All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.common.graph.DirectedGraphConnections Maven / Gradle / Ivy

Go to download

This artifact provides a single jar that contains all classes required to use remote Jakarta Enterprise Beans and Jakarta Messaging, including all dependencies. It is intended for use by those not using maven, maven users should just import the Jakarta Enterprise Beans and Jakarta Messaging BOM's instead (shaded JAR's cause lots of problems with maven, as it is very easy to inadvertently end up with different versions on classes on the class path).

The newest version!
/*
 * Copyright (C) 2016 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.graph;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.base.Preconditions.checkState;
import static com.google.common.graph.GraphConstants.INNER_CAPACITY;
import static com.google.common.graph.GraphConstants.INNER_LOAD_FACTOR;
import static com.google.common.graph.Graphs.checkNonNegative;
import static com.google.common.graph.Graphs.checkPositive;

import com.google.common.base.Function;
import com.google.common.collect.AbstractIterator;
import com.google.common.collect.ImmutableList;
import com.google.common.collect.Iterators;
import com.google.common.collect.UnmodifiableIterator;
import java.util.AbstractSet;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import java.util.Set;
import java.util.concurrent.atomic.AtomicBoolean;
import javax.annotation.CheckForNull;

/**
 * An implementation of {@link GraphConnections} for directed graphs.
 *
 * @author James Sexton
 * @author Jens Nyman
 * @param  Node parameter type
 * @param  Value parameter type
 */
@ElementTypesAreNonnullByDefault
final class DirectedGraphConnections implements GraphConnections {
  /**
   * A wrapper class to indicate a node is both a predecessor and successor while still providing
   * the successor value.
   */
  private static final class PredAndSucc {
    private final Object successorValue;

    PredAndSucc(Object successorValue) {
      this.successorValue = successorValue;
    }
  }

  /**
   * A value class representing single connection between the origin node and another node.
   *
   * 

There can be two types of connections (predecessor and successor), which is represented by * the two implementations. */ private abstract static class NodeConnection { final N node; NodeConnection(N node) { this.node = checkNotNull(node); } static final class Pred extends NodeConnection { Pred(N node) { super(node); } @Override public boolean equals(@CheckForNull Object that) { if (that instanceof Pred) { return this.node.equals(((Pred) that).node); } else { return false; } } @Override public int hashCode() { // Adding the class hashCode to avoid a clash with Succ instances. return Pred.class.hashCode() + node.hashCode(); } } static final class Succ extends NodeConnection { Succ(N node) { super(node); } @Override public boolean equals(@CheckForNull Object that) { if (that instanceof Succ) { return this.node.equals(((Succ) that).node); } else { return false; } } @Override public int hashCode() { // Adding the class hashCode to avoid a clash with Pred instances. return Succ.class.hashCode() + node.hashCode(); } } } private static final Object PRED = new Object(); // Every value in this map must either be an instance of PredAndSucc with a successorValue of // type V, PRED (representing predecessor), or an instance of type V (representing successor). private final Map adjacentNodeValues; /** * All node connections in this graph, in edge insertion order. * *

Note: This field and {@link #adjacentNodeValues} cannot be combined into a single * LinkedHashMap because one target node may be mapped to both a predecessor and a successor. A * LinkedHashMap combines two such edges into a single node-value pair, even though the edges may * not have been inserted consecutively. */ @CheckForNull private final List> orderedNodeConnections; private int predecessorCount; private int successorCount; private DirectedGraphConnections( Map adjacentNodeValues, @CheckForNull List> orderedNodeConnections, int predecessorCount, int successorCount) { this.adjacentNodeValues = checkNotNull(adjacentNodeValues); this.orderedNodeConnections = orderedNodeConnections; this.predecessorCount = checkNonNegative(predecessorCount); this.successorCount = checkNonNegative(successorCount); checkState( predecessorCount <= adjacentNodeValues.size() && successorCount <= adjacentNodeValues.size()); } static DirectedGraphConnections of(ElementOrder incidentEdgeOrder) { // We store predecessors and successors in the same map, so double the initial capacity. int initialCapacity = INNER_CAPACITY * 2; List> orderedNodeConnections; switch (incidentEdgeOrder.type()) { case UNORDERED: orderedNodeConnections = null; break; case STABLE: orderedNodeConnections = new ArrayList<>(); break; default: throw new AssertionError(incidentEdgeOrder.type()); } return new DirectedGraphConnections<>( /* adjacentNodeValues = */ new HashMap(initialCapacity, INNER_LOAD_FACTOR), orderedNodeConnections, /* predecessorCount = */ 0, /* successorCount = */ 0); } static DirectedGraphConnections ofImmutable( N thisNode, Iterable> incidentEdges, Function successorNodeToValueFn) { checkNotNull(thisNode); checkNotNull(successorNodeToValueFn); Map adjacentNodeValues = new HashMap<>(); ImmutableList.Builder> orderedNodeConnectionsBuilder = ImmutableList.builder(); int predecessorCount = 0; int successorCount = 0; for (EndpointPair incidentEdge : incidentEdges) { if (incidentEdge.nodeU().equals(thisNode) && incidentEdge.nodeV().equals(thisNode)) { // incidentEdge is a self-loop adjacentNodeValues.put(thisNode, new PredAndSucc(successorNodeToValueFn.apply(thisNode))); orderedNodeConnectionsBuilder.add(new NodeConnection.Pred<>(thisNode)); orderedNodeConnectionsBuilder.add(new NodeConnection.Succ<>(thisNode)); predecessorCount++; successorCount++; } else if (incidentEdge.nodeV().equals(thisNode)) { // incidentEdge is an inEdge N predecessor = incidentEdge.nodeU(); Object existingValue = adjacentNodeValues.put(predecessor, PRED); if (existingValue != null) { adjacentNodeValues.put(predecessor, new PredAndSucc(existingValue)); } orderedNodeConnectionsBuilder.add(new NodeConnection.Pred<>(predecessor)); predecessorCount++; } else { // incidentEdge is an outEdge checkArgument(incidentEdge.nodeU().equals(thisNode)); N successor = incidentEdge.nodeV(); V value = successorNodeToValueFn.apply(successor); Object existingValue = adjacentNodeValues.put(successor, value); if (existingValue != null) { checkArgument(existingValue == PRED); adjacentNodeValues.put(successor, new PredAndSucc(value)); } orderedNodeConnectionsBuilder.add(new NodeConnection.Succ<>(successor)); successorCount++; } } return new DirectedGraphConnections<>( adjacentNodeValues, orderedNodeConnectionsBuilder.build(), predecessorCount, successorCount); } @Override public Set adjacentNodes() { if (orderedNodeConnections == null) { return Collections.unmodifiableSet(adjacentNodeValues.keySet()); } else { return new AbstractSet() { @Override public UnmodifiableIterator iterator() { Iterator> nodeConnections = orderedNodeConnections.iterator(); Set seenNodes = new HashSet<>(); return new AbstractIterator() { @Override @CheckForNull protected N computeNext() { while (nodeConnections.hasNext()) { NodeConnection nodeConnection = nodeConnections.next(); boolean added = seenNodes.add(nodeConnection.node); if (added) { return nodeConnection.node; } } return endOfData(); } }; } @Override public int size() { return adjacentNodeValues.size(); } @Override public boolean contains(@CheckForNull Object obj) { return adjacentNodeValues.containsKey(obj); } }; } } @Override public Set predecessors() { return new AbstractSet() { @Override public UnmodifiableIterator iterator() { if (orderedNodeConnections == null) { Iterator> entries = adjacentNodeValues.entrySet().iterator(); return new AbstractIterator() { @Override @CheckForNull protected N computeNext() { while (entries.hasNext()) { Entry entry = entries.next(); if (isPredecessor(entry.getValue())) { return entry.getKey(); } } return endOfData(); } }; } else { Iterator> nodeConnections = orderedNodeConnections.iterator(); return new AbstractIterator() { @Override @CheckForNull protected N computeNext() { while (nodeConnections.hasNext()) { NodeConnection nodeConnection = nodeConnections.next(); if (nodeConnection instanceof NodeConnection.Pred) { return nodeConnection.node; } } return endOfData(); } }; } } @Override public int size() { return predecessorCount; } @Override public boolean contains(@CheckForNull Object obj) { return isPredecessor(adjacentNodeValues.get(obj)); } }; } @Override public Set successors() { return new AbstractSet() { @Override public UnmodifiableIterator iterator() { if (orderedNodeConnections == null) { Iterator> entries = adjacentNodeValues.entrySet().iterator(); return new AbstractIterator() { @Override @CheckForNull protected N computeNext() { while (entries.hasNext()) { Entry entry = entries.next(); if (isSuccessor(entry.getValue())) { return entry.getKey(); } } return endOfData(); } }; } else { Iterator> nodeConnections = orderedNodeConnections.iterator(); return new AbstractIterator() { @Override @CheckForNull protected N computeNext() { while (nodeConnections.hasNext()) { NodeConnection nodeConnection = nodeConnections.next(); if (nodeConnection instanceof NodeConnection.Succ) { return nodeConnection.node; } } return endOfData(); } }; } } @Override public int size() { return successorCount; } @Override public boolean contains(@CheckForNull Object obj) { return isSuccessor(adjacentNodeValues.get(obj)); } }; } @Override public Iterator> incidentEdgeIterator(N thisNode) { checkNotNull(thisNode); Iterator> resultWithDoubleSelfLoop; if (orderedNodeConnections == null) { resultWithDoubleSelfLoop = Iterators.concat( Iterators.transform( predecessors().iterator(), (N predecessor) -> EndpointPair.ordered(predecessor, thisNode)), Iterators.transform( successors().iterator(), (N successor) -> EndpointPair.ordered(thisNode, successor))); } else { resultWithDoubleSelfLoop = Iterators.transform( orderedNodeConnections.iterator(), (NodeConnection connection) -> { if (connection instanceof NodeConnection.Succ) { return EndpointPair.ordered(thisNode, connection.node); } else { return EndpointPair.ordered(connection.node, thisNode); } }); } AtomicBoolean alreadySeenSelfLoop = new AtomicBoolean(false); return new AbstractIterator>() { @Override @CheckForNull protected EndpointPair computeNext() { while (resultWithDoubleSelfLoop.hasNext()) { EndpointPair edge = resultWithDoubleSelfLoop.next(); if (edge.nodeU().equals(edge.nodeV())) { if (!alreadySeenSelfLoop.getAndSet(true)) { return edge; } } else { return edge; } } return endOfData(); } }; } @SuppressWarnings("unchecked") @Override @CheckForNull public V value(N node) { checkNotNull(node); Object value = adjacentNodeValues.get(node); if (value == PRED) { return null; } if (value instanceof PredAndSucc) { return (V) ((PredAndSucc) value).successorValue; } return (V) value; } @SuppressWarnings("unchecked") @Override public void removePredecessor(N node) { checkNotNull(node); Object previousValue = adjacentNodeValues.get(node); boolean removedPredecessor; if (previousValue == PRED) { adjacentNodeValues.remove(node); removedPredecessor = true; } else if (previousValue instanceof PredAndSucc) { adjacentNodeValues.put((N) node, ((PredAndSucc) previousValue).successorValue); removedPredecessor = true; } else { removedPredecessor = false; } if (removedPredecessor) { checkNonNegative(--predecessorCount); if (orderedNodeConnections != null) { orderedNodeConnections.remove(new NodeConnection.Pred<>(node)); } } } @SuppressWarnings("unchecked") @Override @CheckForNull public V removeSuccessor(Object node) { checkNotNull(node); Object previousValue = adjacentNodeValues.get(node); Object removedValue; if (previousValue == null || previousValue == PRED) { removedValue = null; } else if (previousValue instanceof PredAndSucc) { adjacentNodeValues.put((N) node, PRED); removedValue = ((PredAndSucc) previousValue).successorValue; } else { // successor adjacentNodeValues.remove(node); removedValue = previousValue; } if (removedValue != null) { checkNonNegative(--successorCount); if (orderedNodeConnections != null) { orderedNodeConnections.remove(new NodeConnection.Succ<>((N) node)); } } /* * TODO(cpovirk): `return (V) removedValue` once our checker permits that. * * (We promoted a class of warnings into errors because sometimes they indicate real problems. * But now we need to "undo" some instance of spurious errors, as discussed in * https://github.com/jspecify/checker-framework/issues/8.) */ return removedValue == null ? null : (V) removedValue; } @Override public void addPredecessor(N node, V unused) { Object previousValue = adjacentNodeValues.put(node, PRED); boolean addedPredecessor; if (previousValue == null) { addedPredecessor = true; } else if (previousValue instanceof PredAndSucc) { // Restore previous PredAndSucc object. adjacentNodeValues.put(node, previousValue); addedPredecessor = false; } else if (previousValue != PRED) { // successor // Do NOT use method parameter value 'unused'. In directed graphs, successors store the value. adjacentNodeValues.put(node, new PredAndSucc(previousValue)); addedPredecessor = true; } else { addedPredecessor = false; } if (addedPredecessor) { checkPositive(++predecessorCount); if (orderedNodeConnections != null) { orderedNodeConnections.add(new NodeConnection.Pred<>(node)); } } } @SuppressWarnings("unchecked") @Override @CheckForNull public V addSuccessor(N node, V value) { Object previousValue = adjacentNodeValues.put(node, value); Object previousSuccessor; if (previousValue == null) { previousSuccessor = null; } else if (previousValue instanceof PredAndSucc) { adjacentNodeValues.put(node, new PredAndSucc(value)); previousSuccessor = ((PredAndSucc) previousValue).successorValue; } else if (previousValue == PRED) { adjacentNodeValues.put(node, new PredAndSucc(value)); previousSuccessor = null; } else { // successor previousSuccessor = previousValue; } if (previousSuccessor == null) { checkPositive(++successorCount); if (orderedNodeConnections != null) { orderedNodeConnections.add(new NodeConnection.Succ<>(node)); } } // See the comment on the similar cast in removeSuccessor. return previousSuccessor == null ? null : (V) previousSuccessor; } private static boolean isPredecessor(@CheckForNull Object value) { return (value == PRED) || (value instanceof PredAndSucc); } private static boolean isSuccessor(@CheckForNull Object value) { return (value != PRED) && (value != null); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy