All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.common.hash.Hashing Maven / Gradle / Ivy

Go to download

This artifact provides a single jar that contains all classes required to use remote Jakarta Enterprise Beans and Jakarta Messaging, including all dependencies. It is intended for use by those not using maven, maven users should just import the Jakarta Enterprise Beans and Jakarta Messaging BOM's instead (shaded JAR's cause lots of problems with maven, as it is very easy to inadvertently end up with different versions on classes on the class path).

There is a newer version: 35.0.0.Beta1
Show newest version
/*
 * Copyright (C) 2011 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
 * in compliance with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License
 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing permissions and limitations under
 * the License.
 */

package com.google.common.hash;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.base.Throwables.throwIfUnchecked;
import static java.lang.invoke.MethodType.methodType;

import com.google.errorprone.annotations.Immutable;
import com.google.j2objc.annotations.J2ObjCIncompatible;
import java.lang.invoke.MethodHandle;
import java.lang.invoke.MethodHandles;
import java.security.Key;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Iterator;
import java.util.List;
import java.util.zip.Adler32;
import java.util.zip.CRC32;
import java.util.zip.Checksum;
import javax.annotation.CheckForNull;
import javax.crypto.spec.SecretKeySpec;

/**
 * Static methods to obtain {@link HashFunction} instances, and other static hashing-related
 * utilities.
 *
 * 

A comparison of the various hash functions can be found here. * * @author Kevin Bourrillion * @author Dimitris Andreou * @author Kurt Alfred Kluever * @since 11.0 */ @ElementTypesAreNonnullByDefault public final class Hashing { /** * Returns a general-purpose, temporary-use, non-cryptographic hash function. The algorithm * the returned function implements is unspecified and subject to change without notice. * *

Warning: a new random seed for these functions is chosen each time the {@code * Hashing} class is loaded. Do not use this method if hash codes may escape the current * process in any way, for example being sent over RPC, or saved to disk. For a general-purpose, * non-cryptographic hash function that will never change behavior, we suggest {@link * #murmur3_128}. * *

Repeated calls to this method on the same loaded {@code Hashing} class, using the same value * for {@code minimumBits}, will return identically-behaving {@link HashFunction} instances. * * @param minimumBits a positive integer. This can be arbitrarily large. The returned {@link * HashFunction} instance may use memory proportional to this integer. * @return a hash function, described above, that produces hash codes of length {@code * minimumBits} or greater */ public static HashFunction goodFastHash(int minimumBits) { int bits = checkPositiveAndMakeMultipleOf32(minimumBits); if (bits == 32) { return Murmur3_32HashFunction.GOOD_FAST_HASH_32; } if (bits <= 128) { return Murmur3_128HashFunction.GOOD_FAST_HASH_128; } // Otherwise, join together some 128-bit murmur3s int hashFunctionsNeeded = (bits + 127) / 128; HashFunction[] hashFunctions = new HashFunction[hashFunctionsNeeded]; hashFunctions[0] = Murmur3_128HashFunction.GOOD_FAST_HASH_128; int seed = GOOD_FAST_HASH_SEED; for (int i = 1; i < hashFunctionsNeeded; i++) { seed += 1500450271; // a prime; shouldn't matter hashFunctions[i] = murmur3_128(seed); } return new ConcatenatedHashFunction(hashFunctions); } /** * Used to randomize {@link #goodFastHash} instances, so that programs which persist anything * dependent on the hash codes they produce will fail sooner. */ @SuppressWarnings("GoodTime") // reading system time without TimeSource static final int GOOD_FAST_HASH_SEED = (int) System.currentTimeMillis(); /** * Returns a hash function implementing the 32-bit murmur3 * algorithm, x86 variant (little-endian variant), using the given seed value, with a known * bug as described in the deprecation text. * *

The C++ equivalent is the MurmurHash3_x86_32 function (Murmur3A), which however does not * have the bug. * * @deprecated This implementation produces incorrect hash values from the {@link * HashFunction#hashString} method if the string contains non-BMP characters. Use {@link * #murmur3_32_fixed(int)} instead. */ @Deprecated public static HashFunction murmur3_32(int seed) { return new Murmur3_32HashFunction(seed, /* supplementaryPlaneFix= */ false); } /** * Returns a hash function implementing the 32-bit murmur3 * algorithm, x86 variant (little-endian variant), using the given seed value, with a known * bug as described in the deprecation text. * *

The C++ equivalent is the MurmurHash3_x86_32 function (Murmur3A), which however does not * have the bug. * * @deprecated This implementation produces incorrect hash values from the {@link * HashFunction#hashString} method if the string contains non-BMP characters. Use {@link * #murmur3_32_fixed()} instead. */ @Deprecated public static HashFunction murmur3_32() { return Murmur3_32HashFunction.MURMUR3_32; } /** * Returns a hash function implementing the 32-bit murmur3 * algorithm, x86 variant (little-endian variant), using the given seed value. * *

The exact C++ equivalent is the MurmurHash3_x86_32 function (Murmur3A). * *

This method is called {@code murmur3_32_fixed} because it fixes a bug in the {@code * HashFunction} returned by the original {@code murmur3_32} method. * * @since 31.0 */ public static HashFunction murmur3_32_fixed(int seed) { return new Murmur3_32HashFunction(seed, /* supplementaryPlaneFix= */ true); } /** * Returns a hash function implementing the 32-bit murmur3 * algorithm, x86 variant (little-endian variant), using a seed value of zero. * *

The exact C++ equivalent is the MurmurHash3_x86_32 function (Murmur3A). * *

This method is called {@code murmur3_32_fixed} because it fixes a bug in the {@code * HashFunction} returned by the original {@code murmur3_32} method. * * @since 31.0 */ public static HashFunction murmur3_32_fixed() { return Murmur3_32HashFunction.MURMUR3_32_FIXED; } /** * Returns a hash function implementing the 128-bit murmur3 * algorithm, x64 variant (little-endian variant), using the given seed value. * *

The exact C++ equivalent is the MurmurHash3_x64_128 function (Murmur3F). */ public static HashFunction murmur3_128(int seed) { return new Murmur3_128HashFunction(seed); } /** * Returns a hash function implementing the 128-bit murmur3 * algorithm, x64 variant (little-endian variant), using a seed value of zero. * *

The exact C++ equivalent is the MurmurHash3_x64_128 function (Murmur3F). */ public static HashFunction murmur3_128() { return Murmur3_128HashFunction.MURMUR3_128; } /** * Returns a hash function implementing the 64-bit * SipHash-2-4 algorithm using a seed value of {@code k = 00 01 02 ...}. * * @since 15.0 */ public static HashFunction sipHash24() { return SipHashFunction.SIP_HASH_24; } /** * Returns a hash function implementing the 64-bit * SipHash-2-4 algorithm using the given seed. * * @since 15.0 */ public static HashFunction sipHash24(long k0, long k1) { return new SipHashFunction(2, 4, k0, k1); } /** * Returns a hash function implementing the MD5 hash algorithm (128 hash bits). * * @deprecated If you must interoperate with a system that requires MD5, then use this method, * despite its deprecation. But if you can choose your hash function, avoid MD5, which is * neither fast nor secure. As of January 2017, we suggest: *

    *
  • For security: * {@link Hashing#sha256} or a higher-level API. *
  • For speed: {@link Hashing#goodFastHash}, though see its docs for caveats. *
*/ @Deprecated public static HashFunction md5() { return Md5Holder.MD5; } private static class Md5Holder { static final HashFunction MD5 = new MessageDigestHashFunction("MD5", "Hashing.md5()"); } /** * Returns a hash function implementing the SHA-1 algorithm (160 hash bits). * * @deprecated If you must interoperate with a system that requires SHA-1, then use this method, * despite its deprecation. But if you can choose your hash function, avoid SHA-1, which is * neither fast nor secure. As of January 2017, we suggest: *
    *
  • For security: * {@link Hashing#sha256} or a higher-level API. *
  • For speed: {@link Hashing#goodFastHash}, though see its docs for caveats. *
*/ @Deprecated public static HashFunction sha1() { return Sha1Holder.SHA_1; } private static class Sha1Holder { static final HashFunction SHA_1 = new MessageDigestHashFunction("SHA-1", "Hashing.sha1()"); } /** Returns a hash function implementing the SHA-256 algorithm (256 hash bits). */ public static HashFunction sha256() { return Sha256Holder.SHA_256; } private static class Sha256Holder { static final HashFunction SHA_256 = new MessageDigestHashFunction("SHA-256", "Hashing.sha256()"); } /** * Returns a hash function implementing the SHA-384 algorithm (384 hash bits). * * @since 19.0 */ public static HashFunction sha384() { return Sha384Holder.SHA_384; } private static class Sha384Holder { static final HashFunction SHA_384 = new MessageDigestHashFunction("SHA-384", "Hashing.sha384()"); } /** Returns a hash function implementing the SHA-512 algorithm (512 hash bits). */ public static HashFunction sha512() { return Sha512Holder.SHA_512; } private static class Sha512Holder { static final HashFunction SHA_512 = new MessageDigestHashFunction("SHA-512", "Hashing.sha512()"); } /** * Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the * MD5 (128 hash bits) hash function and the given secret key. * * @param key the secret key * @throws IllegalArgumentException if the given key is inappropriate for initializing this MAC * @since 20.0 */ public static HashFunction hmacMd5(Key key) { return new MacHashFunction("HmacMD5", key, hmacToString("hmacMd5", key)); } /** * Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the * MD5 (128 hash bits) hash function and a {@link SecretKeySpec} created from the given byte array * and the MD5 algorithm. * * @param key the key material of the secret key * @since 20.0 */ public static HashFunction hmacMd5(byte[] key) { return hmacMd5(new SecretKeySpec(checkNotNull(key), "HmacMD5")); } /** * Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the * SHA-1 (160 hash bits) hash function and the given secret key. * * @param key the secret key * @throws IllegalArgumentException if the given key is inappropriate for initializing this MAC * @since 20.0 */ public static HashFunction hmacSha1(Key key) { return new MacHashFunction("HmacSHA1", key, hmacToString("hmacSha1", key)); } /** * Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the * SHA-1 (160 hash bits) hash function and a {@link SecretKeySpec} created from the given byte * array and the SHA-1 algorithm. * * @param key the key material of the secret key * @since 20.0 */ public static HashFunction hmacSha1(byte[] key) { return hmacSha1(new SecretKeySpec(checkNotNull(key), "HmacSHA1")); } /** * Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the * SHA-256 (256 hash bits) hash function and the given secret key. * * @param key the secret key * @throws IllegalArgumentException if the given key is inappropriate for initializing this MAC * @since 20.0 */ public static HashFunction hmacSha256(Key key) { return new MacHashFunction("HmacSHA256", key, hmacToString("hmacSha256", key)); } /** * Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the * SHA-256 (256 hash bits) hash function and a {@link SecretKeySpec} created from the given byte * array and the SHA-256 algorithm. * * @param key the key material of the secret key * @since 20.0 */ public static HashFunction hmacSha256(byte[] key) { return hmacSha256(new SecretKeySpec(checkNotNull(key), "HmacSHA256")); } /** * Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the * SHA-512 (512 hash bits) hash function and the given secret key. * * @param key the secret key * @throws IllegalArgumentException if the given key is inappropriate for initializing this MAC * @since 20.0 */ public static HashFunction hmacSha512(Key key) { return new MacHashFunction("HmacSHA512", key, hmacToString("hmacSha512", key)); } /** * Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the * SHA-512 (512 hash bits) hash function and a {@link SecretKeySpec} created from the given byte * array and the SHA-512 algorithm. * * @param key the key material of the secret key * @since 20.0 */ public static HashFunction hmacSha512(byte[] key) { return hmacSha512(new SecretKeySpec(checkNotNull(key), "HmacSHA512")); } private static String hmacToString(String methodName, Key key) { return "Hashing." + methodName + "(Key[algorithm=" + key.getAlgorithm() + ", format=" + key.getFormat() + "])"; } /** * Returns a hash function implementing the CRC32C checksum algorithm (32 hash bits) as described * by RFC 3720, Section 12.1. * *

This function is best understood as a checksum rather than a true hash function. * * @since 18.0 */ public static HashFunction crc32c() { return Crc32CSupplier.HASH_FUNCTION; } @Immutable private enum Crc32CSupplier implements ImmutableSupplier { @J2ObjCIncompatible JAVA_UTIL_ZIP { @Override public HashFunction get() { return ChecksumType.CRC_32C.hashFunction; } }, ABSTRACT_HASH_FUNCTION { @Override public HashFunction get() { return Crc32cHashFunction.CRC_32_C; } }; static final HashFunction HASH_FUNCTION = pickFunction().get(); private static Crc32CSupplier pickFunction() { Crc32CSupplier[] functions = values(); if (functions.length == 1) { // We're running under J2ObjC. return functions[0]; } // We can't refer to JAVA_UTIL_ZIP directly at compile time because of J2ObjC. Crc32CSupplier javaUtilZip = functions[0]; try { Class.forName("java.util.zip.CRC32C"); return javaUtilZip; } catch (ClassNotFoundException runningUnderJava8) { return ABSTRACT_HASH_FUNCTION; } } } /** * Returns a hash function implementing the CRC-32 checksum algorithm (32 hash bits). * *

To get the {@code long} value equivalent to {@link Checksum#getValue()} for a {@code * HashCode} produced by this function, use {@link HashCode#padToLong()}. * *

This function is best understood as a checksum rather than a true hash function. * * @since 14.0 */ public static HashFunction crc32() { return ChecksumType.CRC_32.hashFunction; } /** * Returns a hash function implementing the Adler-32 checksum algorithm (32 hash bits). * *

To get the {@code long} value equivalent to {@link Checksum#getValue()} for a {@code * HashCode} produced by this function, use {@link HashCode#padToLong()}. * *

This function is best understood as a checksum rather than a true hash function. * * @since 14.0 */ public static HashFunction adler32() { return ChecksumType.ADLER_32.hashFunction; } @Immutable enum ChecksumType implements ImmutableSupplier { CRC_32("Hashing.crc32()") { @Override public Checksum get() { return new CRC32(); } }, @J2ObjCIncompatible CRC_32C("Hashing.crc32c()") { @Override public Checksum get() { return Crc32cMethodHandles.newCrc32c(); } }, ADLER_32("Hashing.adler32()") { @Override public Checksum get() { return new Adler32(); } }; public final HashFunction hashFunction; ChecksumType(String toString) { this.hashFunction = new ChecksumHashFunction(this, 32, toString); } } @J2ObjCIncompatible @SuppressWarnings("unused") private static final class Crc32cMethodHandles { private static final MethodHandle CONSTRUCTOR = crc32cConstructor(); @IgnoreJRERequirement // https://github.com/mojohaus/animal-sniffer/issues/67 static Checksum newCrc32c() { try { return (Checksum) CONSTRUCTOR.invokeExact(); } catch (Throwable e) { throwIfUnchecked(e); // That constructor has no `throws` clause. throw newLinkageError(e); } } private static MethodHandle crc32cConstructor() { try { Class clazz = Class.forName("java.util.zip.CRC32C"); /* * We can't cast to CRC32C at the call site because we support building with Java 8 * (https://github.com/google/guava/issues/6549). So we have to use asType() to change from * CRC32C to Checksum. This may carry some performance cost * (https://stackoverflow.com/a/22321671/28465), but I'd have to benchmark more carefully to * even detect it. */ return MethodHandles.lookup() .findConstructor(clazz, methodType(void.class)) .asType(methodType(Checksum.class)); } catch (ClassNotFoundException e) { // We check that the class is available before calling this method. throw new AssertionError(e); } catch (IllegalAccessException e) { // That API is public. throw newLinkageError(e); } catch (NoSuchMethodException e) { // That constructor exists. throw newLinkageError(e); } } private static LinkageError newLinkageError(Throwable cause) { return new LinkageError(cause.toString(), cause); } } /** * Returns a hash function implementing FarmHash's Fingerprint64, an open-source algorithm. * *

This is designed for generating persistent fingerprints of strings. It isn't * cryptographically secure, but it produces a high-quality hash with fewer collisions than some * alternatives we've used in the past. * *

FarmHash fingerprints are encoded by {@link HashCode#asBytes} in little-endian order. This * means {@link HashCode#asLong} is guaranteed to return the same value that * farmhash::Fingerprint64() would for the same input (when compared using {@link * com.google.common.primitives.UnsignedLongs}'s encoding of 64-bit unsigned numbers). * *

This function is best understood as a fingerprint rather than a true * hash function. * * @since 20.0 */ public static HashFunction farmHashFingerprint64() { return FarmHashFingerprint64.FARMHASH_FINGERPRINT_64; } /** * Returns a hash function implementing the Fingerprint2011 hashing function (64 hash bits). * *

This is designed for generating persistent fingerprints of strings. It isn't * cryptographically secure, but it produces a high-quality hash with few collisions. Fingerprints * generated using this are byte-wise identical to those created using the C++ version, but note * that this uses unsigned integers (see {@link com.google.common.primitives.UnsignedInts}). * Comparisons between the two should take this into account. * *

Fingerprint2011() is a form of Murmur2 on strings up to 32 bytes and a form of CityHash for * longer strings. It could have been one or the other throughout. The main advantage of the * combination is that CityHash has a bunch of special cases for short strings that don't need to * be replicated here. The result will never be 0 or 1. * *

This function is best understood as a fingerprint rather than a true * hash function. * * @since 31.1 */ public static HashFunction fingerprint2011() { return Fingerprint2011.FINGERPRINT_2011; } /** * Assigns to {@code hashCode} a "bucket" in the range {@code [0, buckets)}, in a uniform manner * that minimizes the need for remapping as {@code buckets} grows. That is, {@code * consistentHash(h, n)} equals: * *

    *
  • {@code n - 1}, with approximate probability {@code 1/n} *
  • {@code consistentHash(h, n - 1)}, otherwise (probability {@code 1 - 1/n}) *
* *

This method is suitable for the common use case of dividing work among buckets that meet the * following conditions: * *

    *
  • You want to assign the same fraction of inputs to each bucket. *
  • When you reduce the number of buckets, you can accept that the most recently added * buckets will be removed first. More concretely, if you are dividing traffic among tasks, * you can decrease the number of tasks from 15 and 10, killing off the final 5 tasks, and * {@code consistentHash} will handle it. If, however, you are dividing traffic among * servers {@code alpha}, {@code bravo}, and {@code charlie} and you occasionally need to * take each of the servers offline, {@code consistentHash} will be a poor fit: It provides * no way for you to specify which of the three buckets is disappearing. Thus, if your * buckets change from {@code [alpha, bravo, charlie]} to {@code [bravo, charlie]}, it will * assign all the old {@code alpha} traffic to {@code bravo} and all the old {@code bravo} * traffic to {@code charlie}, rather than letting {@code bravo} keep its traffic. *
* *

See the Wikipedia article on * consistent hashing for more information. */ public static int consistentHash(HashCode hashCode, int buckets) { return consistentHash(hashCode.padToLong(), buckets); } /** * Assigns to {@code input} a "bucket" in the range {@code [0, buckets)}, in a uniform manner that * minimizes the need for remapping as {@code buckets} grows. That is, {@code consistentHash(h, * n)} equals: * *

    *
  • {@code n - 1}, with approximate probability {@code 1/n} *
  • {@code consistentHash(h, n - 1)}, otherwise (probability {@code 1 - 1/n}) *
* *

This method is suitable for the common use case of dividing work among buckets that meet the * following conditions: * *

    *
  • You want to assign the same fraction of inputs to each bucket. *
  • When you reduce the number of buckets, you can accept that the most recently added * buckets will be removed first. More concretely, if you are dividing traffic among tasks, * you can decrease the number of tasks from 15 and 10, killing off the final 5 tasks, and * {@code consistentHash} will handle it. If, however, you are dividing traffic among * servers {@code alpha}, {@code bravo}, and {@code charlie} and you occasionally need to * take each of the servers offline, {@code consistentHash} will be a poor fit: It provides * no way for you to specify which of the three buckets is disappearing. Thus, if your * buckets change from {@code [alpha, bravo, charlie]} to {@code [bravo, charlie]}, it will * assign all the old {@code alpha} traffic to {@code bravo} and all the old {@code bravo} * traffic to {@code charlie}, rather than letting {@code bravo} keep its traffic. *
* *

See the Wikipedia article on * consistent hashing for more information. */ public static int consistentHash(long input, int buckets) { checkArgument(buckets > 0, "buckets must be positive: %s", buckets); LinearCongruentialGenerator generator = new LinearCongruentialGenerator(input); int candidate = 0; int next; // Jump from bucket to bucket until we go out of range while (true) { next = (int) ((candidate + 1) / generator.nextDouble()); if (next >= 0 && next < buckets) { candidate = next; } else { return candidate; } } } /** * Returns a hash code, having the same bit length as each of the input hash codes, that combines * the information of these hash codes in an ordered fashion. That is, whenever two equal hash * codes are produced by two calls to this method, it is as likely as possible that each * was computed from the same input hash codes in the same order. * * @throws IllegalArgumentException if {@code hashCodes} is empty, or the hash codes do not all * have the same bit length */ public static HashCode combineOrdered(Iterable hashCodes) { Iterator iterator = hashCodes.iterator(); checkArgument(iterator.hasNext(), "Must be at least 1 hash code to combine."); int bits = iterator.next().bits(); byte[] resultBytes = new byte[bits / 8]; for (HashCode hashCode : hashCodes) { byte[] nextBytes = hashCode.asBytes(); checkArgument( nextBytes.length == resultBytes.length, "All hashcodes must have the same bit length."); for (int i = 0; i < nextBytes.length; i++) { resultBytes[i] = (byte) (resultBytes[i] * 37 ^ nextBytes[i]); } } return HashCode.fromBytesNoCopy(resultBytes); } /** * Returns a hash code, having the same bit length as each of the input hash codes, that combines * the information of these hash codes in an unordered fashion. That is, whenever two equal hash * codes are produced by two calls to this method, it is as likely as possible that each * was computed from the same input hash codes in some order. * * @throws IllegalArgumentException if {@code hashCodes} is empty, or the hash codes do not all * have the same bit length */ public static HashCode combineUnordered(Iterable hashCodes) { Iterator iterator = hashCodes.iterator(); checkArgument(iterator.hasNext(), "Must be at least 1 hash code to combine."); byte[] resultBytes = new byte[iterator.next().bits() / 8]; for (HashCode hashCode : hashCodes) { byte[] nextBytes = hashCode.asBytes(); checkArgument( nextBytes.length == resultBytes.length, "All hashcodes must have the same bit length."); for (int i = 0; i < nextBytes.length; i++) { resultBytes[i] += nextBytes[i]; } } return HashCode.fromBytesNoCopy(resultBytes); } /** Checks that the passed argument is positive, and ceils it to a multiple of 32. */ static int checkPositiveAndMakeMultipleOf32(int bits) { checkArgument(bits > 0, "Number of bits must be positive"); return (bits + 31) & ~31; } /** * Returns a hash function which computes its hash code by concatenating the hash codes of the * underlying hash functions together. This can be useful if you need to generate hash codes of a * specific length. * *

For example, if you need 1024-bit hash codes, you could join two {@link Hashing#sha512} hash * functions together: {@code Hashing.concatenating(Hashing.sha512(), Hashing.sha512())}. * * @since 19.0 */ public static HashFunction concatenating( HashFunction first, HashFunction second, HashFunction... rest) { // We can't use Lists.asList() here because there's no hash->collect dependency List list = new ArrayList<>(); list.add(first); list.add(second); Collections.addAll(list, rest); return new ConcatenatedHashFunction(list.toArray(new HashFunction[0])); } /** * Returns a hash function which computes its hash code by concatenating the hash codes of the * underlying hash functions together. This can be useful if you need to generate hash codes of a * specific length. * *

For example, if you need 1024-bit hash codes, you could join two {@link Hashing#sha512} hash * functions together: {@code Hashing.concatenating(Hashing.sha512(), Hashing.sha512())}. * * @since 19.0 */ public static HashFunction concatenating(Iterable hashFunctions) { checkNotNull(hashFunctions); // We can't use Iterables.toArray() here because there's no hash->collect dependency List list = new ArrayList<>(); for (HashFunction hashFunction : hashFunctions) { list.add(hashFunction); } checkArgument(!list.isEmpty(), "number of hash functions (%s) must be > 0", list.size()); return new ConcatenatedHashFunction(list.toArray(new HashFunction[0])); } private static final class ConcatenatedHashFunction extends AbstractCompositeHashFunction { private ConcatenatedHashFunction(HashFunction... functions) { super(functions); for (HashFunction function : functions) { checkArgument( function.bits() % 8 == 0, "the number of bits (%s) in hashFunction (%s) must be divisible by 8", function.bits(), function); } } @Override HashCode makeHash(Hasher[] hashers) { byte[] bytes = new byte[bits() / 8]; int i = 0; for (Hasher hasher : hashers) { HashCode newHash = hasher.hash(); i += newHash.writeBytesTo(bytes, i, newHash.bits() / 8); } return HashCode.fromBytesNoCopy(bytes); } @Override public int bits() { int bitSum = 0; for (HashFunction function : functions) { bitSum += function.bits(); } return bitSum; } @Override public boolean equals(@CheckForNull Object object) { if (object instanceof ConcatenatedHashFunction) { ConcatenatedHashFunction other = (ConcatenatedHashFunction) object; return Arrays.equals(functions, other.functions); } return false; } @Override public int hashCode() { return Arrays.hashCode(functions); } } /** * Linear CongruentialGenerator to use for consistent hashing. See * http://en.wikipedia.org/wiki/Linear_congruential_generator */ private static final class LinearCongruentialGenerator { private long state; public LinearCongruentialGenerator(long seed) { this.state = seed; } public double nextDouble() { state = 2862933555777941757L * state + 1; return ((double) ((int) (state >>> 33) + 1)) / 0x1.0p31; } } private Hashing() {} }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy