing.maskCombine(metadata, hashTableBits, CompactHashing.HASH_TABLE_BITS_MASK); } /** Gets the hash table mask using the stored number of hash table bits. */ private int hashTableMask() { return (1 << (metadata & CompactHashing.HASH_TABLE_BITS_MASK)) - 1; } void incrementModCount() { metadata += CompactHashing.MODIFICATION_COUNT_INCREMENT; } /** * Mark an access of the specified entry. Used only in {@code CompactLinkedHashMap} for LRU * ordering. */ void accessEntry(int index) { // no-op by default } @CanIgnoreReturnValue @Override @CheckForNull public V put(@ParametricNullness K key, @ParametricNullness V value) { if (needsAllocArrays()) { allocArrays(); } Map delegate = delegateOrNull(); if (delegate != null) { return delegate.put(key, value); } int[] entries = requireEntries(); @Nullable Object[] keys = requireKeys(); @Nullable Object[] values = requireValues(); int newEntryIndex = this.size; // current size, and pointer to the entry to be appended int newSize = newEntryIndex + 1; int hash = smearedHash(key); int mask = hashTableMask(); int tableIndex = hash & mask; int next = CompactHashing.tableGet(requireTable(), tableIndex); if (next == UNSET) { // uninitialized bucket if (newSize > mask) { // Resize and add new entry mask = resizeTable(mask, CompactHashing.newCapacity(mask), hash, newEntryIndex); } else { CompactHashing.tableSet(requireTable(), tableIndex, newEntryIndex + 1); } } else { int entryIndex; int entry; int hashPrefix = CompactHashing.getHashPrefix(hash, mask); int bucketLength = 0; do { entryIndex = next - 1; entry = entries[entryIndex]; if (CompactHashing.getHashPrefix(entry, mask) == hashPrefix && Objects.equal(key, keys[entryIndex])) { @SuppressWarnings("unchecked") // known to be a V V oldValue = (V) values[entryIndex]; values[entryIndex] = value; accessEntry(entryIndex); return oldValue; } next = CompactHashing.getNext(entry, mask); bucketLength++; } while (next != UNSET); if (bucketLength >= MAX_HASH_BUCKET_LENGTH) { return convertToHashFloodingResistantImplementation().put(key, value); } if (newSize > mask) { // Resize and add new entry mask = resizeTable(mask, CompactHashing.newCapacity(mask), hash, newEntryIndex); } else { entries[entryIndex] = CompactHashing.maskCombine(entry, newEntryIndex + 1, mask); } } resizeMeMaybe(newSize); insertEntry(newEntryIndex, key, value, hash, mask); this.size = newSize; incrementModCount(); return null; } /** * Creates a fresh entry with the specified object at the specified position in the entry arrays. */ void insertEntry( int entryIndex, @ParametricNullness K key, @ParametricNullness V value, int hash, int mask) { this.setEntry(entryIndex, CompactHashing.maskCombine(hash, UNSET, mask)); this.setKey(entryIndex, key); this.setValue(entryIndex, value); } /** Resizes the entries storage if necessary. */ private void resizeMeMaybe(int newSize) { int entriesSize = requireEntries().length; if (newSize > entriesSize) { // 1.5x but round up to nearest odd (this is optimal for memory consumption on Android) int newCapacity = Math.min(CompactHashing.MAX_SIZE, (entriesSize + Math.max(1, entriesSize >>> 1)) | 1); if (newCapacity != entriesSize) { resizeEntries(newCapacity); } } } /** * Resizes the internal entries array to the specified capacity, which may be greater or less than * the current capacity. */ void resizeEntries(int newCapacity) { this.entries = Arrays.copyOf(requireEntries(), newCapacity); this.keys = Arrays.copyOf(requireKeys(), newCapacity); this.values = Arrays.copyOf(requireValues(), newCapacity); } @CanIgnoreReturnValue private int resizeTable(int oldMask, int newCapacity, int targetHash, int targetEntryIndex) { Object newTable = CompactHashing.createTable(newCapacity); int newMask = newCapacity - 1; if (targetEntryIndex != UNSET) { // Add target first; it must be last in the chain because its entry hasn't yet been created CompactHashing.tableSet(newTable, targetHash & newMask, targetEntryIndex + 1); } Object oldTable = requireTable(); int[] entries = requireEntries(); // Loop over `oldTable` to construct its replacement, ``newTable`. The entries do not move, so // the `keys` and `values` arrays do not need to change. But because the "short hash" now has a // different number of bits, we must rewrite each element of `entries` so that its contribution // to the full hashcode reflects the change, and so that its `next` link corresponds to the new // linked list of entries with the new short hash. for (int oldTableIndex = 0; oldTableIndex <= oldMask; oldTableIndex++) { int oldNext = CompactHashing.tableGet(oldTable, oldTableIndex); // Each element of `oldTable` is the head of a (possibly empty) linked list of elements in // `entries`. The `oldNext` loop is going to traverse that linked list. // We need to rewrite the `next` link of each of the elements so that it is in the appropriate // linked list starting from `newTable`. In general, each element from the old linked list // belongs to a different linked list from `newTable`. We insert each element in turn at the // head of its appropriate `newTable` linked list. while (oldNext != UNSET) { int entryIndex = oldNext - 1; int oldEntry = entries[entryIndex]; // Rebuild the full 32-bit hash using entry hashPrefix and oldTableIndex ("hashSuffix"). int hash = CompactHashing.getHashPrefix(oldEntry, oldMask) | oldTableIndex; int newTableIndex = hash & newMask; int newNext = CompactHashing.tableGet(newTable, newTableIndex); CompactHashing.tableSet(newTable, newTableIndex, oldNext); entries[entryIndex] = CompactHashing.maskCombine(hash, newNext, newMask); oldNext = CompactHashing.getNext(oldEntry, oldMask); } } this.table = newTable; setHashTableMask(newMask); return newMask; } private int indexOf(@CheckForNull Object key) { if (needsAllocArrays()) { return -1; } int hash = smearedHash(key); int mask = hashTableMask(); int next = CompactHashing.tableGet(requireTable(), hash & mask); if (next == UNSET) { return -1; } int hashPrefix = CompactHashing.getHashPrefix(hash, mask); do { int entryIndex = next - 1; int entry = entry(entryIndex); if (CompactHashing.getHashPrefix(entry, mask) == hashPrefix && Objects.equal(key, key(entryIndex))) { return entryIndex; } next = CompactHashing.getNext(entry, mask); } while (next != UNSET); return -1; } @Override public boolean containsKey(@CheckForNull Object key) { Map delegate = delegateOrNull(); return (delegate != null) ? delegate.containsKey(key) : indexOf(key) != -1; } @Override @CheckForNull public V get(@CheckForNull Object key) { Map delegate = delegateOrNull(); if (delegate != null) { return delegate.get(key); } int index = indexOf(key); if (index == -1) { return null; } accessEntry(index); return value(index); } @CanIgnoreReturnValue @SuppressWarnings("unchecked") // known to be a V @Override @CheckForNull public V remove(@CheckForNull Object key) { Map delegate = delegateOrNull(); if (delegate != null) { return delegate.remove(key); } Object oldValue = removeHelper(key); return (oldValue == NOT_FOUND) ? null : (V) oldValue; } private @Nullable Object removeHelper(@CheckForNull Object key) { if (needsAllocArrays()) { return NOT_FOUND; } int mask = hashTableMask(); int index = CompactHashing.remove( key, /* value= */ null, mask, requireTable(), requireEntries(), requireKeys(), /* values= */ null); if (index == -1) { return NOT_FOUND; } Object oldValue = value(index); moveLastEntry(index, mask); size--; incrementModCount(); return oldValue; } /** * Moves the last entry in the entry array into {@code dstIndex}, and nulls out its old position. */ void moveLastEntry(int dstIndex, int mask) { Object table = requireTable(); int[] entries = requireEntries(); @Nullable Object[] keys = requireKeys(); @Nullable Object[] values = requireValues(); int srcIndex = size() - 1; if (dstIndex < srcIndex) { // move last entry to deleted spot Object key = keys[srcIndex]; keys[dstIndex] = key; values[dstIndex] = values[srcIndex]; keys[srcIndex] = null; values[srcIndex] = null; // move the last entry to the removed spot, just like we moved the element entries[dstIndex] = entries[srcIndex]; entries[srcIndex] = 0; // also need to update whoever's "next" pointer was pointing to the last entry place int tableIndex = smearedHash(key) & mask; int next = CompactHashing.tableGet(table, tableIndex); int srcNext = srcIndex + 1; if (next == srcNext) { // we need to update the root pointer CompactHashing.tableSet(table, tableIndex, dstIndex + 1); } else { // we need to update a pointer in an entry int entryIndex; int entry; do { entryIndex = next - 1; entry = entries[entryIndex]; next = CompactHashing.getNext(entry, mask); } while (next != srcNext); // here, entries[entryIndex] points to the old entry location; update it entries[entryIndex] = CompactHashing.maskCombine(entry, dstIndex + 1, mask); } } else { keys[dstIndex] = null; values[dstIndex] = null; entries[dstIndex] = 0; } } int firstEntryIndex() { return isEmpty() ? -1 : 0; } int getSuccessor(int entryIndex) { return (entryIndex + 1 < size) ? entryIndex + 1 : -1; } /** * Updates the index an iterator is pointing to after a call to remove: returns the index of the * entry that should be looked at after a removal on indexRemoved, with indexBeforeRemove as the * index that *was* the next entry that would be looked at. */ int adjustAfterRemove(int indexBeforeRemove, @SuppressWarnings("unused") int indexRemoved) { return indexBeforeRemove - 1; } private abstract class Itr implements Iterator { int expectedMetadata = metadata; int currentIndex = firstEntryIndex(); int indexToRemove = -1; @Override public boolean hasNext() { return currentIndex >= 0; } @ParametricNullness abstract T getOutput(int entry); @Override @ParametricNullness public T next() { checkForConcurrentModification(); if (!hasNext()) { throw new NoSuchElementException(); } indexToRemove = currentIndex; T result = getOutput(currentIndex); currentIndex = getSuccessor(currentIndex); return result; } @Override public void remove() { checkForConcurrentModification(); checkRemove(indexToRemove >= 0); incrementExpectedModCount(); CompactHashMap.this.remove(key(indexToRemove)); currentIndex = adjustAfterRemove(currentIndex, indexToRemove); indexToRemove = -1; } void incrementExpectedModCount() { expectedMetadata += CompactHashing.MODIFICATION_COUNT_INCREMENT; } private void checkForConcurrentModification() { if (metadata != expectedMetadata) { throw new ConcurrentModificationException(); } } } @Override public void replaceAll(BiFunction function) { checkNotNull(function); Map delegate = delegateOrNull(); if (delegate != null) { delegate.replaceAll(function); } else { for (int i = 0; i < size; i++) { setValue(i, function.apply(key(i), value(i))); } } } @LazyInit @CheckForNull private transient Set keySetView; @Override public Set keySet() { return (keySetView == null) ? keySetView = createKeySet() : keySetView; } Set createKeySet() { return new KeySetView(); } @WeakOuter class KeySetView extends Maps.KeySet { KeySetView() { super(CompactHashMap.this); } @Override public @Nullable Object[] toArray() { if (needsAllocArrays()) { return new Object[0]; } Map delegate = delegateOrNull(); return (delegate != null) ? delegate.keySet().toArray() : ObjectArrays.copyAsObjectArray(requireKeys(), 0, size); } @Override @SuppressWarnings("nullness") // b/192354773 in our checker affects toArray declarations public T[] toArray(T[] a) { if (needsAllocArrays()) { if (a.length > 0) { @Nullable Object[] unsoundlyCovariantArray = a; unsoundlyCovariantArray[0] = null; } return a; } Map delegate = delegateOrNull(); return (delegate != null) ? delegate.keySet().toArray(a) : ObjectArrays.toArrayImpl(requireKeys(), 0, size, a); } @Override public boolean remove(@CheckForNull Object o) { Map delegate = delegateOrNull(); return (delegate != null) ? delegate.keySet().remove(o) : CompactHashMap.this.removeHelper(o) != NOT_FOUND; } @Override public Iterator iterator() { return keySetIterator(); } @Override public Spliterator spliterator() { if (needsAllocArrays()) { return Spliterators.spliterator(new Object[0], Spliterator.DISTINCT | Spliterator.ORDERED); } Map delegate = delegateOrNull(); return (delegate != null) ? delegate.keySet().spliterator() : Spliterators.spliterator( requireKeys(), 0, size, Spliterator.DISTINCT | Spliterator.ORDERED); } @Override public void forEach(Consumer action) { checkNotNull(action); Map delegate = delegateOrNull(); if (delegate != null) { delegate.keySet().forEach(action); } else { for (int i = firstEntryIndex(); i >= 0; i = getSuccessor(i)) { action.accept(key(i)); } } } } Iterator keySetIterator() { Map delegate = delegateOrNull(); if (delegate != null) { return delegate.keySet().iterator(); } return new Itr() { @Override @ParametricNullness K getOutput(int entry) { return key(entry); } }; } @Override public void forEach(BiConsumer action) { checkNotNull(action); Map delegate = delegateOrNull(); if (delegate != null) { delegate.forEach(action); } else { for (int i = firstEntryIndex(); i >= 0; i = getSuccessor(i)) { action.accept(key(i), value(i)); } } } @LazyInit @CheckForNull private transient Set> entrySetView; @Override public Set> entrySet() { return (entrySetView == null) ? entrySetView = createEntrySet() : entrySetView; } Set> createEntrySet() { return new EntrySetView(); } @WeakOuter class EntrySetView extends Maps.EntrySet { @Override Map map() { return CompactHashMap.this; } @Override public Iterator> iterator() { return entrySetIterator(); } @Override public Spliterator> spliterator() { Map delegate = delegateOrNull(); return (delegate != null) ? delegate.entrySet().spliterator() : CollectSpliterators.indexed( size, Spliterator.DISTINCT | Spliterator.ORDERED, MapEntry::new); } @Override public boolean contains(@CheckForNull Object o) { Map delegate = delegateOrNull(); if (delegate != null) { return delegate.entrySet().contains(o); } else if (o instanceof Entry) { Entry entry = (Entry) o; int index = indexOf(entry.getKey()); return index != -1 && Objects.equal(value(index), entry.getValue()); } return false; } @Override public boolean remove(@CheckForNull Object o) { Map delegate = delegateOrNull(); if (delegate != null) { return delegate.entrySet().remove(o); } else if (o instanceof Entry) { Entry entry = (Entry) o; if (needsAllocArrays()) { return false; } int mask = hashTableMask(); int index = CompactHashing.remove( entry.getKey(), entry.getValue(), mask, requireTable(), requireEntries(), requireKeys(), requireValues()); if (index == -1) { return false; } moveLastEntry(index, mask); size--; incrementModCount(); return true; } return false; } } Iterator> entrySetIterator() { Map delegate = delegateOrNull(); if (delegate != null) { return delegate.entrySet().iterator(); } return new Itr>() { @Override Entry getOutput(int entry) { return new MapEntry(entry); } }; } final class MapEntry extends AbstractMapEntry { @ParametricNullness private final K key; private int lastKnownIndex; MapEntry(int index) { this.key = key(index); this.lastKnownIndex = index; } @Override @ParametricNullness public K getKey() { return key; } private void updateLastKnownIndex() { if (lastKnownIndex == -1 || lastKnownIndex >= size() || !Objects.equal(key, key(lastKnownIndex))) { lastKnownIndex = indexOf(key); } } @Override @ParametricNullness public V getValue() { Map delegate = delegateOrNull(); if (delegate != null) { /* * The cast is safe because the entry is present in the map. Or, if it has been removed by a * concurrent modification, behavior is undefined. */ return uncheckedCastNullableTToT(delegate.get(key)); } updateLastKnownIndex(); /* * If the entry has been removed from the map, we return null, even though that might not be a * valid value. That's the best we can do, short of holding a reference to the most recently * seen value. And while we *could* do that, we aren't required to: Map.Entry explicitly says * that behavior is undefined when the backing map is modified through another API. (It even * permits us to throw IllegalStateException. Maybe we should have done that, but we probably * shouldn't change now for fear of breaking people.) */ return (lastKnownIndex == -1) ? unsafeNull() : value(lastKnownIndex); } @Override @ParametricNullness public V setValue(@ParametricNullness V value) { Map delegate = delegateOrNull(); if (delegate != null) { return uncheckedCastNullableTToT(delegate.put(key, value)); // See discussion in getValue(). } updateLastKnownIndex(); if (lastKnownIndex == -1) { put(key, value); return unsafeNull(); // See discussion in getValue(). } else { V old = value(lastKnownIndex); CompactHashMap.this.setValue(lastKnownIndex, value); return old; } } } @Override public int size() { Map delegate = delegateOrNull(); return (delegate != null) ? delegate.size() : size; } @Override public boolean isEmpty() { return size() == 0; } @Override public boolean containsValue(@CheckForNull Object value) { Map delegate = delegateOrNull(); if (delegate != null) { return delegate.containsValue(value); } for (int i = 0; i < size; i++) { if (Objects.equal(value, value(i))) { return true; } } return false; } @LazyInit @CheckForNull private transient Collection valuesView; @Override public Collection values() { return (valuesView == null) ? valuesView = createValues() : valuesView; } Collection createValues() { return new ValuesView(); } @WeakOuter class ValuesView extends Maps.Values { ValuesView() { super(CompactHashMap.this); } @Override public Iterator iterator() { return valuesIterator(); } @Override public void forEach(Consumer action) { checkNotNull(action); Map delegate = delegateOrNull(); if (delegate != null) { delegate.values().forEach(action); } else { for (int i = firstEntryIndex(); i >= 0; i = getSuccessor(i)) { action.accept(value(i)); } } } @Override public Spliterator spliterator() { if (needsAllocArrays()) { return Spliterators.spliterator(new Object[0], Spliterator.ORDERED); } Map delegate = delegateOrNull(); return (delegate != null) ? delegate.values().spliterator() : Spliterators.spliterator(requireValues(), 0, size, Spliterator.ORDERED); } @Override public @Nullable Object[] toArray() { if (needsAllocArrays()) { return new Object[0]; } Map delegate = delegateOrNull(); return (delegate != null) ? delegate.values().toArray() : ObjectArrays.copyAsObjectArray(requireValues(), 0, size); } @Override @SuppressWarnings("nullness") // b/192354773 in our checker affects toArray declarations public T[] toArray(T[] a) { if (needsAllocArrays()) { if (a.length > 0) { @Nullable Object[] unsoundlyCovariantArray = a; unsoundlyCovariantArray[0] = null; } return a; } Map delegate = delegateOrNull(); return (delegate != null) ? delegate.values().toArray(a) : ObjectArrays.toArrayImpl(requireValues(), 0, size, a); } } Iterator valuesIterator() { Map delegate = delegateOrNull(); if (delegate != null) { return delegate.values().iterator(); } return new Itr() { @Override @ParametricNullness V getOutput(int entry) { return value(entry); } }; } /** * Ensures that this {@code CompactHashMap} has the smallest representation in memory, given its * current size. */ public void trimToSize() { if (needsAllocArrays()) { return; } Map delegate = delegateOrNull(); if (delegate != null) { Map newDelegate = createHashFloodingResistantDelegate(size()); newDelegate.putAll(delegate); this.table = newDelegate; return; } int size = this.size; if (size < requireEntries().length) { resizeEntries(size); } int minimumTableSize = CompactHashing.tableSize(size); int mask = hashTableMask(); if (minimumTableSize < mask) { // smaller table size will always be less than current mask resizeTable(mask, minimumTableSize, UNSET, UNSET); } } @Override public void clear() { if (needsAllocArrays()) { return; } incrementModCount(); Map delegate = delegateOrNull(); if (delegate != null) { metadata = Ints.constrainToRange(size(), CompactHashing.DEFAULT_SIZE, CompactHashing.MAX_SIZE); delegate.clear(); // invalidate any iterators left over! table = null; size = 0; } else { Arrays.fill(requireKeys(), 0, size, null); Arrays.fill(requireValues(), 0, size, null); CompactHashing.tableClear(requireTable()); Arrays.fill(requireEntries(), 0, size, 0); this.size = 0; } } @J2ktIncompatible private void writeObject(ObjectOutputStream stream) throws IOException { stream.defaultWriteObject(); stream.writeInt(size()); Iterator> entryIterator = entrySetIterator(); while (entryIterator.hasNext()) { Entry e = entryIterator.next(); stream.writeObject(e.getKey()); stream.writeObject(e.getValue()); } } @SuppressWarnings("unchecked") @J2ktIncompatible private void readObject(ObjectInputStream stream) throws IOException, ClassNotFoundException { stream.defaultReadObject(); int elementCount = stream.readInt(); if (elementCount < 0) { throw new InvalidObjectException("Invalid size: " + elementCount); } init(elementCount); for (int i = 0; i < elementCount; i++) { K key = (K) stream.readObject(); V value = (V) stream.readObject(); put(key, value); } } /* * The following methods are safe to call as long as both of the following hold: * * - allocArrays() has been called. Callers can confirm this by checking needsAllocArrays(). * * - The map has not switched to delegating to a java.util implementation to mitigate hash * flooding. Callers can confirm this by null-checking delegateOrNull(). * * In an ideal world, we would document why we know those things are true every time we call these * methods. But that is a bit too painful.... */ private Object requireTable() { return requireNonNull(table); } private int[] requireEntries() { return requireNonNull(entries); } private @Nullable Object[] requireKeys() { return requireNonNull(keys); } private @Nullable Object[] requireValues() { return requireNonNull(values); } /* * The following methods are safe to call as long as the conditions in the *previous* comment are * met *and* the index is less than size(). * * (The above explains when these methods are safe from a `nullness` perspective. From an * `unchecked` perspective, they're safe because we put only K/V elements into each array.) */ @SuppressWarnings("unchecked") private K key(int i) { return (K) requireKeys()[i]; } @SuppressWarnings("unchecked") private V value(int i) { return (V) requireValues()[i]; } private int entry(int i) { return requireEntries()[i]; } private void setKey(int i, K key) { requireKeys()[i] = key; } private void setValue(int i, V value) { requireValues()[i] = value; } private void setEntry(int i, int value) { requireEntries()[i] = value; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy