All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.common.util.concurrent.MoreExecutors Maven / Gradle / Ivy

Go to download

This artifact provides a single jar that contains all classes required to use remote Jakarta Enterprise Beans and Jakarta Messaging, including all dependencies. It is intended for use by those not using maven, maven users should just import the Jakarta Enterprise Beans and Jakarta Messaging BOM's instead (shaded JAR's cause lots of problems with maven, as it is very easy to inadvertently end up with different versions on classes on the class path).

There is a newer version: 35.0.0.Final
Show newest version
/*
 * Copyright (C) 2007 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
 * in compliance with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License
 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing permissions and limitations under
 * the License.
 */

package com.google.common.util.concurrent;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.util.concurrent.Internal.toNanosSaturated;
import static java.util.Objects.requireNonNull;

import com.google.common.annotations.GwtCompatible;
import com.google.common.annotations.GwtIncompatible;
import com.google.common.annotations.J2ktIncompatible;
import com.google.common.annotations.VisibleForTesting;
import com.google.common.base.Supplier;
import com.google.common.base.Throwables;
import com.google.common.collect.Lists;
import com.google.common.collect.Queues;
import com.google.common.util.concurrent.ForwardingListenableFuture.SimpleForwardingListenableFuture;
import com.google.errorprone.annotations.CanIgnoreReturnValue;
import com.google.errorprone.annotations.concurrent.GuardedBy;
import java.lang.reflect.InvocationTargetException;
import java.time.Duration;
import java.util.Collection;
import java.util.Collections;
import java.util.Iterator;
import java.util.List;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.Callable;
import java.util.concurrent.Delayed;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Executor;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import java.util.concurrent.RejectedExecutionException;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.ScheduledFuture;
import java.util.concurrent.ScheduledThreadPoolExecutor;
import java.util.concurrent.ThreadFactory;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;
import org.checkerframework.checker.nullness.qual.Nullable;

/**
 * Factory and utility methods for {@link java.util.concurrent.Executor}, {@link ExecutorService},
 * and {@link java.util.concurrent.ThreadFactory}.
 *
 * @author Eric Fellheimer
 * @author Kyle Littlefield
 * @author Justin Mahoney
 * @since 3.0
 */
@GwtCompatible(emulated = true)
@ElementTypesAreNonnullByDefault
public final class MoreExecutors {
  private MoreExecutors() {}

  /**
   * Converts the given ThreadPoolExecutor into an ExecutorService that exits when the application
   * is complete. It does so by using daemon threads and adding a shutdown hook to wait for their
   * completion.
   *
   * 

This is mainly for fixed thread pools. See {@link Executors#newFixedThreadPool(int)}. * * @param executor the executor to modify to make sure it exits when the application is finished * @param terminationTimeout how long to wait for the executor to finish before terminating the * JVM * @return an unmodifiable version of the input which will not hang the JVM * @since 28.0 */ @J2ktIncompatible @GwtIncompatible // TODO public static ExecutorService getExitingExecutorService( ThreadPoolExecutor executor, Duration terminationTimeout) { return getExitingExecutorService( executor, toNanosSaturated(terminationTimeout), TimeUnit.NANOSECONDS); } /** * Converts the given ThreadPoolExecutor into an ExecutorService that exits when the application * is complete. It does so by using daemon threads and adding a shutdown hook to wait for their * completion. * *

This is mainly for fixed thread pools. See {@link Executors#newFixedThreadPool(int)}. * * @param executor the executor to modify to make sure it exits when the application is finished * @param terminationTimeout how long to wait for the executor to finish before terminating the * JVM * @param timeUnit unit of time for the time parameter * @return an unmodifiable version of the input which will not hang the JVM */ @J2ktIncompatible @GwtIncompatible // TODO @SuppressWarnings("GoodTime") // should accept a java.time.Duration public static ExecutorService getExitingExecutorService( ThreadPoolExecutor executor, long terminationTimeout, TimeUnit timeUnit) { return new Application().getExitingExecutorService(executor, terminationTimeout, timeUnit); } /** * Converts the given ThreadPoolExecutor into an ExecutorService that exits when the application * is complete. It does so by using daemon threads and adding a shutdown hook to wait for their * completion. * *

This method waits 120 seconds before continuing with JVM termination, even if the executor * has not finished its work. * *

This is mainly for fixed thread pools. See {@link Executors#newFixedThreadPool(int)}. * * @param executor the executor to modify to make sure it exits when the application is finished * @return an unmodifiable version of the input which will not hang the JVM */ @J2ktIncompatible @GwtIncompatible // concurrency public static ExecutorService getExitingExecutorService(ThreadPoolExecutor executor) { return new Application().getExitingExecutorService(executor); } /** * Converts the given ScheduledThreadPoolExecutor into a ScheduledExecutorService that exits when * the application is complete. It does so by using daemon threads and adding a shutdown hook to * wait for their completion. * *

This is mainly for fixed thread pools. See {@link Executors#newScheduledThreadPool(int)}. * * @param executor the executor to modify to make sure it exits when the application is finished * @param terminationTimeout how long to wait for the executor to finish before terminating the * JVM * @return an unmodifiable version of the input which will not hang the JVM * @since 28.0 */ @J2ktIncompatible @GwtIncompatible // java.time.Duration public static ScheduledExecutorService getExitingScheduledExecutorService( ScheduledThreadPoolExecutor executor, Duration terminationTimeout) { return getExitingScheduledExecutorService( executor, toNanosSaturated(terminationTimeout), TimeUnit.NANOSECONDS); } /** * Converts the given ScheduledThreadPoolExecutor into a ScheduledExecutorService that exits when * the application is complete. It does so by using daemon threads and adding a shutdown hook to * wait for their completion. * *

This is mainly for fixed thread pools. See {@link Executors#newScheduledThreadPool(int)}. * * @param executor the executor to modify to make sure it exits when the application is finished * @param terminationTimeout how long to wait for the executor to finish before terminating the * JVM * @param timeUnit unit of time for the time parameter * @return an unmodifiable version of the input which will not hang the JVM */ @J2ktIncompatible @GwtIncompatible // TODO @SuppressWarnings("GoodTime") // should accept a java.time.Duration public static ScheduledExecutorService getExitingScheduledExecutorService( ScheduledThreadPoolExecutor executor, long terminationTimeout, TimeUnit timeUnit) { return new Application() .getExitingScheduledExecutorService(executor, terminationTimeout, timeUnit); } /** * Converts the given ScheduledThreadPoolExecutor into a ScheduledExecutorService that exits when * the application is complete. It does so by using daemon threads and adding a shutdown hook to * wait for their completion. * *

This method waits 120 seconds before continuing with JVM termination, even if the executor * has not finished its work. * *

This is mainly for fixed thread pools. See {@link Executors#newScheduledThreadPool(int)}. * * @param executor the executor to modify to make sure it exits when the application is finished * @return an unmodifiable version of the input which will not hang the JVM */ @J2ktIncompatible @GwtIncompatible // TODO public static ScheduledExecutorService getExitingScheduledExecutorService( ScheduledThreadPoolExecutor executor) { return new Application().getExitingScheduledExecutorService(executor); } /** * Add a shutdown hook to wait for thread completion in the given {@link ExecutorService service}. * This is useful if the given service uses daemon threads, and we want to keep the JVM from * exiting immediately on shutdown, instead giving these daemon threads a chance to terminate * normally. * * @param service ExecutorService which uses daemon threads * @param terminationTimeout how long to wait for the executor to finish before terminating the * JVM * @since 28.0 */ @J2ktIncompatible @GwtIncompatible // java.time.Duration public static void addDelayedShutdownHook(ExecutorService service, Duration terminationTimeout) { addDelayedShutdownHook(service, toNanosSaturated(terminationTimeout), TimeUnit.NANOSECONDS); } /** * Add a shutdown hook to wait for thread completion in the given {@link ExecutorService service}. * This is useful if the given service uses daemon threads, and we want to keep the JVM from * exiting immediately on shutdown, instead giving these daemon threads a chance to terminate * normally. * * @param service ExecutorService which uses daemon threads * @param terminationTimeout how long to wait for the executor to finish before terminating the * JVM * @param timeUnit unit of time for the time parameter */ @J2ktIncompatible @GwtIncompatible // TODO @SuppressWarnings("GoodTime") // should accept a java.time.Duration public static void addDelayedShutdownHook( ExecutorService service, long terminationTimeout, TimeUnit timeUnit) { new Application().addDelayedShutdownHook(service, terminationTimeout, timeUnit); } /** Represents the current application to register shutdown hooks. */ @J2ktIncompatible @GwtIncompatible // TODO @VisibleForTesting static class Application { final ExecutorService getExitingExecutorService( ThreadPoolExecutor executor, long terminationTimeout, TimeUnit timeUnit) { useDaemonThreadFactory(executor); ExecutorService service = Executors.unconfigurableExecutorService(executor); addDelayedShutdownHook(executor, terminationTimeout, timeUnit); return service; } final ExecutorService getExitingExecutorService(ThreadPoolExecutor executor) { return getExitingExecutorService(executor, 120, TimeUnit.SECONDS); } final ScheduledExecutorService getExitingScheduledExecutorService( ScheduledThreadPoolExecutor executor, long terminationTimeout, TimeUnit timeUnit) { useDaemonThreadFactory(executor); ScheduledExecutorService service = Executors.unconfigurableScheduledExecutorService(executor); addDelayedShutdownHook(executor, terminationTimeout, timeUnit); return service; } final ScheduledExecutorService getExitingScheduledExecutorService( ScheduledThreadPoolExecutor executor) { return getExitingScheduledExecutorService(executor, 120, TimeUnit.SECONDS); } final void addDelayedShutdownHook( final ExecutorService service, final long terminationTimeout, final TimeUnit timeUnit) { checkNotNull(service); checkNotNull(timeUnit); addShutdownHook( MoreExecutors.newThread( "DelayedShutdownHook-for-" + service, new Runnable() { @Override public void run() { try { // We'd like to log progress and failures that may arise in the // following code, but unfortunately the behavior of logging // is undefined in shutdown hooks. // This is because the logging code installs a shutdown hook of its // own. See Cleaner class inside {@link LogManager}. service.shutdown(); service.awaitTermination(terminationTimeout, timeUnit); } catch (InterruptedException ignored) { // We're shutting down anyway, so just ignore. } } })); } @VisibleForTesting void addShutdownHook(Thread hook) { Runtime.getRuntime().addShutdownHook(hook); } } @J2ktIncompatible @GwtIncompatible // TODO private static void useDaemonThreadFactory(ThreadPoolExecutor executor) { executor.setThreadFactory( new ThreadFactoryBuilder() .setDaemon(true) .setThreadFactory(executor.getThreadFactory()) .build()); } // See newDirectExecutorService javadoc for behavioral notes. @J2ktIncompatible @GwtIncompatible // TODO private static final class DirectExecutorService extends AbstractListeningExecutorService { /** Lock used whenever accessing the state variables (runningTasks, shutdown) of the executor */ private final Object lock = new Object(); /* * Conceptually, these two variables describe the executor being in * one of three states: * - Active: shutdown == false * - Shutdown: runningTasks > 0 and shutdown == true * - Terminated: runningTasks == 0 and shutdown == true */ @GuardedBy("lock") private int runningTasks = 0; @GuardedBy("lock") private boolean shutdown = false; @Override public void execute(Runnable command) { startTask(); try { command.run(); } finally { endTask(); } } @Override public boolean isShutdown() { synchronized (lock) { return shutdown; } } @Override public void shutdown() { synchronized (lock) { shutdown = true; if (runningTasks == 0) { lock.notifyAll(); } } } // See newDirectExecutorService javadoc for unusual behavior of this method. @Override public List shutdownNow() { shutdown(); return Collections.emptyList(); } @Override public boolean isTerminated() { synchronized (lock) { return shutdown && runningTasks == 0; } } @Override public boolean awaitTermination(long timeout, TimeUnit unit) throws InterruptedException { long nanos = unit.toNanos(timeout); synchronized (lock) { while (true) { if (shutdown && runningTasks == 0) { return true; } else if (nanos <= 0) { return false; } else { long now = System.nanoTime(); TimeUnit.NANOSECONDS.timedWait(lock, nanos); nanos -= System.nanoTime() - now; // subtract the actual time we waited } } } } /** * Checks if the executor has been shut down and increments the running task count. * * @throws RejectedExecutionException if the executor has been previously shutdown */ private void startTask() { synchronized (lock) { if (shutdown) { throw new RejectedExecutionException("Executor already shutdown"); } runningTasks++; } } /** Decrements the running task count. */ private void endTask() { synchronized (lock) { int numRunning = --runningTasks; if (numRunning == 0) { lock.notifyAll(); } } } } /** * Creates an executor service that runs each task in the thread that invokes {@code * execute/submit}, as in {@code ThreadPoolExecutor.CallerRunsPolicy}. This applies both to * individually submitted tasks and to collections of tasks submitted via {@code invokeAll} or * {@code invokeAny}. In the latter case, tasks will run serially on the calling thread. Tasks are * run to completion before a {@code Future} is returned to the caller (unless the executor has * been shutdown). * *

Although all tasks are immediately executed in the thread that submitted the task, this * {@code ExecutorService} imposes a small locking overhead on each task submission in order to * implement shutdown and termination behavior. * *

The implementation deviates from the {@code ExecutorService} specification with regards to * the {@code shutdownNow} method. First, "best-effort" with regards to canceling running tasks is * implemented as "no-effort". No interrupts or other attempts are made to stop threads executing * tasks. Second, the returned list will always be empty, as any submitted task is considered to * have started execution. This applies also to tasks given to {@code invokeAll} or {@code * invokeAny} which are pending serial execution, even the subset of the tasks that have not yet * started execution. It is unclear from the {@code ExecutorService} specification if these should * be included, and it's much easier to implement the interpretation that they not be. Finally, a * call to {@code shutdown} or {@code shutdownNow} may result in concurrent calls to {@code * invokeAll/invokeAny} throwing RejectedExecutionException, although a subset of the tasks may * already have been executed. * * @since 18.0 (present as MoreExecutors.sameThreadExecutor() since 10.0) */ @J2ktIncompatible @GwtIncompatible // TODO public static ListeningExecutorService newDirectExecutorService() { return new DirectExecutorService(); } /** * Returns an {@link Executor} that runs each task in the thread that invokes {@link * Executor#execute execute}, as in {@code ThreadPoolExecutor.CallerRunsPolicy}. * *

This executor is appropriate for tasks that are lightweight and not deeply chained. * Inappropriate {@code directExecutor} usage can cause problems, and these problems can be * difficult to reproduce because they depend on timing. For example: * *

    *
  • When a {@code ListenableFuture} listener is registered to run under {@code * directExecutor}, the listener can execute in any of three possible threads: *
      *
    1. When a thread attaches a listener to a {@code ListenableFuture} that's already * complete, the listener runs immediately in that thread. *
    2. When a thread attaches a listener to a {@code ListenableFuture} that's * incomplete and the {@code ListenableFuture} later completes normally, the * listener runs in the thread that completes the {@code ListenableFuture}. *
    3. When a listener is attached to a {@code ListenableFuture} and the {@code * ListenableFuture} gets cancelled, the listener runs immediately in the thread that * cancelled the {@code Future}. *
    * Given all these possibilities, it is frequently possible for listeners to execute in UI * threads, RPC network threads, or other latency-sensitive threads. In those cases, slow * listeners can harm responsiveness, slow the system as a whole, or worse. (See also the * note about locking below.) *
  • If many tasks will be triggered by the same event, one heavyweight task may delay other * tasks -- even tasks that are not themselves {@code directExecutor} tasks. *
  • If many such tasks are chained together (such as with {@code * future.transform(...).transform(...).transform(...)....}), they may overflow the stack. * (In simple cases, callers can avoid this by registering all tasks with the same {@link * MoreExecutors#newSequentialExecutor} wrapper around {@code directExecutor()}. More * complex cases may require using thread pools or making deeper changes.) *
  • If an exception propagates out of a {@code Runnable}, it is not necessarily seen by any * {@code UncaughtExceptionHandler} for the thread. For example, if the callback passed to * {@link Futures#addCallback} throws an exception, that exception will be typically be * logged by the {@link ListenableFuture} implementation, even if the thread is configured * to do something different. In other cases, no code will catch the exception, and it may * terminate whichever thread happens to trigger the execution. *
* * A specific warning about locking: Code that executes user-supplied tasks, such as {@code * ListenableFuture} listeners, should take care not to do so while holding a lock. Additionally, * as a further line of defense, prefer not to perform any locking inside a task that will be run * under {@code directExecutor}: Not only might the wait for a lock be long, but if the running * thread was holding a lock, the listener may deadlock or break lock isolation. * *

This instance is equivalent to: * *

{@code
   * final class DirectExecutor implements Executor {
   *   public void execute(Runnable r) {
   *     r.run();
   *   }
   * }
   * }
* *

This should be preferred to {@link #newDirectExecutorService()} because implementing the * {@link ExecutorService} subinterface necessitates significant performance overhead. * * @since 18.0 */ public static Executor directExecutor() { return DirectExecutor.INSTANCE; } /** * Returns an {@link Executor} that runs each task executed sequentially, such that no two tasks * are running concurrently. * *

{@linkplain Executor#execute executed} tasks have a happens-before order as defined in the * Java Language Specification. Tasks execute with the same happens-before order that the function * calls to {@link Executor#execute `execute()`} that submitted those tasks had. * *

The executor uses {@code delegate} in order to {@link Executor#execute execute} each task in * turn, and does not create any threads of its own. * *

After execution begins on a thread from the {@code delegate} {@link Executor}, tasks are * polled and executed from a task queue until there are no more tasks. The thread will not be * released until there are no more tasks to run. * *

If a task is submitted while a thread is executing tasks from the task queue, the thread * will not be released until that submitted task is also complete. * *

If a task is {@linkplain Thread#interrupt interrupted} while a task is running: * *

    *
  1. execution will not stop until the task queue is empty. *
  2. tasks will begin execution with the thread marked as not interrupted - any interruption * applies only to the task that was running at the point of interruption. *
  3. if the thread was interrupted before the SequentialExecutor's worker begins execution, * the interrupt will be restored to the thread after it completes so that its {@code * delegate} Executor may process the interrupt. *
  4. subtasks are run with the thread uninterrupted and interrupts received during execution * of a task are ignored. *
* *

{@code RuntimeException}s thrown by tasks are simply logged and the executor keeps trucking. * If an {@code Error} is thrown, the error will propagate and execution will stop until the next * time a task is submitted. * *

When an {@code Error} is thrown by an executed task, previously submitted tasks may never * run. An attempt will be made to restart execution on the next call to {@code execute}. If the * {@code delegate} has begun to reject execution, the previously submitted tasks may never run, * despite not throwing a RejectedExecutionException synchronously with the call to {@code * execute}. If this behaviour is problematic, use an Executor with a single thread (e.g. {@link * Executors#newSingleThreadExecutor}). * * @since 23.3 (since 23.1 as {@code sequentialExecutor}) */ @J2ktIncompatible @GwtIncompatible public static Executor newSequentialExecutor(Executor delegate) { return new SequentialExecutor(delegate); } /** * Creates an {@link ExecutorService} whose {@code submit} and {@code invokeAll} methods submit * {@link ListenableFutureTask} instances to the given delegate executor. Those methods, as well * as {@code execute} and {@code invokeAny}, are implemented in terms of calls to {@code * delegate.execute}. All other methods are forwarded unchanged to the delegate. This implies that * the returned {@code ListeningExecutorService} never calls the delegate's {@code submit}, {@code * invokeAll}, and {@code invokeAny} methods, so any special handling of tasks must be implemented * in the delegate's {@code execute} method or by wrapping the returned {@code * ListeningExecutorService}. * *

If the delegate executor was already an instance of {@code ListeningExecutorService}, it is * returned untouched, and the rest of this documentation does not apply. * * @since 10.0 */ @J2ktIncompatible @GwtIncompatible // TODO public static ListeningExecutorService listeningDecorator(ExecutorService delegate) { return (delegate instanceof ListeningExecutorService) ? (ListeningExecutorService) delegate : (delegate instanceof ScheduledExecutorService) ? new ScheduledListeningDecorator((ScheduledExecutorService) delegate) : new ListeningDecorator(delegate); } /** * Creates a {@link ScheduledExecutorService} whose {@code submit} and {@code invokeAll} methods * submit {@link ListenableFutureTask} instances to the given delegate executor. Those methods, as * well as {@code execute} and {@code invokeAny}, are implemented in terms of calls to {@code * delegate.execute}. All other methods are forwarded unchanged to the delegate. This implies that * the returned {@code ListeningScheduledExecutorService} never calls the delegate's {@code * submit}, {@code invokeAll}, and {@code invokeAny} methods, so any special handling of tasks * must be implemented in the delegate's {@code execute} method or by wrapping the returned {@code * ListeningScheduledExecutorService}. * *

If the delegate executor was already an instance of {@code * ListeningScheduledExecutorService}, it is returned untouched, and the rest of this * documentation does not apply. * * @since 10.0 */ @J2ktIncompatible @GwtIncompatible // TODO public static ListeningScheduledExecutorService listeningDecorator( ScheduledExecutorService delegate) { return (delegate instanceof ListeningScheduledExecutorService) ? (ListeningScheduledExecutorService) delegate : new ScheduledListeningDecorator(delegate); } @J2ktIncompatible @GwtIncompatible // TODO private static class ListeningDecorator extends AbstractListeningExecutorService { private final ExecutorService delegate; ListeningDecorator(ExecutorService delegate) { this.delegate = checkNotNull(delegate); } @Override public final boolean awaitTermination(long timeout, TimeUnit unit) throws InterruptedException { return delegate.awaitTermination(timeout, unit); } @Override public final boolean isShutdown() { return delegate.isShutdown(); } @Override public final boolean isTerminated() { return delegate.isTerminated(); } @Override public final void shutdown() { delegate.shutdown(); } @Override public final List shutdownNow() { return delegate.shutdownNow(); } @Override public final void execute(Runnable command) { delegate.execute(command); } @Override public final String toString() { return super.toString() + "[" + delegate + "]"; } } @J2ktIncompatible @GwtIncompatible // TODO private static final class ScheduledListeningDecorator extends ListeningDecorator implements ListeningScheduledExecutorService { @SuppressWarnings("hiding") final ScheduledExecutorService delegate; ScheduledListeningDecorator(ScheduledExecutorService delegate) { super(delegate); this.delegate = checkNotNull(delegate); } @Override public ListenableScheduledFuture schedule(Runnable command, long delay, TimeUnit unit) { TrustedListenableFutureTask<@Nullable Void> task = TrustedListenableFutureTask.create(command, null); ScheduledFuture scheduled = delegate.schedule(task, delay, unit); return new ListenableScheduledTask<@Nullable Void>(task, scheduled); } @Override public ListenableScheduledFuture schedule( Callable callable, long delay, TimeUnit unit) { TrustedListenableFutureTask task = TrustedListenableFutureTask.create(callable); ScheduledFuture scheduled = delegate.schedule(task, delay, unit); return new ListenableScheduledTask(task, scheduled); } @Override public ListenableScheduledFuture scheduleAtFixedRate( Runnable command, long initialDelay, long period, TimeUnit unit) { NeverSuccessfulListenableFutureTask task = new NeverSuccessfulListenableFutureTask(command); ScheduledFuture scheduled = delegate.scheduleAtFixedRate(task, initialDelay, period, unit); return new ListenableScheduledTask<@Nullable Void>(task, scheduled); } @Override public ListenableScheduledFuture scheduleWithFixedDelay( Runnable command, long initialDelay, long delay, TimeUnit unit) { NeverSuccessfulListenableFutureTask task = new NeverSuccessfulListenableFutureTask(command); ScheduledFuture scheduled = delegate.scheduleWithFixedDelay(task, initialDelay, delay, unit); return new ListenableScheduledTask<@Nullable Void>(task, scheduled); } private static final class ListenableScheduledTask extends SimpleForwardingListenableFuture implements ListenableScheduledFuture { private final ScheduledFuture scheduledDelegate; public ListenableScheduledTask( ListenableFuture listenableDelegate, ScheduledFuture scheduledDelegate) { super(listenableDelegate); this.scheduledDelegate = scheduledDelegate; } @Override public boolean cancel(boolean mayInterruptIfRunning) { boolean cancelled = super.cancel(mayInterruptIfRunning); if (cancelled) { // Unless it is cancelled, the delegate may continue being scheduled scheduledDelegate.cancel(mayInterruptIfRunning); // TODO(user): Cancel "this" if "scheduledDelegate" is cancelled. } return cancelled; } @Override public long getDelay(TimeUnit unit) { return scheduledDelegate.getDelay(unit); } @Override public int compareTo(Delayed other) { return scheduledDelegate.compareTo(other); } } @J2ktIncompatible @GwtIncompatible // TODO private static final class NeverSuccessfulListenableFutureTask extends AbstractFuture.TrustedFuture<@Nullable Void> implements Runnable { private final Runnable delegate; public NeverSuccessfulListenableFutureTask(Runnable delegate) { this.delegate = checkNotNull(delegate); } @Override public void run() { try { delegate.run(); } catch (Throwable t) { // Any Exception is either a RuntimeException or sneaky checked exception. setException(t); throw t; } } @Override protected String pendingToString() { return "task=[" + delegate + "]"; } } } /* * This following method is a modified version of one found in * http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/test/tck/AbstractExecutorServiceTest.java?revision=1.30 * which contained the following notice: * * Written by Doug Lea with assistance from members of JCP JSR-166 Expert Group and released to * the public domain, as explained at http://creativecommons.org/publicdomain/zero/1.0/ * * Other contributors include Andrew Wright, Jeffrey Hayes, Pat Fisher, Mike Judd. */ /** * An implementation of {@link ExecutorService#invokeAny} for {@link ListeningExecutorService} * implementations. */ @J2ktIncompatible @GwtIncompatible @ParametricNullness static T invokeAnyImpl( ListeningExecutorService executorService, Collection> tasks, boolean timed, Duration timeout) throws InterruptedException, ExecutionException, TimeoutException { return invokeAnyImpl( executorService, tasks, timed, toNanosSaturated(timeout), TimeUnit.NANOSECONDS); } /** * An implementation of {@link ExecutorService#invokeAny} for {@link ListeningExecutorService} * implementations. */ @SuppressWarnings({ "GoodTime", // should accept a java.time.Duration "CatchingUnchecked", // sneaky checked exception }) @J2ktIncompatible @GwtIncompatible @ParametricNullness static T invokeAnyImpl( ListeningExecutorService executorService, Collection> tasks, boolean timed, long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException { checkNotNull(executorService); checkNotNull(unit); int ntasks = tasks.size(); checkArgument(ntasks > 0); List> futures = Lists.newArrayListWithCapacity(ntasks); BlockingQueue> futureQueue = Queues.newLinkedBlockingQueue(); long timeoutNanos = unit.toNanos(timeout); // For efficiency, especially in executors with limited // parallelism, check to see if previously submitted tasks are // done before submitting more of them. This interleaving // plus the exception mechanics account for messiness of main // loop. try { // Record exceptions so that if we fail to obtain any // result, we can throw the last exception we got. ExecutionException ee = null; long lastTime = timed ? System.nanoTime() : 0; Iterator> it = tasks.iterator(); futures.add(submitAndAddQueueListener(executorService, it.next(), futureQueue)); --ntasks; int active = 1; while (true) { Future f = futureQueue.poll(); if (f == null) { if (ntasks > 0) { --ntasks; futures.add(submitAndAddQueueListener(executorService, it.next(), futureQueue)); ++active; } else if (active == 0) { break; } else if (timed) { f = futureQueue.poll(timeoutNanos, TimeUnit.NANOSECONDS); if (f == null) { throw new TimeoutException(); } long now = System.nanoTime(); timeoutNanos -= now - lastTime; lastTime = now; } else { f = futureQueue.take(); } } if (f != null) { --active; try { return f.get(); } catch (ExecutionException eex) { ee = eex; } catch (InterruptedException iex) { throw iex; } catch (Exception rex) { // sneaky checked exception ee = new ExecutionException(rex); } } } if (ee == null) { ee = new ExecutionException(null); } throw ee; } finally { for (Future f : futures) { f.cancel(true); } } } /** * Submits the task and adds a listener that adds the future to {@code queue} when it completes. */ @J2ktIncompatible @GwtIncompatible // TODO private static ListenableFuture submitAndAddQueueListener( ListeningExecutorService executorService, Callable task, final BlockingQueue> queue) { final ListenableFuture future = executorService.submit(task); future.addListener( new Runnable() { @Override public void run() { queue.add(future); } }, directExecutor()); return future; } /** * Returns a default thread factory used to create new threads. * *

When running on AppEngine with access to AppEngine legacy * APIs, this method returns {@code ThreadManager.currentRequestThreadFactory()}. Otherwise, * it returns {@link Executors#defaultThreadFactory()}. * * @since 14.0 */ @J2ktIncompatible @GwtIncompatible // concurrency public static ThreadFactory platformThreadFactory() { if (!isAppEngineWithApiClasses()) { return Executors.defaultThreadFactory(); } try { return (ThreadFactory) Class.forName("com.google.appengine.api.ThreadManager") .getMethod("currentRequestThreadFactory") .invoke(null); /* * Do not merge the 3 catch blocks below. javac would infer a type of * ReflectiveOperationException, which Animal Sniffer would reject. (Old versions of Android * don't *seem* to mind, but there might be edge cases of which we're unaware.) */ } catch (IllegalAccessException e) { throw new RuntimeException("Couldn't invoke ThreadManager.currentRequestThreadFactory", e); } catch (ClassNotFoundException e) { throw new RuntimeException("Couldn't invoke ThreadManager.currentRequestThreadFactory", e); } catch (NoSuchMethodException e) { throw new RuntimeException("Couldn't invoke ThreadManager.currentRequestThreadFactory", e); } catch (InvocationTargetException e) { throw Throwables.propagate(e.getCause()); } } @J2ktIncompatible @GwtIncompatible // TODO private static boolean isAppEngineWithApiClasses() { if (System.getProperty("com.google.appengine.runtime.environment") == null) { return false; } try { Class.forName("com.google.appengine.api.utils.SystemProperty"); } catch (ClassNotFoundException e) { return false; } try { // If the current environment is null, we're not inside AppEngine. return Class.forName("com.google.apphosting.api.ApiProxy") .getMethod("getCurrentEnvironment") .invoke(null) != null; } catch (ClassNotFoundException e) { // If ApiProxy doesn't exist, we're not on AppEngine at all. return false; } catch (InvocationTargetException e) { // If ApiProxy throws an exception, we're not in a proper AppEngine environment. return false; } catch (IllegalAccessException e) { // If the method isn't accessible, we're not on a supported version of AppEngine; return false; } catch (NoSuchMethodException e) { // If the method doesn't exist, we're not on a supported version of AppEngine; return false; } } /** * Creates a thread using {@link #platformThreadFactory}, and sets its name to {@code name} unless * changing the name is forbidden by the security manager. */ @J2ktIncompatible @GwtIncompatible // concurrency static Thread newThread(String name, Runnable runnable) { checkNotNull(name); checkNotNull(runnable); // TODO(b/139726489): Confirm that null is impossible here. Thread result = requireNonNull(platformThreadFactory().newThread(runnable)); try { result.setName(name); } catch (SecurityException e) { // OK if we can't set the name in this environment. } return result; } // TODO(lukes): provide overloads for ListeningExecutorService? ListeningScheduledExecutorService? // TODO(lukes): provide overloads that take constant strings? Functions to // calculate names? /** * Creates an {@link Executor} that renames the {@link Thread threads} that its tasks run in. * *

The names are retrieved from the {@code nameSupplier} on the thread that is being renamed * right before each task is run. The renaming is best effort, if a {@link SecurityManager} * prevents the renaming then it will be skipped but the tasks will still execute. * * @param executor The executor to decorate * @param nameSupplier The source of names for each task */ @J2ktIncompatible @GwtIncompatible // concurrency static Executor renamingDecorator(final Executor executor, final Supplier nameSupplier) { checkNotNull(executor); checkNotNull(nameSupplier); return new Executor() { @Override public void execute(Runnable command) { executor.execute(Callables.threadRenaming(command, nameSupplier)); } }; } /** * Creates an {@link ExecutorService} that renames the {@link Thread threads} that its tasks run * in. * *

The names are retrieved from the {@code nameSupplier} on the thread that is being renamed * right before each task is run. The renaming is best effort, if a {@link SecurityManager} * prevents the renaming then it will be skipped but the tasks will still execute. * * @param service The executor to decorate * @param nameSupplier The source of names for each task */ @J2ktIncompatible @GwtIncompatible // concurrency static ExecutorService renamingDecorator( final ExecutorService service, final Supplier nameSupplier) { checkNotNull(service); checkNotNull(nameSupplier); return new WrappingExecutorService(service) { @Override protected Callable wrapTask(Callable callable) { return Callables.threadRenaming(callable, nameSupplier); } @Override protected Runnable wrapTask(Runnable command) { return Callables.threadRenaming(command, nameSupplier); } }; } /** * Creates a {@link ScheduledExecutorService} that renames the {@link Thread threads} that its * tasks run in. * *

The names are retrieved from the {@code nameSupplier} on the thread that is being renamed * right before each task is run. The renaming is best effort, if a {@link SecurityManager} * prevents the renaming then it will be skipped but the tasks will still execute. * * @param service The executor to decorate * @param nameSupplier The source of names for each task */ @J2ktIncompatible @GwtIncompatible // concurrency static ScheduledExecutorService renamingDecorator( final ScheduledExecutorService service, final Supplier nameSupplier) { checkNotNull(service); checkNotNull(nameSupplier); return new WrappingScheduledExecutorService(service) { @Override protected Callable wrapTask(Callable callable) { return Callables.threadRenaming(callable, nameSupplier); } @Override protected Runnable wrapTask(Runnable command) { return Callables.threadRenaming(command, nameSupplier); } }; } /** * Shuts down the given executor service gradually, first disabling new submissions and later, if * necessary, cancelling remaining tasks. * *

The method takes the following steps: * *

    *
  1. calls {@link ExecutorService#shutdown()}, disabling acceptance of new submitted tasks. *
  2. awaits executor service termination for half of the specified timeout. *
  3. if the timeout expires, it calls {@link ExecutorService#shutdownNow()}, cancelling * pending tasks and interrupting running tasks. *
  4. awaits executor service termination for the other half of the specified timeout. *
* *

If, at any step of the process, the calling thread is interrupted, the method calls {@link * ExecutorService#shutdownNow()} and returns. * * @param service the {@code ExecutorService} to shut down * @param timeout the maximum time to wait for the {@code ExecutorService} to terminate * @return {@code true} if the {@code ExecutorService} was terminated successfully, {@code false} * if the call timed out or was interrupted * @since 28.0 */ @CanIgnoreReturnValue @J2ktIncompatible @GwtIncompatible // java.time.Duration public static boolean shutdownAndAwaitTermination(ExecutorService service, Duration timeout) { return shutdownAndAwaitTermination(service, toNanosSaturated(timeout), TimeUnit.NANOSECONDS); } /** * Shuts down the given executor service gradually, first disabling new submissions and later, if * necessary, cancelling remaining tasks. * *

The method takes the following steps: * *

    *
  1. calls {@link ExecutorService#shutdown()}, disabling acceptance of new submitted tasks. *
  2. awaits executor service termination for half of the specified timeout. *
  3. if the timeout expires, it calls {@link ExecutorService#shutdownNow()}, cancelling * pending tasks and interrupting running tasks. *
  4. awaits executor service termination for the other half of the specified timeout. *
* *

If, at any step of the process, the calling thread is interrupted, the method calls {@link * ExecutorService#shutdownNow()} and returns. * * @param service the {@code ExecutorService} to shut down * @param timeout the maximum time to wait for the {@code ExecutorService} to terminate * @param unit the time unit of the timeout argument * @return {@code true} if the {@code ExecutorService} was terminated successfully, {@code false} * if the call timed out or was interrupted * @since 17.0 */ @CanIgnoreReturnValue @J2ktIncompatible @GwtIncompatible // concurrency @SuppressWarnings("GoodTime") // should accept a java.time.Duration public static boolean shutdownAndAwaitTermination( ExecutorService service, long timeout, TimeUnit unit) { long halfTimeoutNanos = unit.toNanos(timeout) / 2; // Disable new tasks from being submitted service.shutdown(); try { // Wait for half the duration of the timeout for existing tasks to terminate if (!service.awaitTermination(halfTimeoutNanos, TimeUnit.NANOSECONDS)) { // Cancel currently executing tasks service.shutdownNow(); // Wait the other half of the timeout for tasks to respond to being cancelled service.awaitTermination(halfTimeoutNanos, TimeUnit.NANOSECONDS); } } catch (InterruptedException ie) { // Preserve interrupt status Thread.currentThread().interrupt(); // (Re-)Cancel if current thread also interrupted service.shutdownNow(); } return service.isTerminated(); } /** * Returns an Executor that will propagate {@link RejectedExecutionException} from the delegate * executor to the given {@code future}. * *

Note, the returned executor can only be used once. */ static Executor rejectionPropagatingExecutor( final Executor delegate, final AbstractFuture future) { checkNotNull(delegate); checkNotNull(future); if (delegate == directExecutor()) { // directExecutor() cannot throw RejectedExecutionException return delegate; } return new Executor() { @Override public void execute(Runnable command) { try { delegate.execute(command); } catch (RejectedExecutionException e) { future.setException(e); } } }; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy