All Downloads are FREE. Search and download functionalities are using the official Maven repository.

io.netty.buffer.CompositeByteBuf Maven / Gradle / Ivy

Go to download

This artifact provides a single jar that contains all classes required to use remote Jakarta Enterprise Beans and Jakarta Messaging, including all dependencies. It is intended for use by those not using maven, maven users should just import the Jakarta Enterprise Beans and Jakarta Messaging BOM's instead (shaded JAR's cause lots of problems with maven, as it is very easy to inadvertently end up with different versions on classes on the class path).

There is a newer version: 35.0.0.Beta1
Show newest version
/*
 * Copyright 2012 The Netty Project
 *
 * The Netty Project licenses this file to you under the Apache License,
 * version 2.0 (the "License"); you may not use this file except in compliance
 * with the License. You may obtain a copy of the License at:
 *
 *   https://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 */
package io.netty.buffer;

import io.netty.util.ByteProcessor;
import io.netty.util.IllegalReferenceCountException;
import io.netty.util.ReferenceCountUtil;
import io.netty.util.internal.EmptyArrays;
import io.netty.util.internal.ObjectUtil;
import io.netty.util.internal.RecyclableArrayList;

import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.channels.FileChannel;
import java.nio.channels.GatheringByteChannel;
import java.nio.channels.ScatteringByteChannel;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.ConcurrentModificationException;
import java.util.Iterator;
import java.util.List;
import java.util.NoSuchElementException;

import static io.netty.util.internal.ObjectUtil.checkNotNull;

/**
 * A virtual buffer which shows multiple buffers as a single merged buffer.  It is recommended to use
 * {@link ByteBufAllocator#compositeBuffer()} or {@link Unpooled#wrappedBuffer(ByteBuf...)} instead of calling the
 * constructor explicitly.
 */
public class CompositeByteBuf extends AbstractReferenceCountedByteBuf implements Iterable {

    private static final ByteBuffer EMPTY_NIO_BUFFER = Unpooled.EMPTY_BUFFER.nioBuffer();
    private static final Iterator EMPTY_ITERATOR = Collections.emptyList().iterator();

    private final ByteBufAllocator alloc;
    private final boolean direct;
    private final int maxNumComponents;

    private int componentCount;
    private Component[] components; // resized when needed

    private boolean freed;

    private CompositeByteBuf(ByteBufAllocator alloc, boolean direct, int maxNumComponents, int initSize) {
        super(AbstractByteBufAllocator.DEFAULT_MAX_CAPACITY);

        this.alloc = ObjectUtil.checkNotNull(alloc, "alloc");
        if (maxNumComponents < 1) {
            throw new IllegalArgumentException(
                    "maxNumComponents: " + maxNumComponents + " (expected: >= 1)");
        }

        this.direct = direct;
        this.maxNumComponents = maxNumComponents;
        components = newCompArray(initSize, maxNumComponents);
    }

    public CompositeByteBuf(ByteBufAllocator alloc, boolean direct, int maxNumComponents) {
        this(alloc, direct, maxNumComponents, 0);
    }

    public CompositeByteBuf(ByteBufAllocator alloc, boolean direct, int maxNumComponents, ByteBuf... buffers) {
        this(alloc, direct, maxNumComponents, buffers, 0);
    }

    CompositeByteBuf(ByteBufAllocator alloc, boolean direct, int maxNumComponents,
            ByteBuf[] buffers, int offset) {
        this(alloc, direct, maxNumComponents, buffers.length - offset);

        addComponents0(false, 0, buffers, offset);
        consolidateIfNeeded();
        setIndex0(0, capacity());
    }

    public CompositeByteBuf(
            ByteBufAllocator alloc, boolean direct, int maxNumComponents, Iterable buffers) {
        this(alloc, direct, maxNumComponents,
                buffers instanceof Collection ? ((Collection) buffers).size() : 0);

        addComponents(false, 0, buffers);
        setIndex(0, capacity());
    }

    // support passing arrays of other types instead of having to copy to a ByteBuf[] first
    interface ByteWrapper {
        ByteBuf wrap(T bytes);
        boolean isEmpty(T bytes);
    }

    static final ByteWrapper BYTE_ARRAY_WRAPPER = new ByteWrapper() {
        @Override
        public ByteBuf wrap(byte[] bytes) {
            return Unpooled.wrappedBuffer(bytes);
        }
        @Override
        public boolean isEmpty(byte[] bytes) {
            return bytes.length == 0;
        }
    };

    static final ByteWrapper BYTE_BUFFER_WRAPPER = new ByteWrapper() {
        @Override
        public ByteBuf wrap(ByteBuffer bytes) {
            return Unpooled.wrappedBuffer(bytes);
        }
        @Override
        public boolean isEmpty(ByteBuffer bytes) {
            return !bytes.hasRemaining();
        }
    };

     CompositeByteBuf(ByteBufAllocator alloc, boolean direct, int maxNumComponents,
            ByteWrapper wrapper, T[] buffers, int offset) {
        this(alloc, direct, maxNumComponents, buffers.length - offset);

        addComponents0(false, 0, wrapper, buffers, offset);
        consolidateIfNeeded();
        setIndex(0, capacity());
    }

    private static Component[] newCompArray(int initComponents, int maxNumComponents) {
        int capacityGuess = Math.min(AbstractByteBufAllocator.DEFAULT_MAX_COMPONENTS, maxNumComponents);
        return new Component[Math.max(initComponents, capacityGuess)];
    }

    // Special constructor used by WrappedCompositeByteBuf
    CompositeByteBuf(ByteBufAllocator alloc) {
        super(Integer.MAX_VALUE);
        this.alloc = alloc;
        direct = false;
        maxNumComponents = 0;
        components = null;
    }

    /**
     * Add the given {@link ByteBuf}.
     * 

* Be aware that this method does not increase the {@code writerIndex} of the {@link CompositeByteBuf}. * If you need to have it increased use {@link #addComponent(boolean, ByteBuf)}. *

* {@link ByteBuf#release()} ownership of {@code buffer} is transferred to this {@link CompositeByteBuf}. * @param buffer the {@link ByteBuf} to add. {@link ByteBuf#release()} ownership is transferred to this * {@link CompositeByteBuf}. */ public CompositeByteBuf addComponent(ByteBuf buffer) { return addComponent(false, buffer); } /** * Add the given {@link ByteBuf}s. *

* Be aware that this method does not increase the {@code writerIndex} of the {@link CompositeByteBuf}. * If you need to have it increased use {@link #addComponents(boolean, ByteBuf[])}. *

* {@link ByteBuf#release()} ownership of all {@link ByteBuf} objects in {@code buffers} is transferred to this * {@link CompositeByteBuf}. * @param buffers the {@link ByteBuf}s to add. {@link ByteBuf#release()} ownership of all {@link ByteBuf#release()} * ownership of all {@link ByteBuf} objects is transferred to this {@link CompositeByteBuf}. */ public CompositeByteBuf addComponents(ByteBuf... buffers) { return addComponents(false, buffers); } /** * Add the given {@link ByteBuf}s. *

* Be aware that this method does not increase the {@code writerIndex} of the {@link CompositeByteBuf}. * If you need to have it increased use {@link #addComponents(boolean, Iterable)}. *

* {@link ByteBuf#release()} ownership of all {@link ByteBuf} objects in {@code buffers} is transferred to this * {@link CompositeByteBuf}. * @param buffers the {@link ByteBuf}s to add. {@link ByteBuf#release()} ownership of all {@link ByteBuf#release()} * ownership of all {@link ByteBuf} objects is transferred to this {@link CompositeByteBuf}. */ public CompositeByteBuf addComponents(Iterable buffers) { return addComponents(false, buffers); } /** * Add the given {@link ByteBuf} on the specific index. *

* Be aware that this method does not increase the {@code writerIndex} of the {@link CompositeByteBuf}. * If you need to have it increased use {@link #addComponent(boolean, int, ByteBuf)}. *

* {@link ByteBuf#release()} ownership of {@code buffer} is transferred to this {@link CompositeByteBuf}. * @param cIndex the index on which the {@link ByteBuf} will be added. * @param buffer the {@link ByteBuf} to add. {@link ByteBuf#release()} ownership is transferred to this * {@link CompositeByteBuf}. */ public CompositeByteBuf addComponent(int cIndex, ByteBuf buffer) { return addComponent(false, cIndex, buffer); } /** * Add the given {@link ByteBuf} and increase the {@code writerIndex} if {@code increaseWriterIndex} is * {@code true}. * * {@link ByteBuf#release()} ownership of {@code buffer} is transferred to this {@link CompositeByteBuf}. * @param buffer the {@link ByteBuf} to add. {@link ByteBuf#release()} ownership is transferred to this * {@link CompositeByteBuf}. */ public CompositeByteBuf addComponent(boolean increaseWriterIndex, ByteBuf buffer) { return addComponent(increaseWriterIndex, componentCount, buffer); } /** * Add the given {@link ByteBuf}s and increase the {@code writerIndex} if {@code increaseWriterIndex} is * {@code true}. * * {@link ByteBuf#release()} ownership of all {@link ByteBuf} objects in {@code buffers} is transferred to this * {@link CompositeByteBuf}. * @param buffers the {@link ByteBuf}s to add. {@link ByteBuf#release()} ownership of all {@link ByteBuf#release()} * ownership of all {@link ByteBuf} objects is transferred to this {@link CompositeByteBuf}. */ public CompositeByteBuf addComponents(boolean increaseWriterIndex, ByteBuf... buffers) { checkNotNull(buffers, "buffers"); addComponents0(increaseWriterIndex, componentCount, buffers, 0); consolidateIfNeeded(); return this; } /** * Add the given {@link ByteBuf}s and increase the {@code writerIndex} if {@code increaseWriterIndex} is * {@code true}. * * {@link ByteBuf#release()} ownership of all {@link ByteBuf} objects in {@code buffers} is transferred to this * {@link CompositeByteBuf}. * @param buffers the {@link ByteBuf}s to add. {@link ByteBuf#release()} ownership of all {@link ByteBuf#release()} * ownership of all {@link ByteBuf} objects is transferred to this {@link CompositeByteBuf}. */ public CompositeByteBuf addComponents(boolean increaseWriterIndex, Iterable buffers) { return addComponents(increaseWriterIndex, componentCount, buffers); } /** * Add the given {@link ByteBuf} on the specific index and increase the {@code writerIndex} * if {@code increaseWriterIndex} is {@code true}. * * {@link ByteBuf#release()} ownership of {@code buffer} is transferred to this {@link CompositeByteBuf}. * @param cIndex the index on which the {@link ByteBuf} will be added. * @param buffer the {@link ByteBuf} to add. {@link ByteBuf#release()} ownership is transferred to this * {@link CompositeByteBuf}. */ public CompositeByteBuf addComponent(boolean increaseWriterIndex, int cIndex, ByteBuf buffer) { checkNotNull(buffer, "buffer"); addComponent0(increaseWriterIndex, cIndex, buffer); consolidateIfNeeded(); return this; } private static void checkForOverflow(int capacity, int readableBytes) { if (capacity + readableBytes < 0) { throw new IllegalArgumentException("Can't increase by " + readableBytes + " as capacity(" + capacity + ")" + " would overflow " + Integer.MAX_VALUE); } } /** * Precondition is that {@code buffer != null}. */ private int addComponent0(boolean increaseWriterIndex, int cIndex, ByteBuf buffer) { assert buffer != null; boolean wasAdded = false; try { checkComponentIndex(cIndex); // No need to consolidate - just add a component to the list. Component c = newComponent(ensureAccessible(buffer), 0); int readableBytes = c.length(); // Check if we would overflow. // See https://github.com/netty/netty/issues/10194 checkForOverflow(capacity(), readableBytes); addComp(cIndex, c); wasAdded = true; if (readableBytes > 0 && cIndex < componentCount - 1) { updateComponentOffsets(cIndex); } else if (cIndex > 0) { c.reposition(components[cIndex - 1].endOffset); } if (increaseWriterIndex) { writerIndex += readableBytes; } return cIndex; } finally { if (!wasAdded) { buffer.release(); } } } private static ByteBuf ensureAccessible(final ByteBuf buf) { if (checkAccessible && !buf.isAccessible()) { throw new IllegalReferenceCountException(0); } return buf; } @SuppressWarnings("deprecation") private Component newComponent(final ByteBuf buf, final int offset) { final int srcIndex = buf.readerIndex(); final int len = buf.readableBytes(); // unpeel any intermediate outer layers (UnreleasableByteBuf, LeakAwareByteBufs, SwappedByteBuf) ByteBuf unwrapped = buf; int unwrappedIndex = srcIndex; while (unwrapped instanceof WrappedByteBuf || unwrapped instanceof SwappedByteBuf) { unwrapped = unwrapped.unwrap(); } // unwrap if already sliced if (unwrapped instanceof AbstractUnpooledSlicedByteBuf) { unwrappedIndex += ((AbstractUnpooledSlicedByteBuf) unwrapped).idx(0); unwrapped = unwrapped.unwrap(); } else if (unwrapped instanceof PooledSlicedByteBuf) { unwrappedIndex += ((PooledSlicedByteBuf) unwrapped).adjustment; unwrapped = unwrapped.unwrap(); } else if (unwrapped instanceof DuplicatedByteBuf || unwrapped instanceof PooledDuplicatedByteBuf) { unwrapped = unwrapped.unwrap(); } // We don't need to slice later to expose the internal component if the readable range // is already the entire buffer final ByteBuf slice = buf.capacity() == len ? buf : null; return new Component(buf.order(ByteOrder.BIG_ENDIAN), srcIndex, unwrapped.order(ByteOrder.BIG_ENDIAN), unwrappedIndex, offset, len, slice); } /** * Add the given {@link ByteBuf}s on the specific index *

* Be aware that this method does not increase the {@code writerIndex} of the {@link CompositeByteBuf}. * If you need to have it increased you need to handle it by your own. *

* {@link ByteBuf#release()} ownership of all {@link ByteBuf} objects in {@code buffers} is transferred to this * {@link CompositeByteBuf}. * @param cIndex the index on which the {@link ByteBuf} will be added. {@link ByteBuf#release()} ownership of all * {@link ByteBuf#release()} ownership of all {@link ByteBuf} objects is transferred to this * {@link CompositeByteBuf}. * @param buffers the {@link ByteBuf}s to add. {@link ByteBuf#release()} ownership of all {@link ByteBuf#release()} * ownership of all {@link ByteBuf} objects is transferred to this {@link CompositeByteBuf}. */ public CompositeByteBuf addComponents(int cIndex, ByteBuf... buffers) { checkNotNull(buffers, "buffers"); addComponents0(false, cIndex, buffers, 0); consolidateIfNeeded(); return this; } private CompositeByteBuf addComponents0(boolean increaseWriterIndex, final int cIndex, ByteBuf[] buffers, int arrOffset) { final int len = buffers.length, count = len - arrOffset; int readableBytes = 0; int capacity = capacity(); for (int i = arrOffset; i < buffers.length; i++) { ByteBuf b = buffers[i]; if (b == null) { break; } readableBytes += b.readableBytes(); // Check if we would overflow. // See https://github.com/netty/netty/issues/10194 checkForOverflow(capacity, readableBytes); } // only set ci after we've shifted so that finally block logic is always correct int ci = Integer.MAX_VALUE; try { checkComponentIndex(cIndex); shiftComps(cIndex, count); // will increase componentCount int nextOffset = cIndex > 0 ? components[cIndex - 1].endOffset : 0; for (ci = cIndex; arrOffset < len; arrOffset++, ci++) { ByteBuf b = buffers[arrOffset]; if (b == null) { break; } Component c = newComponent(ensureAccessible(b), nextOffset); components[ci] = c; nextOffset = c.endOffset; } return this; } finally { // ci is now the index following the last successfully added component if (ci < componentCount) { if (ci < cIndex + count) { // we bailed early removeCompRange(ci, cIndex + count); for (; arrOffset < len; ++arrOffset) { ReferenceCountUtil.safeRelease(buffers[arrOffset]); } } updateComponentOffsets(ci); // only need to do this here for components after the added ones } if (increaseWriterIndex && ci > cIndex && ci <= componentCount) { writerIndex += components[ci - 1].endOffset - components[cIndex].offset; } } } private int addComponents0(boolean increaseWriterIndex, int cIndex, ByteWrapper wrapper, T[] buffers, int offset) { checkComponentIndex(cIndex); // No need for consolidation for (int i = offset, len = buffers.length; i < len; i++) { T b = buffers[i]; if (b == null) { break; } if (!wrapper.isEmpty(b)) { cIndex = addComponent0(increaseWriterIndex, cIndex, wrapper.wrap(b)) + 1; int size = componentCount; if (cIndex > size) { cIndex = size; } } } return cIndex; } /** * Add the given {@link ByteBuf}s on the specific index * * Be aware that this method does not increase the {@code writerIndex} of the {@link CompositeByteBuf}. * If you need to have it increased you need to handle it by your own. *

* {@link ByteBuf#release()} ownership of all {@link ByteBuf} objects in {@code buffers} is transferred to this * {@link CompositeByteBuf}. * @param cIndex the index on which the {@link ByteBuf} will be added. * @param buffers the {@link ByteBuf}s to add. {@link ByteBuf#release()} ownership of all * {@link ByteBuf#release()} ownership of all {@link ByteBuf} objects is transferred to this * {@link CompositeByteBuf}. */ public CompositeByteBuf addComponents(int cIndex, Iterable buffers) { return addComponents(false, cIndex, buffers); } /** * Add the given {@link ByteBuf} and increase the {@code writerIndex} if {@code increaseWriterIndex} is * {@code true}. If the provided buffer is a {@link CompositeByteBuf} itself, a "shallow copy" of its * readable components will be performed. Thus the actual number of new components added may vary * and in particular will be zero if the provided buffer is not readable. *

* {@link ByteBuf#release()} ownership of {@code buffer} is transferred to this {@link CompositeByteBuf}. * @param buffer the {@link ByteBuf} to add. {@link ByteBuf#release()} ownership is transferred to this * {@link CompositeByteBuf}. */ public CompositeByteBuf addFlattenedComponents(boolean increaseWriterIndex, ByteBuf buffer) { checkNotNull(buffer, "buffer"); final int ridx = buffer.readerIndex(); final int widx = buffer.writerIndex(); if (ridx == widx) { buffer.release(); return this; } if (!(buffer instanceof CompositeByteBuf)) { addComponent0(increaseWriterIndex, componentCount, buffer); consolidateIfNeeded(); return this; } final CompositeByteBuf from; if (buffer instanceof WrappedCompositeByteBuf) { from = (CompositeByteBuf) buffer.unwrap(); } else { from = (CompositeByteBuf) buffer; } from.checkIndex(ridx, widx - ridx); final Component[] fromComponents = from.components; final int compCountBefore = componentCount; final int writerIndexBefore = writerIndex; try { for (int cidx = from.toComponentIndex0(ridx), newOffset = capacity();; cidx++) { final Component component = fromComponents[cidx]; final int compOffset = component.offset; final int fromIdx = Math.max(ridx, compOffset); final int toIdx = Math.min(widx, component.endOffset); final int len = toIdx - fromIdx; if (len > 0) { // skip empty components addComp(componentCount, new Component( component.srcBuf.retain(), component.srcIdx(fromIdx), component.buf, component.idx(fromIdx), newOffset, len, null)); } if (widx == toIdx) { break; } newOffset += len; } if (increaseWriterIndex) { writerIndex = writerIndexBefore + (widx - ridx); } consolidateIfNeeded(); buffer.release(); buffer = null; return this; } finally { if (buffer != null) { // if we did not succeed, attempt to rollback any components that were added if (increaseWriterIndex) { writerIndex = writerIndexBefore; } for (int cidx = componentCount - 1; cidx >= compCountBefore; cidx--) { components[cidx].free(); removeComp(cidx); } } } } // TODO optimize further, similar to ByteBuf[] version // (difference here is that we don't know *always* know precise size increase in advance, // but we do in the most common case that the Iterable is a Collection) private CompositeByteBuf addComponents(boolean increaseIndex, int cIndex, Iterable buffers) { if (buffers instanceof ByteBuf) { // If buffers also implements ByteBuf (e.g. CompositeByteBuf), it has to go to addComponent(ByteBuf). return addComponent(increaseIndex, cIndex, (ByteBuf) buffers); } checkNotNull(buffers, "buffers"); Iterator it = buffers.iterator(); try { checkComponentIndex(cIndex); // No need for consolidation while (it.hasNext()) { ByteBuf b = it.next(); if (b == null) { break; } cIndex = addComponent0(increaseIndex, cIndex, b) + 1; cIndex = Math.min(cIndex, componentCount); } } finally { while (it.hasNext()) { ReferenceCountUtil.safeRelease(it.next()); } } consolidateIfNeeded(); return this; } /** * This should only be called as last operation from a method as this may adjust the underlying * array of components and so affect the index etc. */ private void consolidateIfNeeded() { // Consolidate if the number of components will exceed the allowed maximum by the current // operation. int size = componentCount; if (size > maxNumComponents) { consolidate0(0, size); } } private void checkComponentIndex(int cIndex) { ensureAccessible(); if (cIndex < 0 || cIndex > componentCount) { throw new IndexOutOfBoundsException(String.format( "cIndex: %d (expected: >= 0 && <= numComponents(%d))", cIndex, componentCount)); } } private void checkComponentIndex(int cIndex, int numComponents) { ensureAccessible(); if (cIndex < 0 || cIndex + numComponents > componentCount) { throw new IndexOutOfBoundsException(String.format( "cIndex: %d, numComponents: %d " + "(expected: cIndex >= 0 && cIndex + numComponents <= totalNumComponents(%d))", cIndex, numComponents, componentCount)); } } private void updateComponentOffsets(int cIndex) { int size = componentCount; if (size <= cIndex) { return; } int nextIndex = cIndex > 0 ? components[cIndex - 1].endOffset : 0; for (; cIndex < size; cIndex++) { Component c = components[cIndex]; c.reposition(nextIndex); nextIndex = c.endOffset; } } /** * Remove the {@link ByteBuf} from the given index. * * @param cIndex the index on from which the {@link ByteBuf} will be remove */ public CompositeByteBuf removeComponent(int cIndex) { checkComponentIndex(cIndex); Component comp = components[cIndex]; if (lastAccessed == comp) { lastAccessed = null; } comp.free(); removeComp(cIndex); if (comp.length() > 0) { // Only need to call updateComponentOffsets if the length was > 0 updateComponentOffsets(cIndex); } return this; } /** * Remove the number of {@link ByteBuf}s starting from the given index. * * @param cIndex the index on which the {@link ByteBuf}s will be started to removed * @param numComponents the number of components to remove */ public CompositeByteBuf removeComponents(int cIndex, int numComponents) { checkComponentIndex(cIndex, numComponents); if (numComponents == 0) { return this; } int endIndex = cIndex + numComponents; boolean needsUpdate = false; for (int i = cIndex; i < endIndex; ++i) { Component c = components[i]; if (c.length() > 0) { needsUpdate = true; } if (lastAccessed == c) { lastAccessed = null; } c.free(); } removeCompRange(cIndex, endIndex); if (needsUpdate) { // Only need to call updateComponentOffsets if the length was > 0 updateComponentOffsets(cIndex); } return this; } @Override public Iterator iterator() { ensureAccessible(); return componentCount == 0 ? EMPTY_ITERATOR : new CompositeByteBufIterator(); } @Override protected int forEachByteAsc0(int start, int end, ByteProcessor processor) throws Exception { if (end <= start) { return -1; } for (int i = toComponentIndex0(start), length = end - start; length > 0; i++) { Component c = components[i]; if (c.offset == c.endOffset) { continue; // empty } ByteBuf s = c.buf; int localStart = c.idx(start); int localLength = Math.min(length, c.endOffset - start); // avoid additional checks in AbstractByteBuf case int result = s instanceof AbstractByteBuf ? ((AbstractByteBuf) s).forEachByteAsc0(localStart, localStart + localLength, processor) : s.forEachByte(localStart, localLength, processor); if (result != -1) { return result - c.adjustment; } start += localLength; length -= localLength; } return -1; } @Override protected int forEachByteDesc0(int rStart, int rEnd, ByteProcessor processor) throws Exception { if (rEnd > rStart) { // rStart *and* rEnd are inclusive return -1; } for (int i = toComponentIndex0(rStart), length = 1 + rStart - rEnd; length > 0; i--) { Component c = components[i]; if (c.offset == c.endOffset) { continue; // empty } ByteBuf s = c.buf; int localRStart = c.idx(length + rEnd); int localLength = Math.min(length, localRStart), localIndex = localRStart - localLength; // avoid additional checks in AbstractByteBuf case int result = s instanceof AbstractByteBuf ? ((AbstractByteBuf) s).forEachByteDesc0(localRStart - 1, localIndex, processor) : s.forEachByteDesc(localIndex, localLength, processor); if (result != -1) { return result - c.adjustment; } length -= localLength; } return -1; } /** * Same with {@link #slice(int, int)} except that this method returns a list. */ public List decompose(int offset, int length) { checkIndex(offset, length); if (length == 0) { return Collections.emptyList(); } int componentId = toComponentIndex0(offset); int bytesToSlice = length; // The first component Component firstC = components[componentId]; // It's important to use srcBuf and NOT buf as we need to return the "original" source buffer and not the // unwrapped one as otherwise we could loose the ability to correctly update the reference count on the // returned buffer. ByteBuf slice = firstC.srcBuf.slice(firstC.srcIdx(offset), Math.min(firstC.endOffset - offset, bytesToSlice)); bytesToSlice -= slice.readableBytes(); if (bytesToSlice == 0) { return Collections.singletonList(slice); } List sliceList = new ArrayList(componentCount - componentId); sliceList.add(slice); // Add all the slices until there is nothing more left and then return the List. do { Component component = components[++componentId]; // It's important to use srcBuf and NOT buf as we need to return the "original" source buffer and not the // unwrapped one as otherwise we could loose the ability to correctly update the reference count on the // returned buffer. slice = component.srcBuf.slice(component.srcIdx(component.offset), Math.min(component.length(), bytesToSlice)); bytesToSlice -= slice.readableBytes(); sliceList.add(slice); } while (bytesToSlice > 0); return sliceList; } @Override public boolean isDirect() { int size = componentCount; if (size == 0) { return false; } for (int i = 0; i < size; i++) { if (!components[i].buf.isDirect()) { return false; } } return true; } @Override public boolean hasArray() { switch (componentCount) { case 0: return true; case 1: return components[0].buf.hasArray(); default: return false; } } @Override public byte[] array() { switch (componentCount) { case 0: return EmptyArrays.EMPTY_BYTES; case 1: return components[0].buf.array(); default: throw new UnsupportedOperationException(); } } @Override public int arrayOffset() { switch (componentCount) { case 0: return 0; case 1: Component c = components[0]; return c.idx(c.buf.arrayOffset()); default: throw new UnsupportedOperationException(); } } @Override public boolean hasMemoryAddress() { switch (componentCount) { case 0: return Unpooled.EMPTY_BUFFER.hasMemoryAddress(); case 1: return components[0].buf.hasMemoryAddress(); default: return false; } } @Override public long memoryAddress() { switch (componentCount) { case 0: return Unpooled.EMPTY_BUFFER.memoryAddress(); case 1: Component c = components[0]; return c.buf.memoryAddress() + c.adjustment; default: throw new UnsupportedOperationException(); } } @Override public int capacity() { int size = componentCount; return size > 0 ? components[size - 1].endOffset : 0; } @Override public CompositeByteBuf capacity(int newCapacity) { checkNewCapacity(newCapacity); final int size = componentCount, oldCapacity = capacity(); if (newCapacity > oldCapacity) { final int paddingLength = newCapacity - oldCapacity; ByteBuf padding = allocBuffer(paddingLength).setIndex(0, paddingLength); addComponent0(false, size, padding); if (componentCount >= maxNumComponents) { // FIXME: No need to create a padding buffer and consolidate. // Just create a big single buffer and put the current content there. consolidateIfNeeded(); } } else if (newCapacity < oldCapacity) { lastAccessed = null; int i = size - 1; for (int bytesToTrim = oldCapacity - newCapacity; i >= 0; i--) { Component c = components[i]; final int cLength = c.length(); if (bytesToTrim < cLength) { // Trim the last component c.endOffset -= bytesToTrim; ByteBuf slice = c.slice; if (slice != null) { // We must replace the cached slice with a derived one to ensure that // it can later be released properly in the case of PooledSlicedByteBuf. c.slice = slice.slice(0, c.length()); } break; } c.free(); bytesToTrim -= cLength; } removeCompRange(i + 1, size); if (readerIndex() > newCapacity) { setIndex0(newCapacity, newCapacity); } else if (writerIndex > newCapacity) { writerIndex = newCapacity; } } return this; } @Override public ByteBufAllocator alloc() { return alloc; } @Override public ByteOrder order() { return ByteOrder.BIG_ENDIAN; } /** * Return the current number of {@link ByteBuf}'s that are composed in this instance */ public int numComponents() { return componentCount; } /** * Return the max number of {@link ByteBuf}'s that are composed in this instance */ public int maxNumComponents() { return maxNumComponents; } /** * Return the index for the given offset */ public int toComponentIndex(int offset) { checkIndex(offset); return toComponentIndex0(offset); } private int toComponentIndex0(int offset) { int size = componentCount; if (offset == 0) { // fast-path zero offset for (int i = 0; i < size; i++) { if (components[i].endOffset > 0) { return i; } } } if (size <= 2) { // fast-path for 1 and 2 component count return size == 1 || offset < components[0].endOffset ? 0 : 1; } for (int low = 0, high = size; low <= high;) { int mid = low + high >>> 1; Component c = components[mid]; if (offset >= c.endOffset) { low = mid + 1; } else if (offset < c.offset) { high = mid - 1; } else { return mid; } } throw new Error("should not reach here"); } public int toByteIndex(int cIndex) { checkComponentIndex(cIndex); return components[cIndex].offset; } @Override public byte getByte(int index) { Component c = findComponent(index); return c.buf.getByte(c.idx(index)); } @Override protected byte _getByte(int index) { Component c = findComponent0(index); return c.buf.getByte(c.idx(index)); } @Override protected short _getShort(int index) { Component c = findComponent0(index); if (index + 2 <= c.endOffset) { return c.buf.getShort(c.idx(index)); } else if (order() == ByteOrder.BIG_ENDIAN) { return (short) ((_getByte(index) & 0xff) << 8 | _getByte(index + 1) & 0xff); } else { return (short) (_getByte(index) & 0xff | (_getByte(index + 1) & 0xff) << 8); } } @Override protected short _getShortLE(int index) { Component c = findComponent0(index); if (index + 2 <= c.endOffset) { return c.buf.getShortLE(c.idx(index)); } else if (order() == ByteOrder.BIG_ENDIAN) { return (short) (_getByte(index) & 0xff | (_getByte(index + 1) & 0xff) << 8); } else { return (short) ((_getByte(index) & 0xff) << 8 | _getByte(index + 1) & 0xff); } } @Override protected int _getUnsignedMedium(int index) { Component c = findComponent0(index); if (index + 3 <= c.endOffset) { return c.buf.getUnsignedMedium(c.idx(index)); } else if (order() == ByteOrder.BIG_ENDIAN) { return (_getShort(index) & 0xffff) << 8 | _getByte(index + 2) & 0xff; } else { return _getShort(index) & 0xFFFF | (_getByte(index + 2) & 0xFF) << 16; } } @Override protected int _getUnsignedMediumLE(int index) { Component c = findComponent0(index); if (index + 3 <= c.endOffset) { return c.buf.getUnsignedMediumLE(c.idx(index)); } else if (order() == ByteOrder.BIG_ENDIAN) { return _getShortLE(index) & 0xffff | (_getByte(index + 2) & 0xff) << 16; } else { return (_getShortLE(index) & 0xffff) << 8 | _getByte(index + 2) & 0xff; } } @Override protected int _getInt(int index) { Component c = findComponent0(index); if (index + 4 <= c.endOffset) { return c.buf.getInt(c.idx(index)); } else if (order() == ByteOrder.BIG_ENDIAN) { return (_getShort(index) & 0xffff) << 16 | _getShort(index + 2) & 0xffff; } else { return _getShort(index) & 0xFFFF | (_getShort(index + 2) & 0xFFFF) << 16; } } @Override protected int _getIntLE(int index) { Component c = findComponent0(index); if (index + 4 <= c.endOffset) { return c.buf.getIntLE(c.idx(index)); } else if (order() == ByteOrder.BIG_ENDIAN) { return _getShortLE(index) & 0xffff | (_getShortLE(index + 2) & 0xffff) << 16; } else { return (_getShortLE(index) & 0xffff) << 16 | _getShortLE(index + 2) & 0xffff; } } @Override protected long _getLong(int index) { Component c = findComponent0(index); if (index + 8 <= c.endOffset) { return c.buf.getLong(c.idx(index)); } else if (order() == ByteOrder.BIG_ENDIAN) { return (_getInt(index) & 0xffffffffL) << 32 | _getInt(index + 4) & 0xffffffffL; } else { return _getInt(index) & 0xFFFFFFFFL | (_getInt(index + 4) & 0xFFFFFFFFL) << 32; } } @Override protected long _getLongLE(int index) { Component c = findComponent0(index); if (index + 8 <= c.endOffset) { return c.buf.getLongLE(c.idx(index)); } else if (order() == ByteOrder.BIG_ENDIAN) { return _getIntLE(index) & 0xffffffffL | (_getIntLE(index + 4) & 0xffffffffL) << 32; } else { return (_getIntLE(index) & 0xffffffffL) << 32 | _getIntLE(index + 4) & 0xffffffffL; } } @Override public CompositeByteBuf getBytes(int index, byte[] dst, int dstIndex, int length) { checkDstIndex(index, length, dstIndex, dst.length); if (length == 0) { return this; } int i = toComponentIndex0(index); while (length > 0) { Component c = components[i]; int localLength = Math.min(length, c.endOffset - index); c.buf.getBytes(c.idx(index), dst, dstIndex, localLength); index += localLength; dstIndex += localLength; length -= localLength; i ++; } return this; } @Override public CompositeByteBuf getBytes(int index, ByteBuffer dst) { int limit = dst.limit(); int length = dst.remaining(); checkIndex(index, length); if (length == 0) { return this; } int i = toComponentIndex0(index); try { while (length > 0) { Component c = components[i]; int localLength = Math.min(length, c.endOffset - index); dst.limit(dst.position() + localLength); c.buf.getBytes(c.idx(index), dst); index += localLength; length -= localLength; i ++; } } finally { dst.limit(limit); } return this; } @Override public CompositeByteBuf getBytes(int index, ByteBuf dst, int dstIndex, int length) { checkDstIndex(index, length, dstIndex, dst.capacity()); if (length == 0) { return this; } int i = toComponentIndex0(index); while (length > 0) { Component c = components[i]; int localLength = Math.min(length, c.endOffset - index); c.buf.getBytes(c.idx(index), dst, dstIndex, localLength); index += localLength; dstIndex += localLength; length -= localLength; i ++; } return this; } @Override public int getBytes(int index, GatheringByteChannel out, int length) throws IOException { int count = nioBufferCount(); if (count == 1) { return out.write(internalNioBuffer(index, length)); } else { long writtenBytes = out.write(nioBuffers(index, length)); if (writtenBytes > Integer.MAX_VALUE) { return Integer.MAX_VALUE; } else { return (int) writtenBytes; } } } @Override public int getBytes(int index, FileChannel out, long position, int length) throws IOException { int count = nioBufferCount(); if (count == 1) { return out.write(internalNioBuffer(index, length), position); } else { long writtenBytes = 0; for (ByteBuffer buf : nioBuffers(index, length)) { writtenBytes += out.write(buf, position + writtenBytes); } if (writtenBytes > Integer.MAX_VALUE) { return Integer.MAX_VALUE; } return (int) writtenBytes; } } @Override public CompositeByteBuf getBytes(int index, OutputStream out, int length) throws IOException { checkIndex(index, length); if (length == 0) { return this; } int i = toComponentIndex0(index); while (length > 0) { Component c = components[i]; int localLength = Math.min(length, c.endOffset - index); c.buf.getBytes(c.idx(index), out, localLength); index += localLength; length -= localLength; i ++; } return this; } @Override public CompositeByteBuf setByte(int index, int value) { Component c = findComponent(index); c.buf.setByte(c.idx(index), value); return this; } @Override protected void _setByte(int index, int value) { Component c = findComponent0(index); c.buf.setByte(c.idx(index), value); } @Override public CompositeByteBuf setShort(int index, int value) { checkIndex(index, 2); _setShort(index, value); return this; } @Override protected void _setShort(int index, int value) { Component c = findComponent0(index); if (index + 2 <= c.endOffset) { c.buf.setShort(c.idx(index), value); } else if (order() == ByteOrder.BIG_ENDIAN) { _setByte(index, (byte) (value >>> 8)); _setByte(index + 1, (byte) value); } else { _setByte(index, (byte) value); _setByte(index + 1, (byte) (value >>> 8)); } } @Override protected void _setShortLE(int index, int value) { Component c = findComponent0(index); if (index + 2 <= c.endOffset) { c.buf.setShortLE(c.idx(index), value); } else if (order() == ByteOrder.BIG_ENDIAN) { _setByte(index, (byte) value); _setByte(index + 1, (byte) (value >>> 8)); } else { _setByte(index, (byte) (value >>> 8)); _setByte(index + 1, (byte) value); } } @Override public CompositeByteBuf setMedium(int index, int value) { checkIndex(index, 3); _setMedium(index, value); return this; } @Override protected void _setMedium(int index, int value) { Component c = findComponent0(index); if (index + 3 <= c.endOffset) { c.buf.setMedium(c.idx(index), value); } else if (order() == ByteOrder.BIG_ENDIAN) { _setShort(index, (short) (value >> 8)); _setByte(index + 2, (byte) value); } else { _setShort(index, (short) value); _setByte(index + 2, (byte) (value >>> 16)); } } @Override protected void _setMediumLE(int index, int value) { Component c = findComponent0(index); if (index + 3 <= c.endOffset) { c.buf.setMediumLE(c.idx(index), value); } else if (order() == ByteOrder.BIG_ENDIAN) { _setShortLE(index, (short) value); _setByte(index + 2, (byte) (value >>> 16)); } else { _setShortLE(index, (short) (value >> 8)); _setByte(index + 2, (byte) value); } } @Override public CompositeByteBuf setInt(int index, int value) { checkIndex(index, 4); _setInt(index, value); return this; } @Override protected void _setInt(int index, int value) { Component c = findComponent0(index); if (index + 4 <= c.endOffset) { c.buf.setInt(c.idx(index), value); } else if (order() == ByteOrder.BIG_ENDIAN) { _setShort(index, (short) (value >>> 16)); _setShort(index + 2, (short) value); } else { _setShort(index, (short) value); _setShort(index + 2, (short) (value >>> 16)); } } @Override protected void _setIntLE(int index, int value) { Component c = findComponent0(index); if (index + 4 <= c.endOffset) { c.buf.setIntLE(c.idx(index), value); } else if (order() == ByteOrder.BIG_ENDIAN) { _setShortLE(index, (short) value); _setShortLE(index + 2, (short) (value >>> 16)); } else { _setShortLE(index, (short) (value >>> 16)); _setShortLE(index + 2, (short) value); } } @Override public CompositeByteBuf setLong(int index, long value) { checkIndex(index, 8); _setLong(index, value); return this; } @Override protected void _setLong(int index, long value) { Component c = findComponent0(index); if (index + 8 <= c.endOffset) { c.buf.setLong(c.idx(index), value); } else if (order() == ByteOrder.BIG_ENDIAN) { _setInt(index, (int) (value >>> 32)); _setInt(index + 4, (int) value); } else { _setInt(index, (int) value); _setInt(index + 4, (int) (value >>> 32)); } } @Override protected void _setLongLE(int index, long value) { Component c = findComponent0(index); if (index + 8 <= c.endOffset) { c.buf.setLongLE(c.idx(index), value); } else if (order() == ByteOrder.BIG_ENDIAN) { _setIntLE(index, (int) value); _setIntLE(index + 4, (int) (value >>> 32)); } else { _setIntLE(index, (int) (value >>> 32)); _setIntLE(index + 4, (int) value); } } @Override public CompositeByteBuf setBytes(int index, byte[] src, int srcIndex, int length) { checkSrcIndex(index, length, srcIndex, src.length); if (length == 0) { return this; } int i = toComponentIndex0(index); while (length > 0) { Component c = components[i]; int localLength = Math.min(length, c.endOffset - index); c.buf.setBytes(c.idx(index), src, srcIndex, localLength); index += localLength; srcIndex += localLength; length -= localLength; i ++; } return this; } @Override public CompositeByteBuf setBytes(int index, ByteBuffer src) { int limit = src.limit(); int length = src.remaining(); checkIndex(index, length); if (length == 0) { return this; } int i = toComponentIndex0(index); try { while (length > 0) { Component c = components[i]; int localLength = Math.min(length, c.endOffset - index); src.limit(src.position() + localLength); c.buf.setBytes(c.idx(index), src); index += localLength; length -= localLength; i ++; } } finally { src.limit(limit); } return this; } @Override public CompositeByteBuf setBytes(int index, ByteBuf src, int srcIndex, int length) { checkSrcIndex(index, length, srcIndex, src.capacity()); if (length == 0) { return this; } int i = toComponentIndex0(index); while (length > 0) { Component c = components[i]; int localLength = Math.min(length, c.endOffset - index); c.buf.setBytes(c.idx(index), src, srcIndex, localLength); index += localLength; srcIndex += localLength; length -= localLength; i ++; } return this; } @Override public int setBytes(int index, InputStream in, int length) throws IOException { checkIndex(index, length); if (length == 0) { return in.read(EmptyArrays.EMPTY_BYTES); } int i = toComponentIndex0(index); int readBytes = 0; do { Component c = components[i]; int localLength = Math.min(length, c.endOffset - index); if (localLength == 0) { // Skip empty buffer i++; continue; } int localReadBytes = c.buf.setBytes(c.idx(index), in, localLength); if (localReadBytes < 0) { if (readBytes == 0) { return -1; } else { break; } } index += localReadBytes; length -= localReadBytes; readBytes += localReadBytes; if (localReadBytes == localLength) { i ++; } } while (length > 0); return readBytes; } @Override public int setBytes(int index, ScatteringByteChannel in, int length) throws IOException { checkIndex(index, length); if (length == 0) { return in.read(EMPTY_NIO_BUFFER); } int i = toComponentIndex0(index); int readBytes = 0; do { Component c = components[i]; int localLength = Math.min(length, c.endOffset - index); if (localLength == 0) { // Skip empty buffer i++; continue; } int localReadBytes = c.buf.setBytes(c.idx(index), in, localLength); if (localReadBytes == 0) { break; } if (localReadBytes < 0) { if (readBytes == 0) { return -1; } else { break; } } index += localReadBytes; length -= localReadBytes; readBytes += localReadBytes; if (localReadBytes == localLength) { i ++; } } while (length > 0); return readBytes; } @Override public int setBytes(int index, FileChannel in, long position, int length) throws IOException { checkIndex(index, length); if (length == 0) { return in.read(EMPTY_NIO_BUFFER, position); } int i = toComponentIndex0(index); int readBytes = 0; do { Component c = components[i]; int localLength = Math.min(length, c.endOffset - index); if (localLength == 0) { // Skip empty buffer i++; continue; } int localReadBytes = c.buf.setBytes(c.idx(index), in, position + readBytes, localLength); if (localReadBytes == 0) { break; } if (localReadBytes < 0) { if (readBytes == 0) { return -1; } else { break; } } index += localReadBytes; length -= localReadBytes; readBytes += localReadBytes; if (localReadBytes == localLength) { i ++; } } while (length > 0); return readBytes; } @Override public ByteBuf copy(int index, int length) { checkIndex(index, length); ByteBuf dst = allocBuffer(length); if (length != 0) { copyTo(index, length, toComponentIndex0(index), dst); } return dst; } private void copyTo(int index, int length, int componentId, ByteBuf dst) { int dstIndex = 0; int i = componentId; while (length > 0) { Component c = components[i]; int localLength = Math.min(length, c.endOffset - index); c.buf.getBytes(c.idx(index), dst, dstIndex, localLength); index += localLength; dstIndex += localLength; length -= localLength; i ++; } dst.writerIndex(dst.capacity()); } /** * Return the {@link ByteBuf} on the specified index * * @param cIndex the index for which the {@link ByteBuf} should be returned * @return buf the {@link ByteBuf} on the specified index */ public ByteBuf component(int cIndex) { checkComponentIndex(cIndex); return components[cIndex].duplicate(); } /** * Return the {@link ByteBuf} on the specified index * * @param offset the offset for which the {@link ByteBuf} should be returned * @return the {@link ByteBuf} on the specified index */ public ByteBuf componentAtOffset(int offset) { return findComponent(offset).duplicate(); } /** * Return the internal {@link ByteBuf} on the specified index. Note that updating the indexes of the returned * buffer will lead to an undefined behavior of this buffer. * * @param cIndex the index for which the {@link ByteBuf} should be returned */ public ByteBuf internalComponent(int cIndex) { checkComponentIndex(cIndex); return components[cIndex].slice(); } /** * Return the internal {@link ByteBuf} on the specified offset. Note that updating the indexes of the returned * buffer will lead to an undefined behavior of this buffer. * * @param offset the offset for which the {@link ByteBuf} should be returned */ public ByteBuf internalComponentAtOffset(int offset) { return findComponent(offset).slice(); } // weak cache - check it first when looking for component private Component lastAccessed; private Component findComponent(int offset) { Component la = lastAccessed; if (la != null && offset >= la.offset && offset < la.endOffset) { ensureAccessible(); return la; } checkIndex(offset); return findIt(offset); } private Component findComponent0(int offset) { Component la = lastAccessed; if (la != null && offset >= la.offset && offset < la.endOffset) { return la; } return findIt(offset); } private Component findIt(int offset) { for (int low = 0, high = componentCount; low <= high;) { int mid = low + high >>> 1; Component c = components[mid]; if (c == null) { throw new IllegalStateException("No component found for offset. " + "Composite buffer layout might be outdated, e.g. from a discardReadBytes call."); } if (offset >= c.endOffset) { low = mid + 1; } else if (offset < c.offset) { high = mid - 1; } else { lastAccessed = c; return c; } } throw new Error("should not reach here"); } @Override public int nioBufferCount() { int size = componentCount; switch (size) { case 0: return 1; case 1: return components[0].buf.nioBufferCount(); default: int count = 0; for (int i = 0; i < size; i++) { count += components[i].buf.nioBufferCount(); } return count; } } @Override public ByteBuffer internalNioBuffer(int index, int length) { switch (componentCount) { case 0: return EMPTY_NIO_BUFFER; case 1: return components[0].internalNioBuffer(index, length); default: throw new UnsupportedOperationException(); } } @Override public ByteBuffer nioBuffer(int index, int length) { checkIndex(index, length); switch (componentCount) { case 0: return EMPTY_NIO_BUFFER; case 1: Component c = components[0]; ByteBuf buf = c.buf; if (buf.nioBufferCount() == 1) { return buf.nioBuffer(c.idx(index), length); } break; default: break; } ByteBuffer[] buffers = nioBuffers(index, length); if (buffers.length == 1) { return buffers[0]; } ByteBuffer merged = ByteBuffer.allocate(length).order(order()); for (ByteBuffer buf: buffers) { merged.put(buf); } merged.flip(); return merged; } @Override public ByteBuffer[] nioBuffers(int index, int length) { checkIndex(index, length); if (length == 0) { return new ByteBuffer[] { EMPTY_NIO_BUFFER }; } RecyclableArrayList buffers = RecyclableArrayList.newInstance(componentCount); try { int i = toComponentIndex0(index); while (length > 0) { Component c = components[i]; ByteBuf s = c.buf; int localLength = Math.min(length, c.endOffset - index); switch (s.nioBufferCount()) { case 0: throw new UnsupportedOperationException(); case 1: buffers.add(s.nioBuffer(c.idx(index), localLength)); break; default: Collections.addAll(buffers, s.nioBuffers(c.idx(index), localLength)); } index += localLength; length -= localLength; i ++; } return buffers.toArray(EmptyArrays.EMPTY_BYTE_BUFFERS); } finally { buffers.recycle(); } } /** * Consolidate the composed {@link ByteBuf}s */ public CompositeByteBuf consolidate() { ensureAccessible(); consolidate0(0, componentCount); return this; } /** * Consolidate the composed {@link ByteBuf}s * * @param cIndex the index on which to start to compose * @param numComponents the number of components to compose */ public CompositeByteBuf consolidate(int cIndex, int numComponents) { checkComponentIndex(cIndex, numComponents); consolidate0(cIndex, numComponents); return this; } private void consolidate0(int cIndex, int numComponents) { if (numComponents <= 1) { return; } final int endCIndex = cIndex + numComponents; final int startOffset = cIndex != 0 ? components[cIndex].offset : 0; final int capacity = components[endCIndex - 1].endOffset - startOffset; final ByteBuf consolidated = allocBuffer(capacity); for (int i = cIndex; i < endCIndex; i ++) { components[i].transferTo(consolidated); } lastAccessed = null; removeCompRange(cIndex + 1, endCIndex); components[cIndex] = newComponent(consolidated, 0); if (cIndex != 0 || numComponents != componentCount) { updateComponentOffsets(cIndex); } } /** * Discard all {@link ByteBuf}s which are read. */ public CompositeByteBuf discardReadComponents() { ensureAccessible(); final int readerIndex = readerIndex(); if (readerIndex == 0) { return this; } // Discard everything if (readerIndex = writerIndex = capacity). int writerIndex = writerIndex(); if (readerIndex == writerIndex && writerIndex == capacity()) { for (int i = 0, size = componentCount; i < size; i++) { components[i].free(); } lastAccessed = null; clearComps(); setIndex(0, 0); adjustMarkers(readerIndex); return this; } // Remove read components. int firstComponentId = 0; Component c = null; for (int size = componentCount; firstComponentId < size; firstComponentId++) { c = components[firstComponentId]; if (c.endOffset > readerIndex) { break; } c.free(); } if (firstComponentId == 0) { return this; // Nothing to discard } Component la = lastAccessed; if (la != null && la.endOffset <= readerIndex) { lastAccessed = null; } removeCompRange(0, firstComponentId); // Update indexes and markers. int offset = c.offset; updateComponentOffsets(0); setIndex(readerIndex - offset, writerIndex - offset); adjustMarkers(offset); return this; } @Override public CompositeByteBuf discardReadBytes() { ensureAccessible(); final int readerIndex = readerIndex(); if (readerIndex == 0) { return this; } // Discard everything if (readerIndex = writerIndex = capacity). int writerIndex = writerIndex(); if (readerIndex == writerIndex && writerIndex == capacity()) { for (int i = 0, size = componentCount; i < size; i++) { components[i].free(); } lastAccessed = null; clearComps(); setIndex(0, 0); adjustMarkers(readerIndex); return this; } int firstComponentId = 0; Component c = null; for (int size = componentCount; firstComponentId < size; firstComponentId++) { c = components[firstComponentId]; if (c.endOffset > readerIndex) { break; } c.free(); } // Replace the first readable component with a new slice. int trimmedBytes = readerIndex - c.offset; c.offset = 0; c.endOffset -= readerIndex; c.srcAdjustment += readerIndex; c.adjustment += readerIndex; ByteBuf slice = c.slice; if (slice != null) { // We must replace the cached slice with a derived one to ensure that // it can later be released properly in the case of PooledSlicedByteBuf. c.slice = slice.slice(trimmedBytes, c.length()); } Component la = lastAccessed; if (la != null && la.endOffset <= readerIndex) { lastAccessed = null; } removeCompRange(0, firstComponentId); // Update indexes and markers. updateComponentOffsets(0); setIndex(0, writerIndex - readerIndex); adjustMarkers(readerIndex); return this; } private ByteBuf allocBuffer(int capacity) { return direct ? alloc().directBuffer(capacity) : alloc().heapBuffer(capacity); } @Override public String toString() { String result = super.toString(); result = result.substring(0, result.length() - 1); return result + ", components=" + componentCount + ')'; } private static final class Component { final ByteBuf srcBuf; // the originally added buffer final ByteBuf buf; // srcBuf unwrapped zero or more times int srcAdjustment; // index of the start of this CompositeByteBuf relative to srcBuf int adjustment; // index of the start of this CompositeByteBuf relative to buf int offset; // offset of this component within this CompositeByteBuf int endOffset; // end offset of this component within this CompositeByteBuf private ByteBuf slice; // cached slice, may be null Component(ByteBuf srcBuf, int srcOffset, ByteBuf buf, int bufOffset, int offset, int len, ByteBuf slice) { this.srcBuf = srcBuf; this.srcAdjustment = srcOffset - offset; this.buf = buf; this.adjustment = bufOffset - offset; this.offset = offset; this.endOffset = offset + len; this.slice = slice; } int srcIdx(int index) { return index + srcAdjustment; } int idx(int index) { return index + adjustment; } int length() { return endOffset - offset; } void reposition(int newOffset) { int move = newOffset - offset; endOffset += move; srcAdjustment -= move; adjustment -= move; offset = newOffset; } // copy then release void transferTo(ByteBuf dst) { dst.writeBytes(buf, idx(offset), length()); free(); } ByteBuf slice() { ByteBuf s = slice; if (s == null) { slice = s = srcBuf.slice(srcIdx(offset), length()); } return s; } ByteBuf duplicate() { return srcBuf.duplicate(); } ByteBuffer internalNioBuffer(int index, int length) { // Some buffers override this so we must use srcBuf return srcBuf.internalNioBuffer(srcIdx(index), length); } void free() { slice = null; // Release the original buffer since it may have a different // refcount to the unwrapped buf (e.g. if PooledSlicedByteBuf) srcBuf.release(); } } @Override public CompositeByteBuf readerIndex(int readerIndex) { super.readerIndex(readerIndex); return this; } @Override public CompositeByteBuf writerIndex(int writerIndex) { super.writerIndex(writerIndex); return this; } @Override public CompositeByteBuf setIndex(int readerIndex, int writerIndex) { super.setIndex(readerIndex, writerIndex); return this; } @Override public CompositeByteBuf clear() { super.clear(); return this; } @Override public CompositeByteBuf markReaderIndex() { super.markReaderIndex(); return this; } @Override public CompositeByteBuf resetReaderIndex() { super.resetReaderIndex(); return this; } @Override public CompositeByteBuf markWriterIndex() { super.markWriterIndex(); return this; } @Override public CompositeByteBuf resetWriterIndex() { super.resetWriterIndex(); return this; } @Override public CompositeByteBuf ensureWritable(int minWritableBytes) { super.ensureWritable(minWritableBytes); return this; } @Override public CompositeByteBuf getBytes(int index, ByteBuf dst) { return getBytes(index, dst, dst.writableBytes()); } @Override public CompositeByteBuf getBytes(int index, ByteBuf dst, int length) { getBytes(index, dst, dst.writerIndex(), length); dst.writerIndex(dst.writerIndex() + length); return this; } @Override public CompositeByteBuf getBytes(int index, byte[] dst) { return getBytes(index, dst, 0, dst.length); } @Override public CompositeByteBuf setBoolean(int index, boolean value) { return setByte(index, value? 1 : 0); } @Override public CompositeByteBuf setChar(int index, int value) { return setShort(index, value); } @Override public CompositeByteBuf setFloat(int index, float value) { return setInt(index, Float.floatToRawIntBits(value)); } @Override public CompositeByteBuf setDouble(int index, double value) { return setLong(index, Double.doubleToRawLongBits(value)); } @Override public CompositeByteBuf setBytes(int index, ByteBuf src) { super.setBytes(index, src, src.readableBytes()); return this; } @Override public CompositeByteBuf setBytes(int index, ByteBuf src, int length) { super.setBytes(index, src, length); return this; } @Override public CompositeByteBuf setBytes(int index, byte[] src) { return setBytes(index, src, 0, src.length); } @Override public CompositeByteBuf setZero(int index, int length) { super.setZero(index, length); return this; } @Override public CompositeByteBuf readBytes(ByteBuf dst) { super.readBytes(dst, dst.writableBytes()); return this; } @Override public CompositeByteBuf readBytes(ByteBuf dst, int length) { super.readBytes(dst, length); return this; } @Override public CompositeByteBuf readBytes(ByteBuf dst, int dstIndex, int length) { super.readBytes(dst, dstIndex, length); return this; } @Override public CompositeByteBuf readBytes(byte[] dst) { super.readBytes(dst, 0, dst.length); return this; } @Override public CompositeByteBuf readBytes(byte[] dst, int dstIndex, int length) { super.readBytes(dst, dstIndex, length); return this; } @Override public CompositeByteBuf readBytes(ByteBuffer dst) { super.readBytes(dst); return this; } @Override public CompositeByteBuf readBytes(OutputStream out, int length) throws IOException { super.readBytes(out, length); return this; } @Override public CompositeByteBuf skipBytes(int length) { super.skipBytes(length); return this; } @Override public CompositeByteBuf writeBoolean(boolean value) { writeByte(value ? 1 : 0); return this; } @Override public CompositeByteBuf writeByte(int value) { ensureWritable0(1); _setByte(writerIndex++, value); return this; } @Override public CompositeByteBuf writeShort(int value) { super.writeShort(value); return this; } @Override public CompositeByteBuf writeMedium(int value) { super.writeMedium(value); return this; } @Override public CompositeByteBuf writeInt(int value) { super.writeInt(value); return this; } @Override public CompositeByteBuf writeLong(long value) { super.writeLong(value); return this; } @Override public CompositeByteBuf writeChar(int value) { super.writeShort(value); return this; } @Override public CompositeByteBuf writeFloat(float value) { super.writeInt(Float.floatToRawIntBits(value)); return this; } @Override public CompositeByteBuf writeDouble(double value) { super.writeLong(Double.doubleToRawLongBits(value)); return this; } @Override public CompositeByteBuf writeBytes(ByteBuf src) { super.writeBytes(src, src.readableBytes()); return this; } @Override public CompositeByteBuf writeBytes(ByteBuf src, int length) { super.writeBytes(src, length); return this; } @Override public CompositeByteBuf writeBytes(ByteBuf src, int srcIndex, int length) { super.writeBytes(src, srcIndex, length); return this; } @Override public CompositeByteBuf writeBytes(byte[] src) { super.writeBytes(src, 0, src.length); return this; } @Override public CompositeByteBuf writeBytes(byte[] src, int srcIndex, int length) { super.writeBytes(src, srcIndex, length); return this; } @Override public CompositeByteBuf writeBytes(ByteBuffer src) { super.writeBytes(src); return this; } @Override public CompositeByteBuf writeZero(int length) { super.writeZero(length); return this; } @Override public CompositeByteBuf retain(int increment) { super.retain(increment); return this; } @Override public CompositeByteBuf retain() { super.retain(); return this; } @Override public CompositeByteBuf touch() { return this; } @Override public CompositeByteBuf touch(Object hint) { return this; } @Override public ByteBuffer[] nioBuffers() { return nioBuffers(readerIndex(), readableBytes()); } @Override public CompositeByteBuf discardSomeReadBytes() { return discardReadComponents(); } @Override protected void deallocate() { if (freed) { return; } freed = true; // We're not using foreach to avoid creating an iterator. // see https://github.com/netty/netty/issues/2642 for (int i = 0, size = componentCount; i < size; i++) { components[i].free(); } } @Override boolean isAccessible() { return !freed; } @Override public ByteBuf unwrap() { return null; } private final class CompositeByteBufIterator implements Iterator { private final int size = numComponents(); private int index; @Override public boolean hasNext() { return size > index; } @Override public ByteBuf next() { if (size != numComponents()) { throw new ConcurrentModificationException(); } if (!hasNext()) { throw new NoSuchElementException(); } try { return components[index++].slice(); } catch (IndexOutOfBoundsException e) { throw new ConcurrentModificationException(); } } @Override public void remove() { throw new UnsupportedOperationException("Read-Only"); } } // Component array manipulation - range checking omitted private void clearComps() { removeCompRange(0, componentCount); } private void removeComp(int i) { removeCompRange(i, i + 1); } private void removeCompRange(int from, int to) { if (from >= to) { return; } final int size = componentCount; assert from >= 0 && to <= size; if (to < size) { System.arraycopy(components, to, components, from, size - to); } int newSize = size - to + from; for (int i = newSize; i < size; i++) { components[i] = null; } componentCount = newSize; } private void addComp(int i, Component c) { shiftComps(i, 1); components[i] = c; } private void shiftComps(int i, int count) { final int size = componentCount, newSize = size + count; assert i >= 0 && i <= size && count > 0; if (newSize > components.length) { // grow the array int newArrSize = Math.max(size + (size >> 1), newSize); Component[] newArr; if (i == size) { newArr = Arrays.copyOf(components, newArrSize, Component[].class); } else { newArr = new Component[newArrSize]; if (i > 0) { System.arraycopy(components, 0, newArr, 0, i); } if (i < size) { System.arraycopy(components, i, newArr, i + count, size - i); } } components = newArr; } else if (i < size) { System.arraycopy(components, i, components, i + count, size - i); } componentCount = newSize; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy