All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.collections.StaticBucketMap Maven / Gradle / Ivy

Go to download

This artifact provides a single jar that contains all classes required to use remote Jakarta Enterprise Beans and Jakarta Messaging, including all dependencies. It is intended for use by those not using maven, maven users should just import the Jakarta Enterprise Beans and Jakarta Messaging BOM's instead (shaded JAR's cause lots of problems with maven, as it is very easy to inadvertently end up with different versions on classes on the class path).

There is a newer version: 35.0.0.Final
Show newest version
/*
 *  Licensed to the Apache Software Foundation (ASF) under one or more
 *  contributor license agreements.  See the NOTICE file distributed with
 *  this work for additional information regarding copyright ownership.
 *  The ASF licenses this file to You under the Apache License, Version 2.0
 *  (the "License"); you may not use this file except in compliance with
 *  the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */
package org.apache.commons.collections;

import java.util.AbstractCollection;
import java.util.AbstractSet;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Iterator;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Set;

/**
 * A StaticBucketMap is an efficient, thread-safe implementation of
 * java.util.Map that performs well in in a highly
 * thread-contentious environment.  The map supports very efficient
 * {@link #get(Object) get}, {@link #put(Object,Object) put}, 
 * {@link #remove(Object) remove} and {@link #containsKey(Object) containsKey}
 * operations, assuming (approximate) uniform hashing and
 * that the number of entries does not exceed the number of buckets.  If the
 * number of entries exceeds the number of buckets or if the hash codes of the
 * objects are not uniformly distributed, these operations have a worst case
 * scenario that is proportional to the number of elements in the map
 * (O(n)).

* * Each bucket in the hash table has its own monitor, so two threads can * safely operate on the map at the same time, often without incurring any * monitor contention. This means that you don't have to wrap instances * of this class with {@link java.util.Collections#synchronizedMap(Map)}; * instances are already thread-safe. Unfortunately, however, this means * that this map implementation behaves in ways you may find disconcerting. * Bulk operations, such as {@link #putAll(Map) putAll} or the * {@link Collection#retainAll(Collection) retainAll} operation in collection * views, are not atomic. If two threads are simultaneously * executing * *

 *   staticBucketMapInstance.putAll(map);
 * 
* * and * *
 *   staticBucketMapInstance.entrySet().removeAll(map.entrySet());
 * 
* * then the results are generally random. Those two statement could cancel * each other out, leaving staticBucketMapInstance essentially * unchanged, or they could leave some random subset of map in * staticBucketMapInstance.

* * Also, much like an encyclopedia, the results of {@link #size()} and * {@link #isEmpty()} are out-of-date as soon as they are produced.

* * The iterators returned by the collection views of this class are not * fail-fast. They will never raise a * {@link java.util.ConcurrentModificationException}. Keys and values * added to the map after the iterator is created do not necessarily appear * during iteration. Similarly, the iterator does not necessarily fail to * return keys and values that were removed after the iterator was created.

* * Finally, unlike {@link java.util.HashMap}-style implementations, this * class never rehashes the map. The number of buckets is fixed * at construction time and never altered. Performance may degrade if * you do not allocate enough buckets upfront.

* * The {@link #atomic(Runnable)} method is provided to allow atomic iterations * and bulk operations; however, overuse of {@link #atomic(Runnable) atomic} * will basically result in a map that's slower than an ordinary synchronized * {@link java.util.HashMap}. * * Use this class if you do not require reliable bulk operations and * iterations, or if you can make your own guarantees about how bulk * operations will affect the map.

* * @deprecated Moved to map subpackage. Due to be removed in v4.0. * @since Commons Collections 2.1 * @version $Revision: 646777 $ $Date: 2008-04-10 14:33:15 +0200 (Thu, 10 Apr 2008) $ * * @author Berin Loritsch * @author Gerhard Froehlich * @author Michael A. Smith * @author Paul Jack * @author Leo Sutic * @author Janek Bogucki * @author Kazuya Ujihara */ public final class StaticBucketMap implements Map { private static final int DEFAULT_BUCKETS = 255; private Node[] m_buckets; private Lock[] m_locks; /** * Initializes the map with the default number of buckets (255). */ public StaticBucketMap() { this( DEFAULT_BUCKETS ); } /** * Initializes the map with a specified number of buckets. The number * of buckets is never below 17, and is always an odd number (StaticBucketMap * ensures this). The number of buckets is inversely proportional to the * chances for thread contention. The fewer buckets, the more chances for * thread contention. The more buckets the fewer chances for thread * contention. * * @param numBuckets the number of buckets for this map */ public StaticBucketMap( int numBuckets ) { int size = Math.max( 17, numBuckets ); // Ensure that bucketSize is never a power of 2 (to ensure maximal distribution) if( size % 2 == 0 ) { size--; } m_buckets = new Node[ size ]; m_locks = new Lock[ size ]; for( int i = 0; i < size; i++ ) { m_locks[ i ] = new Lock(); } } /** * Determine the exact hash entry for the key. The hash algorithm * is rather simplistic, but it does the job: * *

     *   He = |Hk mod n|
     * 
* *

* He is the entry's hashCode, Hk is the key's hashCode, and n is * the number of buckets. *

*/ private final int getHash( Object key ) { if( key == null ) return 0; int hash = key.hashCode(); hash += ~(hash << 15); hash ^= (hash >>> 10); hash += (hash << 3); hash ^= (hash >>> 6); hash += ~(hash << 11); hash ^= (hash >>> 16); hash %= m_buckets.length; return ( hash < 0 ) ? hash * -1 : hash; } /** * Implements {@link Map#keySet()}. */ public Set keySet() { return new KeySet(); } /** * Implements {@link Map#size()}. */ public int size() { int cnt = 0; for( int i = 0; i < m_buckets.length; i++ ) { cnt += m_locks[i].size; } return cnt; } /** * Implements {@link Map#put(Object, Object)}. */ public Object put( final Object key, final Object value ) { int hash = getHash( key ); synchronized( m_locks[ hash ] ) { Node n = m_buckets[ hash ]; if( n == null ) { n = new Node(); n.key = key; n.value = value; m_buckets[ hash ] = n; m_locks[hash].size++; return null; } // Set n to the last node in the linked list. Check each key along the way // If the key is found, then change the value of that node and return // the old value. for( Node next = n; next != null; next = next.next ) { n = next; if( n.key == key || ( n.key != null && n.key.equals( key ) ) ) { Object returnVal = n.value; n.value = value; return returnVal; } } // The key was not found in the current list of nodes, add it to the end // in a new node. Node newNode = new Node(); newNode.key = key; newNode.value = value; n.next = newNode; m_locks[hash].size++; } return null; } /** * Implements {@link Map#get(Object)}. */ public Object get( final Object key ) { int hash = getHash( key ); synchronized( m_locks[ hash ] ) { Node n = m_buckets[ hash ]; while( n != null ) { if( n.key == key || ( n.key != null && n.key.equals( key ) ) ) { return n.value; } n = n.next; } } return null; } /** * Implements {@link Map#containsKey(Object)}. */ public boolean containsKey( final Object key ) { int hash = getHash( key ); synchronized( m_locks[ hash ] ) { Node n = m_buckets[ hash ]; while( n != null ) { if( n.key == key || ( n.key != null && n.key.equals( key ) ) ) { return true; } n = n.next; } } return false; } /** * Implements {@link Map#containsValue(Object)}. */ public boolean containsValue( final Object value ) { for( int i = 0; i < m_buckets.length; i++ ) { synchronized( m_locks[ i ] ) { Node n = m_buckets[ i ]; while( n != null ) { if( n.value == value || (n.value != null && n.value.equals( value ) ) ) { return true; } n = n.next; } } } return false; } /** * Implements {@link Map#values()}. */ public Collection values() { return new Values(); } /** * Implements {@link Map#entrySet()}. */ public Set entrySet() { return new EntrySet(); } /** * Implements {@link Map#putAll(Map)}. */ public void putAll( Map other ) { Iterator i = other.keySet().iterator(); while( i.hasNext() ) { Object key = i.next(); put( key, other.get( key ) ); } } /** * Implements {@link Map#remove(Object)}. */ public Object remove( Object key ) { int hash = getHash( key ); synchronized( m_locks[ hash ] ) { Node n = m_buckets[ hash ]; Node prev = null; while( n != null ) { if( n.key == key || ( n.key != null && n.key.equals( key ) ) ) { // Remove this node from the linked list of nodes. if( null == prev ) { // This node was the head, set the next node to be the new head. m_buckets[ hash ] = n.next; } else { // Set the next node of the previous node to be the node after this one. prev.next = n.next; } m_locks[hash].size--; return n.value; } prev = n; n = n.next; } } return null; } /** * Implements {@link Map#isEmpty()}. */ public final boolean isEmpty() { return size() == 0; } /** * Implements {@link Map#clear()}. */ public final void clear() { for( int i = 0; i < m_buckets.length; i++ ) { Lock lock = m_locks[i]; synchronized (lock) { m_buckets[ i ] = null; lock.size = 0; } } } /** * Implements {@link Map#equals(Object)}. */ public final boolean equals( Object obj ) { if( obj == null ) return false; if( obj == this ) return true; if( !( obj instanceof Map ) ) return false; Map other = (Map)obj; return entrySet().equals(other.entrySet()); } /** * Implements {@link Map#hashCode()}. */ public final int hashCode() { int hashCode = 0; for( int i = 0; i < m_buckets.length; i++ ) { synchronized( m_locks[ i ] ) { Node n = m_buckets[ i ]; while( n != null ) { hashCode += n.hashCode(); n = n.next; } } } return hashCode; } /** * The Map.Entry for the StaticBucketMap. */ private static final class Node implements Map.Entry, KeyValue { protected Object key; protected Object value; protected Node next; public Object getKey() { return key; } public Object getValue() { return value; } public int hashCode() { return ( ( key == null ? 0 : key.hashCode() ) ^ ( value == null ? 0 : value.hashCode() ) ); } public boolean equals(Object o) { if( o == null ) return false; if( o == this ) return true; if ( ! (o instanceof Map.Entry ) ) return false; Map.Entry e2 = (Map.Entry)o; return ((key == null ? e2.getKey() == null : key.equals(e2.getKey())) && (value == null ? e2.getValue() == null : value.equals(e2.getValue()))); } public Object setValue( Object val ) { Object retVal = value; value = val; return retVal; } } private final static class Lock { public int size; } private class EntryIterator implements Iterator { private ArrayList current = new ArrayList(); private int bucket; private Map.Entry last; public boolean hasNext() { if (current.size() > 0) return true; while (bucket < m_buckets.length) { synchronized (m_locks[bucket]) { Node n = m_buckets[bucket]; while (n != null) { current.add(n); n = n.next; } bucket++; if (current.size() > 0) return true; } } return false; } protected Map.Entry nextEntry() { if (!hasNext()) throw new NoSuchElementException(); last = (Map.Entry)current.remove(current.size() - 1); return last; } public Object next() { return nextEntry(); } public void remove() { if (last == null) throw new IllegalStateException(); StaticBucketMap.this.remove(last.getKey()); last = null; } } private class ValueIterator extends EntryIterator { public Object next() { return nextEntry().getValue(); } } private class KeyIterator extends EntryIterator { public Object next() { return nextEntry().getKey(); } } private class EntrySet extends AbstractSet { public int size() { return StaticBucketMap.this.size(); } public void clear() { StaticBucketMap.this.clear(); } public Iterator iterator() { return new EntryIterator(); } public boolean contains(Object o) { Map.Entry entry = (Map.Entry)o; int hash = getHash(entry.getKey()); synchronized (m_locks[hash]) { for (Node n = m_buckets[hash]; n != null; n = n.next) { if (n.equals(entry)) return true; } } return false; } public boolean remove(Object obj) { if (obj instanceof Map.Entry == false) { return false; } Map.Entry entry = (Map.Entry) obj; int hash = getHash(entry.getKey()); synchronized (m_locks[hash]) { for (Node n = m_buckets[hash]; n != null; n = n.next) { if (n.equals(entry)) { StaticBucketMap.this.remove(n.getKey()); return true; } } } return false; } } private class KeySet extends AbstractSet { public int size() { return StaticBucketMap.this.size(); } public void clear() { StaticBucketMap.this.clear(); } public Iterator iterator() { return new KeyIterator(); } public boolean contains(Object o) { return StaticBucketMap.this.containsKey(o); } public boolean remove(Object o) { int hash = getHash(o); synchronized (m_locks[hash]) { for (Node n = m_buckets[hash]; n != null; n = n.next) { Object k = n.getKey(); if ((k == o) || ((k != null) && k.equals(o))) { StaticBucketMap.this.remove(k); return true; } } } return false; } } private class Values extends AbstractCollection { public int size() { return StaticBucketMap.this.size(); } public void clear() { StaticBucketMap.this.clear(); } public Iterator iterator() { return new ValueIterator(); } } /** * Prevents any operations from occurring on this map while the * given {@link Runnable} executes. This method can be used, for * instance, to execute a bulk operation atomically: * *
     *    staticBucketMapInstance.atomic(new Runnable() {
     *        public void run() {
     *            staticBucketMapInstance.putAll(map);
     *        }
     *    });
     *  
* * It can also be used if you need a reliable iterator: * *
     *    staticBucketMapInstance.atomic(new Runnable() {
     *        public void run() {
     *            Iterator iterator = staticBucketMapInstance.iterator();
     *            while (iterator.hasNext()) {
     *                foo(iterator.next();
     *            }
     *        }
     *    });
     *  
* * Implementation note: This method requires a lot of time * and a ton of stack space. Essentially a recursive algorithm is used * to enter each bucket's monitor. If you have twenty thousand buckets * in your map, then the recursive method will be invoked twenty thousand * times. You have been warned. * * @param r the code to execute atomically */ public void atomic(Runnable r) { if (r == null) throw new NullPointerException(); atomic(r, 0); } private void atomic(Runnable r, int bucket) { if (bucket >= m_buckets.length) { r.run(); return; } synchronized (m_locks[bucket]) { atomic(r, bucket + 1); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy