All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.common.math.LongMath Maven / Gradle / Ivy

Go to download

This artifact provides a single jar that contains all classes required to use remote Jakarta Enterprise Beans and Jakarta Messaging, including all dependencies. It is intended for use by those not using maven, maven users should just import the Jakarta Enterprise Beans and Jakarta Messaging BOM's instead (shaded JAR's cause lots of problems with maven, as it is very easy to inadvertently end up with different versions on classes on the class path).

The newest version!
/*
 * Copyright (C) 2011 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
 * in compliance with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License
 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing permissions and limitations under
 * the License.
 */

package com.google.common.math;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.math.MathPreconditions.checkNoOverflow;
import static com.google.common.math.MathPreconditions.checkNonNegative;
import static com.google.common.math.MathPreconditions.checkPositive;
import static com.google.common.math.MathPreconditions.checkRoundingUnnecessary;
import static java.lang.Math.abs;
import static java.lang.Math.min;
import static java.math.RoundingMode.HALF_EVEN;
import static java.math.RoundingMode.HALF_UP;

import com.google.common.annotations.GwtCompatible;
import com.google.common.annotations.GwtIncompatible;
import com.google.common.annotations.J2ktIncompatible;
import com.google.common.annotations.VisibleForTesting;
import com.google.common.primitives.Longs;
import com.google.common.primitives.UnsignedLongs;
import java.math.BigInteger;
import java.math.RoundingMode;

/**
 * A class for arithmetic on values of type {@code long}. Where possible, methods are defined and
 * named analogously to their {@code BigInteger} counterparts.
 *
 * 

The implementations of many methods in this class are based on material from Henry S. Warren, * Jr.'s Hacker's Delight, (Addison Wesley, 2002). * *

Similar functionality for {@code int} and for {@link BigInteger} can be found in {@link * IntMath} and {@link BigIntegerMath} respectively. For other common operations on {@code long} * values, see {@link com.google.common.primitives.Longs}. * * @author Louis Wasserman * @since 11.0 */ @GwtCompatible(emulated = true) @ElementTypesAreNonnullByDefault public final class LongMath { // NOTE: Whenever both tests are cheap and functional, it's faster to use &, | instead of &&, || @VisibleForTesting static final long MAX_SIGNED_POWER_OF_TWO = 1L << (Long.SIZE - 2); /** * Returns the smallest power of two greater than or equal to {@code x}. This is equivalent to * {@code checkedPow(2, log2(x, CEILING))}. * * @throws IllegalArgumentException if {@code x <= 0} * @throws ArithmeticException of the next-higher power of two is not representable as a {@code * long}, i.e. when {@code x > 2^62} * @since 20.0 */ public static long ceilingPowerOfTwo(long x) { checkPositive("x", x); if (x > MAX_SIGNED_POWER_OF_TWO) { throw new ArithmeticException("ceilingPowerOfTwo(" + x + ") is not representable as a long"); } return 1L << -Long.numberOfLeadingZeros(x - 1); } /** * Returns the largest power of two less than or equal to {@code x}. This is equivalent to {@code * checkedPow(2, log2(x, FLOOR))}. * * @throws IllegalArgumentException if {@code x <= 0} * @since 20.0 */ public static long floorPowerOfTwo(long x) { checkPositive("x", x); // Long.highestOneBit was buggy on GWT. We've fixed it, but I'm not certain when the fix will // be released. return 1L << ((Long.SIZE - 1) - Long.numberOfLeadingZeros(x)); } /** * Returns {@code true} if {@code x} represents a power of two. * *

This differs from {@code Long.bitCount(x) == 1}, because {@code * Long.bitCount(Long.MIN_VALUE) == 1}, but {@link Long#MIN_VALUE} is not a power of two. */ @SuppressWarnings("ShortCircuitBoolean") public static boolean isPowerOfTwo(long x) { return x > 0 & (x & (x - 1)) == 0; } /** * Returns 1 if {@code x < y} as unsigned longs, and 0 otherwise. Assumes that x - y fits into a * signed long. The implementation is branch-free, and benchmarks suggest it is measurably faster * than the straightforward ternary expression. */ @VisibleForTesting static int lessThanBranchFree(long x, long y) { // Returns the sign bit of x - y. return (int) (~~(x - y) >>> (Long.SIZE - 1)); } /** * Returns the base-2 logarithm of {@code x}, rounded according to the specified rounding mode. * * @throws IllegalArgumentException if {@code x <= 0} * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x} * is not a power of two */ @SuppressWarnings("fallthrough") // TODO(kevinb): remove after this warning is disabled globally public static int log2(long x, RoundingMode mode) { checkPositive("x", x); switch (mode) { case UNNECESSARY: checkRoundingUnnecessary(isPowerOfTwo(x)); // fall through case DOWN: case FLOOR: return (Long.SIZE - 1) - Long.numberOfLeadingZeros(x); case UP: case CEILING: return Long.SIZE - Long.numberOfLeadingZeros(x - 1); case HALF_DOWN: case HALF_UP: case HALF_EVEN: // Since sqrt(2) is irrational, log2(x) - logFloor cannot be exactly 0.5 int leadingZeros = Long.numberOfLeadingZeros(x); long cmp = MAX_POWER_OF_SQRT2_UNSIGNED >>> leadingZeros; // floor(2^(logFloor + 0.5)) int logFloor = (Long.SIZE - 1) - leadingZeros; return logFloor + lessThanBranchFree(cmp, x); } throw new AssertionError("impossible"); } /** The biggest half power of two that fits into an unsigned long */ @VisibleForTesting static final long MAX_POWER_OF_SQRT2_UNSIGNED = 0xB504F333F9DE6484L; /** * Returns the base-10 logarithm of {@code x}, rounded according to the specified rounding mode. * * @throws IllegalArgumentException if {@code x <= 0} * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x} * is not a power of ten */ @J2ktIncompatible @GwtIncompatible // TODO @SuppressWarnings("fallthrough") // TODO(kevinb): remove after this warning is disabled globally public static int log10(long x, RoundingMode mode) { checkPositive("x", x); int logFloor = log10Floor(x); long floorPow = powersOf10[logFloor]; switch (mode) { case UNNECESSARY: checkRoundingUnnecessary(x == floorPow); // fall through case FLOOR: case DOWN: return logFloor; case CEILING: case UP: return logFloor + lessThanBranchFree(floorPow, x); case HALF_DOWN: case HALF_UP: case HALF_EVEN: // sqrt(10) is irrational, so log10(x)-logFloor is never exactly 0.5 return logFloor + lessThanBranchFree(halfPowersOf10[logFloor], x); } throw new AssertionError(); } @J2ktIncompatible @GwtIncompatible // TODO static int log10Floor(long x) { /* * Based on Hacker's Delight Fig. 11-5, the two-table-lookup, branch-free implementation. * * The key idea is that based on the number of leading zeros (equivalently, floor(log2(x))), we * can narrow the possible floor(log10(x)) values to two. For example, if floor(log2(x)) is 6, * then 64 <= x < 128, so floor(log10(x)) is either 1 or 2. */ int y = maxLog10ForLeadingZeros[Long.numberOfLeadingZeros(x)]; /* * y is the higher of the two possible values of floor(log10(x)). If x < 10^y, then we want the * lower of the two possible values, or y - 1, otherwise, we want y. */ return y - lessThanBranchFree(x, powersOf10[y]); } // maxLog10ForLeadingZeros[i] == floor(log10(2^(Long.SIZE - i))) @VisibleForTesting static final byte[] maxLog10ForLeadingZeros = { 19, 18, 18, 18, 18, 17, 17, 17, 16, 16, 16, 15, 15, 15, 15, 14, 14, 14, 13, 13, 13, 12, 12, 12, 12, 11, 11, 11, 10, 10, 10, 9, 9, 9, 9, 8, 8, 8, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 0, 0, 0 }; @J2ktIncompatible @GwtIncompatible // TODO @VisibleForTesting static final long[] powersOf10 = { 1L, 10L, 100L, 1000L, 10000L, 100000L, 1000000L, 10000000L, 100000000L, 1000000000L, 10000000000L, 100000000000L, 1000000000000L, 10000000000000L, 100000000000000L, 1000000000000000L, 10000000000000000L, 100000000000000000L, 1000000000000000000L }; // halfPowersOf10[i] = largest long less than 10^(i + 0.5) @J2ktIncompatible @GwtIncompatible // TODO @VisibleForTesting static final long[] halfPowersOf10 = { 3L, 31L, 316L, 3162L, 31622L, 316227L, 3162277L, 31622776L, 316227766L, 3162277660L, 31622776601L, 316227766016L, 3162277660168L, 31622776601683L, 316227766016837L, 3162277660168379L, 31622776601683793L, 316227766016837933L, 3162277660168379331L }; /** * Returns {@code b} to the {@code k}th power. Even if the result overflows, it will be equal to * {@code BigInteger.valueOf(b).pow(k).longValue()}. This implementation runs in {@code O(log k)} * time. * * @throws IllegalArgumentException if {@code k < 0} */ @J2ktIncompatible @GwtIncompatible // TODO public static long pow(long b, int k) { checkNonNegative("exponent", k); if (-2 <= b && b <= 2) { switch ((int) b) { case 0: return (k == 0) ? 1 : 0; case 1: return 1; case (-1): return ((k & 1) == 0) ? 1 : -1; case 2: return (k < Long.SIZE) ? 1L << k : 0; case (-2): if (k < Long.SIZE) { return ((k & 1) == 0) ? 1L << k : -(1L << k); } else { return 0; } default: throw new AssertionError(); } } for (long accum = 1; ; k >>= 1) { switch (k) { case 0: return accum; case 1: return accum * b; default: accum *= ((k & 1) == 0) ? 1 : b; b *= b; } } } /** * Returns the square root of {@code x}, rounded with the specified rounding mode. * * @throws IllegalArgumentException if {@code x < 0} * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code * sqrt(x)} is not an integer */ @J2ktIncompatible @GwtIncompatible // TODO public static long sqrt(long x, RoundingMode mode) { checkNonNegative("x", x); if (fitsInInt(x)) { return IntMath.sqrt((int) x, mode); } /* * Let k be the true value of floor(sqrt(x)), so that * * k * k <= x < (k + 1) * (k + 1) * (double) (k * k) <= (double) x <= (double) ((k + 1) * (k + 1)) * since casting to double is nondecreasing. * Note that the right-hand inequality is no longer strict. * Math.sqrt(k * k) <= Math.sqrt(x) <= Math.sqrt((k + 1) * (k + 1)) * since Math.sqrt is monotonic. * (long) Math.sqrt(k * k) <= (long) Math.sqrt(x) <= (long) Math.sqrt((k + 1) * (k + 1)) * since casting to long is monotonic * k <= (long) Math.sqrt(x) <= k + 1 * since (long) Math.sqrt(k * k) == k, as checked exhaustively in * {@link LongMathTest#testSqrtOfPerfectSquareAsDoubleIsPerfect} */ long guess = (long) Math.sqrt((double) x); // Note: guess is always <= FLOOR_SQRT_MAX_LONG. long guessSquared = guess * guess; // Note (2013-2-26): benchmarks indicate that, inscrutably enough, using if statements is // faster here than using lessThanBranchFree. switch (mode) { case UNNECESSARY: checkRoundingUnnecessary(guessSquared == x); return guess; case FLOOR: case DOWN: if (x < guessSquared) { return guess - 1; } return guess; case CEILING: case UP: if (x > guessSquared) { return guess + 1; } return guess; case HALF_DOWN: case HALF_UP: case HALF_EVEN: long sqrtFloor = guess - ((x < guessSquared) ? 1 : 0); long halfSquare = sqrtFloor * sqrtFloor + sqrtFloor; /* * We wish to test whether or not x <= (sqrtFloor + 0.5)^2 = halfSquare + 0.25. Since both x * and halfSquare are integers, this is equivalent to testing whether or not x <= * halfSquare. (We have to deal with overflow, though.) * * If we treat halfSquare as an unsigned long, we know that * sqrtFloor^2 <= x < (sqrtFloor + 1)^2 * halfSquare - sqrtFloor <= x < halfSquare + sqrtFloor + 1 * so |x - halfSquare| <= sqrtFloor. Therefore, it's safe to treat x - halfSquare as a * signed long, so lessThanBranchFree is safe for use. */ return sqrtFloor + lessThanBranchFree(halfSquare, x); } throw new AssertionError(); } /** * Returns the result of dividing {@code p} by {@code q}, rounding using the specified {@code * RoundingMode}. * * @throws ArithmeticException if {@code q == 0}, or if {@code mode == UNNECESSARY} and {@code a} * is not an integer multiple of {@code b} */ @J2ktIncompatible @GwtIncompatible // TODO @SuppressWarnings("fallthrough") public static long divide(long p, long q, RoundingMode mode) { checkNotNull(mode); long div = p / q; // throws if q == 0 long rem = p - q * div; // equals p % q if (rem == 0) { return div; } /* * Normal Java division rounds towards 0, consistently with RoundingMode.DOWN. We just have to * deal with the cases where rounding towards 0 is wrong, which typically depends on the sign of * p / q. * * signum is 1 if p and q are both nonnegative or both negative, and -1 otherwise. */ int signum = 1 | (int) ((p ^ q) >> (Long.SIZE - 1)); boolean increment; switch (mode) { case UNNECESSARY: checkRoundingUnnecessary(rem == 0); // fall through case DOWN: increment = false; break; case UP: increment = true; break; case CEILING: increment = signum > 0; break; case FLOOR: increment = signum < 0; break; case HALF_EVEN: case HALF_DOWN: case HALF_UP: long absRem = abs(rem); long cmpRemToHalfDivisor = absRem - (abs(q) - absRem); // subtracting two nonnegative longs can't overflow // cmpRemToHalfDivisor has the same sign as compare(abs(rem), abs(q) / 2). if (cmpRemToHalfDivisor == 0) { // exactly on the half mark increment = (mode == HALF_UP || (mode == HALF_EVEN && (div & 1) != 0)); } else { increment = cmpRemToHalfDivisor > 0; // closer to the UP value } break; default: throw new AssertionError(); } return increment ? div + signum : div; } /** * Returns {@code x mod m}, a non-negative value less than {@code m}. This differs from {@code x % * m}, which might be negative. * *

For example: * *

{@code
   * mod(7, 4) == 3
   * mod(-7, 4) == 1
   * mod(-1, 4) == 3
   * mod(-8, 4) == 0
   * mod(8, 4) == 0
   * }
* * @throws ArithmeticException if {@code m <= 0} * @see * Remainder Operator */ @J2ktIncompatible @GwtIncompatible // TODO public static int mod(long x, int m) { // Cast is safe because the result is guaranteed in the range [0, m) return (int) mod(x, (long) m); } /** * Returns {@code x mod m}, a non-negative value less than {@code m}. This differs from {@code x % * m}, which might be negative. * *

For example: * *

{@code
   * mod(7, 4) == 3
   * mod(-7, 4) == 1
   * mod(-1, 4) == 3
   * mod(-8, 4) == 0
   * mod(8, 4) == 0
   * }
* * @throws ArithmeticException if {@code m <= 0} * @see * Remainder Operator */ @J2ktIncompatible @GwtIncompatible // TODO public static long mod(long x, long m) { if (m <= 0) { throw new ArithmeticException("Modulus must be positive"); } long result = x % m; return (result >= 0) ? result : result + m; } /** * Returns the greatest common divisor of {@code a, b}. Returns {@code 0} if {@code a == 0 && b == * 0}. * * @throws IllegalArgumentException if {@code a < 0} or {@code b < 0} */ public static long gcd(long a, long b) { /* * The reason we require both arguments to be >= 0 is because otherwise, what do you return on * gcd(0, Long.MIN_VALUE)? BigInteger.gcd would return positive 2^63, but positive 2^63 isn't an * int. */ checkNonNegative("a", a); checkNonNegative("b", b); if (a == 0) { // 0 % b == 0, so b divides a, but the converse doesn't hold. // BigInteger.gcd is consistent with this decision. return b; } else if (b == 0) { return a; // similar logic } /* * Uses the binary GCD algorithm; see http://en.wikipedia.org/wiki/Binary_GCD_algorithm. This is * >60% faster than the Euclidean algorithm in benchmarks. */ int aTwos = Long.numberOfTrailingZeros(a); a >>= aTwos; // divide out all 2s int bTwos = Long.numberOfTrailingZeros(b); b >>= bTwos; // divide out all 2s while (a != b) { // both a, b are odd // The key to the binary GCD algorithm is as follows: // Both a and b are odd. Assume a > b; then gcd(a - b, b) = gcd(a, b). // But in gcd(a - b, b), a - b is even and b is odd, so we can divide out powers of two. // We bend over backwards to avoid branching, adapting a technique from // http://graphics.stanford.edu/~seander/bithacks.html#IntegerMinOrMax long delta = a - b; // can't overflow, since a and b are nonnegative long minDeltaOrZero = delta & (delta >> (Long.SIZE - 1)); // equivalent to Math.min(delta, 0) a = delta - minDeltaOrZero - minDeltaOrZero; // sets a to Math.abs(a - b) // a is now nonnegative and even b += minDeltaOrZero; // sets b to min(old a, b) a >>= Long.numberOfTrailingZeros(a); // divide out all 2s, since 2 doesn't divide b } return a << min(aTwos, bTwos); } /** * Returns the sum of {@code a} and {@code b}, provided it does not overflow. * * @throws ArithmeticException if {@code a + b} overflows in signed {@code long} arithmetic */ @SuppressWarnings("ShortCircuitBoolean") public static long checkedAdd(long a, long b) { long result = a + b; checkNoOverflow((a ^ b) < 0 | (a ^ result) >= 0, "checkedAdd", a, b); return result; } /** * Returns the difference of {@code a} and {@code b}, provided it does not overflow. * * @throws ArithmeticException if {@code a - b} overflows in signed {@code long} arithmetic */ @J2ktIncompatible @GwtIncompatible // TODO @SuppressWarnings("ShortCircuitBoolean") public static long checkedSubtract(long a, long b) { long result = a - b; checkNoOverflow((a ^ b) >= 0 | (a ^ result) >= 0, "checkedSubtract", a, b); return result; } /** * Returns the product of {@code a} and {@code b}, provided it does not overflow. * * @throws ArithmeticException if {@code a * b} overflows in signed {@code long} arithmetic */ @SuppressWarnings("ShortCircuitBoolean") public static long checkedMultiply(long a, long b) { // Hacker's Delight, Section 2-12 int leadingZeros = Long.numberOfLeadingZeros(a) + Long.numberOfLeadingZeros(~a) + Long.numberOfLeadingZeros(b) + Long.numberOfLeadingZeros(~b); /* * If leadingZeros > Long.SIZE + 1 it's definitely fine, if it's < Long.SIZE it's definitely * bad. We do the leadingZeros check to avoid the division below if at all possible. * * Otherwise, if b == Long.MIN_VALUE, then the only allowed values of a are 0 and 1. We take * care of all a < 0 with their own check, because in particular, the case a == -1 will * incorrectly pass the division check below. * * In all other cases, we check that either a is 0 or the result is consistent with division. */ if (leadingZeros > Long.SIZE + 1) { return a * b; } checkNoOverflow(leadingZeros >= Long.SIZE, "checkedMultiply", a, b); checkNoOverflow(a >= 0 | b != Long.MIN_VALUE, "checkedMultiply", a, b); long result = a * b; checkNoOverflow(a == 0 || result / a == b, "checkedMultiply", a, b); return result; } /** * Returns the {@code b} to the {@code k}th power, provided it does not overflow. * * @throws ArithmeticException if {@code b} to the {@code k}th power overflows in signed {@code * long} arithmetic */ @J2ktIncompatible @GwtIncompatible // TODO @SuppressWarnings("ShortCircuitBoolean") public static long checkedPow(long b, int k) { checkNonNegative("exponent", k); if (b >= -2 & b <= 2) { switch ((int) b) { case 0: return (k == 0) ? 1 : 0; case 1: return 1; case (-1): return ((k & 1) == 0) ? 1 : -1; case 2: checkNoOverflow(k < Long.SIZE - 1, "checkedPow", b, k); return 1L << k; case (-2): checkNoOverflow(k < Long.SIZE, "checkedPow", b, k); return ((k & 1) == 0) ? (1L << k) : (-1L << k); default: throw new AssertionError(); } } long accum = 1; while (true) { switch (k) { case 0: return accum; case 1: return checkedMultiply(accum, b); default: if ((k & 1) != 0) { accum = checkedMultiply(accum, b); } k >>= 1; if (k > 0) { checkNoOverflow( -FLOOR_SQRT_MAX_LONG <= b && b <= FLOOR_SQRT_MAX_LONG, "checkedPow", b, k); b *= b; } } } } /** * Returns the sum of {@code a} and {@code b} unless it would overflow or underflow in which case * {@code Long.MAX_VALUE} or {@code Long.MIN_VALUE} is returned, respectively. * * @since 20.0 */ @SuppressWarnings("ShortCircuitBoolean") public static long saturatedAdd(long a, long b) { long naiveSum = a + b; if ((a ^ b) < 0 | (a ^ naiveSum) >= 0) { // If a and b have different signs or a has the same sign as the result then there was no // overflow, return. return naiveSum; } // we did over/under flow, if the sign is negative we should return MAX otherwise MIN return Long.MAX_VALUE + ((naiveSum >>> (Long.SIZE - 1)) ^ 1); } /** * Returns the difference of {@code a} and {@code b} unless it would overflow or underflow in * which case {@code Long.MAX_VALUE} or {@code Long.MIN_VALUE} is returned, respectively. * * @since 20.0 */ @SuppressWarnings("ShortCircuitBoolean") public static long saturatedSubtract(long a, long b) { long naiveDifference = a - b; if ((a ^ b) >= 0 | (a ^ naiveDifference) >= 0) { // If a and b have the same signs or a has the same sign as the result then there was no // overflow, return. return naiveDifference; } // we did over/under flow return Long.MAX_VALUE + ((naiveDifference >>> (Long.SIZE - 1)) ^ 1); } /** * Returns the product of {@code a} and {@code b} unless it would overflow or underflow in which * case {@code Long.MAX_VALUE} or {@code Long.MIN_VALUE} is returned, respectively. * * @since 20.0 */ @SuppressWarnings("ShortCircuitBoolean") public static long saturatedMultiply(long a, long b) { // see checkedMultiply for explanation int leadingZeros = Long.numberOfLeadingZeros(a) + Long.numberOfLeadingZeros(~a) + Long.numberOfLeadingZeros(b) + Long.numberOfLeadingZeros(~b); if (leadingZeros > Long.SIZE + 1) { return a * b; } // the return value if we will overflow (which we calculate by overflowing a long :) ) long limit = Long.MAX_VALUE + ((a ^ b) >>> (Long.SIZE - 1)); if (leadingZeros < Long.SIZE | (a < 0 & b == Long.MIN_VALUE)) { // overflow return limit; } long result = a * b; if (a == 0 || result / a == b) { return result; } return limit; } /** * Returns the {@code b} to the {@code k}th power, unless it would overflow or underflow in which * case {@code Long.MAX_VALUE} or {@code Long.MIN_VALUE} is returned, respectively. * * @since 20.0 */ @SuppressWarnings("ShortCircuitBoolean") public static long saturatedPow(long b, int k) { checkNonNegative("exponent", k); if (b >= -2 & b <= 2) { switch ((int) b) { case 0: return (k == 0) ? 1 : 0; case 1: return 1; case (-1): return ((k & 1) == 0) ? 1 : -1; case 2: if (k >= Long.SIZE - 1) { return Long.MAX_VALUE; } return 1L << k; case (-2): if (k >= Long.SIZE) { return Long.MAX_VALUE + (k & 1); } return ((k & 1) == 0) ? (1L << k) : (-1L << k); default: throw new AssertionError(); } } long accum = 1; // if b is negative and k is odd then the limit is MIN otherwise the limit is MAX long limit = Long.MAX_VALUE + ((b >>> (Long.SIZE - 1)) & (k & 1)); while (true) { switch (k) { case 0: return accum; case 1: return saturatedMultiply(accum, b); default: if ((k & 1) != 0) { accum = saturatedMultiply(accum, b); } k >>= 1; if (k > 0) { if (-FLOOR_SQRT_MAX_LONG > b | b > FLOOR_SQRT_MAX_LONG) { return limit; } b *= b; } } } } @VisibleForTesting static final long FLOOR_SQRT_MAX_LONG = 3037000499L; /** * Returns {@code n!}, that is, the product of the first {@code n} positive integers, {@code 1} if * {@code n == 0}, or {@link Long#MAX_VALUE} if the result does not fit in a {@code long}. * * @throws IllegalArgumentException if {@code n < 0} */ @J2ktIncompatible @GwtIncompatible // TODO public static long factorial(int n) { checkNonNegative("n", n); return (n < factorials.length) ? factorials[n] : Long.MAX_VALUE; } static final long[] factorials = { 1L, 1L, 1L * 2, 1L * 2 * 3, 1L * 2 * 3 * 4, 1L * 2 * 3 * 4 * 5, 1L * 2 * 3 * 4 * 5 * 6, 1L * 2 * 3 * 4 * 5 * 6 * 7, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18 * 19, 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18 * 19 * 20 }; /** * Returns {@code n} choose {@code k}, also known as the binomial coefficient of {@code n} and * {@code k}, or {@link Long#MAX_VALUE} if the result does not fit in a {@code long}. * * @throws IllegalArgumentException if {@code n < 0}, {@code k < 0}, or {@code k > n} */ public static long binomial(int n, int k) { checkNonNegative("n", n); checkNonNegative("k", k); checkArgument(k <= n, "k (%s) > n (%s)", k, n); if (k > (n >> 1)) { k = n - k; } switch (k) { case 0: return 1; case 1: return n; default: if (n < factorials.length) { return factorials[n] / (factorials[k] * factorials[n - k]); } else if (k >= biggestBinomials.length || n > biggestBinomials[k]) { return Long.MAX_VALUE; } else if (k < biggestSimpleBinomials.length && n <= biggestSimpleBinomials[k]) { // guaranteed not to overflow long result = n--; for (int i = 2; i <= k; n--, i++) { result *= n; result /= i; } return result; } else { int nBits = LongMath.log2(n, RoundingMode.CEILING); long result = 1; long numerator = n--; long denominator = 1; int numeratorBits = nBits; // This is an upper bound on log2(numerator, ceiling). /* * We want to do this in long math for speed, but want to avoid overflow. We adapt the * technique previously used by BigIntegerMath: maintain separate numerator and * denominator accumulators, multiplying the fraction into result when near overflow. */ for (int i = 2; i <= k; i++, n--) { if (numeratorBits + nBits < Long.SIZE - 1) { // It's definitely safe to multiply into numerator and denominator. numerator *= n; denominator *= i; numeratorBits += nBits; } else { // It might not be safe to multiply into numerator and denominator, // so multiply (numerator / denominator) into result. result = multiplyFraction(result, numerator, denominator); numerator = n; denominator = i; numeratorBits = nBits; } } return multiplyFraction(result, numerator, denominator); } } } /** Returns (x * numerator / denominator), which is assumed to come out to an integral value. */ static long multiplyFraction(long x, long numerator, long denominator) { if (x == 1) { return numerator / denominator; } long commonDivisor = gcd(x, denominator); x /= commonDivisor; denominator /= commonDivisor; // We know gcd(x, denominator) = 1, and x * numerator / denominator is exact, // so denominator must be a divisor of numerator. return x * (numerator / denominator); } /* * binomial(biggestBinomials[k], k) fits in a long, but not binomial(biggestBinomials[k] + 1, k). */ static final int[] biggestBinomials = { Integer.MAX_VALUE, Integer.MAX_VALUE, Integer.MAX_VALUE, 3810779, 121977, 16175, 4337, 1733, 887, 534, 361, 265, 206, 169, 143, 125, 111, 101, 94, 88, 83, 79, 76, 74, 72, 70, 69, 68, 67, 67, 66, 66, 66, 66 }; /* * binomial(biggestSimpleBinomials[k], k) doesn't need to use the slower GCD-based impl, but * binomial(biggestSimpleBinomials[k] + 1, k) does. */ @VisibleForTesting static final int[] biggestSimpleBinomials = { Integer.MAX_VALUE, Integer.MAX_VALUE, Integer.MAX_VALUE, 2642246, 86251, 11724, 3218, 1313, 684, 419, 287, 214, 169, 139, 119, 105, 95, 87, 81, 76, 73, 70, 68, 66, 64, 63, 62, 62, 61, 61, 61 }; // These values were generated by using checkedMultiply to see when the simple multiply/divide // algorithm would lead to an overflow. static boolean fitsInInt(long x) { return (int) x == x; } /** * Returns the arithmetic mean of {@code x} and {@code y}, rounded toward negative infinity. This * method is resilient to overflow. * * @since 14.0 */ public static long mean(long x, long y) { // Efficient method for computing the arithmetic mean. // The alternative (x + y) / 2 fails for large values. // The alternative (x + y) >>> 1 fails for negative values. return (x & y) + ((x ^ y) >> 1); } /* * This bitmask is used as an optimization for cheaply testing for divisibility by 2, 3, or 5. * Each bit is set to 1 for all remainders that indicate divisibility by 2, 3, or 5, so * 1, 7, 11, 13, 17, 19, 23, 29 are set to 0. 30 and up don't matter because they won't be hit. */ private static final int SIEVE_30 = ~((1 << 1) | (1 << 7) | (1 << 11) | (1 << 13) | (1 << 17) | (1 << 19) | (1 << 23) | (1 << 29)); /** * Returns {@code true} if {@code n} is a prime number: an integer greater * than one that cannot be factored into a product of smaller positive integers. * Returns {@code false} if {@code n} is zero, one, or a composite number (one which can be * factored into smaller positive integers). * *

To test larger numbers, use {@link BigInteger#isProbablePrime}. * * @throws IllegalArgumentException if {@code n} is negative * @since 20.0 */ @J2ktIncompatible @GwtIncompatible // TODO public static boolean isPrime(long n) { if (n < 2) { checkNonNegative("n", n); return false; } if (n < 66) { // Encode all primes less than 66 into mask without 0 and 1. long mask = (1L << (2 - 2)) | (1L << (3 - 2)) | (1L << (5 - 2)) | (1L << (7 - 2)) | (1L << (11 - 2)) | (1L << (13 - 2)) | (1L << (17 - 2)) | (1L << (19 - 2)) | (1L << (23 - 2)) | (1L << (29 - 2)) | (1L << (31 - 2)) | (1L << (37 - 2)) | (1L << (41 - 2)) | (1L << (43 - 2)) | (1L << (47 - 2)) | (1L << (53 - 2)) | (1L << (59 - 2)) | (1L << (61 - 2)); // Look up n within the mask. return ((mask >> ((int) n - 2)) & 1) != 0; } if ((SIEVE_30 & (1 << (n % 30))) != 0) { return false; } if (n % 7 == 0 || n % 11 == 0 || n % 13 == 0) { return false; } if (n < 17 * 17) { return true; } for (long[] baseSet : millerRabinBaseSets) { if (n <= baseSet[0]) { for (int i = 1; i < baseSet.length; i++) { if (!MillerRabinTester.test(baseSet[i], n)) { return false; } } return true; } } throw new AssertionError(); } /* * If n <= millerRabinBases[i][0], then testing n against bases millerRabinBases[i][1..] suffices * to prove its primality. Values from miller-rabin.appspot.com. * * NOTE: We could get slightly better bases that would be treated as unsigned, but benchmarks * showed negligible performance improvements. */ private static final long[][] millerRabinBaseSets = { {291830, 126401071349994536L}, {885594168, 725270293939359937L, 3569819667048198375L}, {273919523040L, 15, 7363882082L, 992620450144556L}, {47636622961200L, 2, 2570940, 211991001, 3749873356L}, { 7999252175582850L, 2, 4130806001517L, 149795463772692060L, 186635894390467037L, 3967304179347715805L }, { 585226005592931976L, 2, 123635709730000L, 9233062284813009L, 43835965440333360L, 761179012939631437L, 1263739024124850375L }, {Long.MAX_VALUE, 2, 325, 9375, 28178, 450775, 9780504, 1795265022} }; private enum MillerRabinTester { /** Works for inputs ≤ FLOOR_SQRT_MAX_LONG. */ SMALL { @Override long mulMod(long a, long b, long m) { /* * lowasser, 2015-Feb-12: Benchmarks suggest that changing this to UnsignedLongs.remainder * and increasing the threshold to 2^32 doesn't pay for itself, and adding another enum * constant hurts performance further -- I suspect because bimorphic implementation is a * sweet spot for the JVM. */ return (a * b) % m; } @Override long squareMod(long a, long m) { return (a * a) % m; } }, /** Works for all nonnegative signed longs. */ LARGE { /** Returns (a + b) mod m. Precondition: {@code 0 <= a}, {@code b < m < 2^63}. */ private long plusMod(long a, long b, long m) { return (a >= m - b) ? (a + b - m) : (a + b); } /** Returns (a * 2^32) mod m. a may be any unsigned long. */ private long times2ToThe32Mod(long a, long m) { int remainingPowersOf2 = 32; do { int shift = min(remainingPowersOf2, Long.numberOfLeadingZeros(a)); // shift is either the number of powers of 2 left to multiply a by, or the biggest shift // possible while keeping a in an unsigned long. a = UnsignedLongs.remainder(a << shift, m); remainingPowersOf2 -= shift; } while (remainingPowersOf2 > 0); return a; } @Override long mulMod(long a, long b, long m) { long aHi = a >>> 32; // < 2^31 long bHi = b >>> 32; // < 2^31 long aLo = a & 0xFFFFFFFFL; // < 2^32 long bLo = b & 0xFFFFFFFFL; // < 2^32 /* * a * b == aHi * bHi * 2^64 + (aHi * bLo + aLo * bHi) * 2^32 + aLo * bLo. * == (aHi * bHi * 2^32 + aHi * bLo + aLo * bHi) * 2^32 + aLo * bLo * * We carry out this computation in modular arithmetic. Since times2ToThe32Mod accepts any * unsigned long, we don't have to do a mod on every operation, only when intermediate * results can exceed 2^63. */ long result = times2ToThe32Mod(aHi * bHi /* < 2^62 */, m); // < m < 2^63 result += aHi * bLo; // aHi * bLo < 2^63, result < 2^64 if (result < 0) { result = UnsignedLongs.remainder(result, m); } // result < 2^63 again result += aLo * bHi; // aLo * bHi < 2^63, result < 2^64 result = times2ToThe32Mod(result, m); // result < m < 2^63 return plusMod(result, UnsignedLongs.remainder(aLo * bLo /* < 2^64 */, m), m); } @Override long squareMod(long a, long m) { long aHi = a >>> 32; // < 2^31 long aLo = a & 0xFFFFFFFFL; // < 2^32 /* * a^2 == aHi^2 * 2^64 + aHi * aLo * 2^33 + aLo^2 * == (aHi^2 * 2^32 + aHi * aLo * 2) * 2^32 + aLo^2 * We carry out this computation in modular arithmetic. Since times2ToThe32Mod accepts any * unsigned long, we don't have to do a mod on every operation, only when intermediate * results can exceed 2^63. */ long result = times2ToThe32Mod(aHi * aHi /* < 2^62 */, m); // < m < 2^63 long hiLo = aHi * aLo * 2; if (hiLo < 0) { hiLo = UnsignedLongs.remainder(hiLo, m); } // hiLo < 2^63 result += hiLo; // result < 2^64 result = times2ToThe32Mod(result, m); // result < m < 2^63 return plusMod(result, UnsignedLongs.remainder(aLo * aLo /* < 2^64 */, m), m); } }; static boolean test(long base, long n) { // Since base will be considered % n, it's okay if base > FLOOR_SQRT_MAX_LONG, // so long as n <= FLOOR_SQRT_MAX_LONG. return ((n <= FLOOR_SQRT_MAX_LONG) ? SMALL : LARGE).testWitness(base, n); } /** Returns a * b mod m. */ abstract long mulMod(long a, long b, long m); /** Returns a^2 mod m. */ abstract long squareMod(long a, long m); /** Returns a^p mod m. */ private long powMod(long a, long p, long m) { long res = 1; for (; p != 0; p >>= 1) { if ((p & 1) != 0) { res = mulMod(res, a, m); } a = squareMod(a, m); } return res; } /** Returns true if n is a strong probable prime relative to the specified base. */ private boolean testWitness(long base, long n) { int r = Long.numberOfTrailingZeros(n - 1); long d = (n - 1) >> r; base %= n; if (base == 0) { return true; } // Calculate a := base^d mod n. long a = powMod(base, d, n); // n passes this test if // base^d = 1 (mod n) // or base^(2^j * d) = -1 (mod n) for some 0 <= j < r. if (a == 1) { return true; } int j = 0; while (a != n - 1) { if (++j == r) { return false; } a = squareMod(a, n); } return true; } } /** * Returns {@code x}, rounded to a {@code double} with the specified rounding mode. If {@code x} * is precisely representable as a {@code double}, its {@code double} value will be returned; * otherwise, the rounding will choose between the two nearest representable values with {@code * mode}. * *

For the case of {@link RoundingMode#HALF_EVEN}, this implementation uses the IEEE 754 * default rounding mode: if the two nearest representable values are equally near, the one with * the least significant bit zero is chosen. (In such cases, both of the nearest representable * values are even integers; this method returns the one that is a multiple of a greater power of * two.) * * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x} * is not precisely representable as a {@code double} * @since 30.0 */ @SuppressWarnings("deprecation") @J2ktIncompatible @GwtIncompatible public static double roundToDouble(long x, RoundingMode mode) { // Logic adapted from ToDoubleRounder. double roundArbitrarily = (double) x; long roundArbitrarilyAsLong = (long) roundArbitrarily; int cmpXToRoundArbitrarily; if (roundArbitrarilyAsLong == Long.MAX_VALUE) { /* * For most values, the conversion from roundArbitrarily to roundArbitrarilyAsLong is * lossless. In that case we can compare x to roundArbitrarily using Longs.compare(x, * roundArbitrarilyAsLong). The exception is for values where the conversion to double rounds * up to give roundArbitrarily equal to 2^63, so the conversion back to long overflows and * roundArbitrarilyAsLong is Long.MAX_VALUE. (This is the only way this condition can occur as * otherwise the conversion back to long pads with zero bits.) In this case we know that * roundArbitrarily > x. (This is important when x == Long.MAX_VALUE == * roundArbitrarilyAsLong.) */ cmpXToRoundArbitrarily = -1; } else { cmpXToRoundArbitrarily = Longs.compare(x, roundArbitrarilyAsLong); } switch (mode) { case UNNECESSARY: checkRoundingUnnecessary(cmpXToRoundArbitrarily == 0); return roundArbitrarily; case FLOOR: return (cmpXToRoundArbitrarily >= 0) ? roundArbitrarily : DoubleUtils.nextDown(roundArbitrarily); case CEILING: return (cmpXToRoundArbitrarily <= 0) ? roundArbitrarily : Math.nextUp(roundArbitrarily); case DOWN: if (x >= 0) { return (cmpXToRoundArbitrarily >= 0) ? roundArbitrarily : DoubleUtils.nextDown(roundArbitrarily); } else { return (cmpXToRoundArbitrarily <= 0) ? roundArbitrarily : Math.nextUp(roundArbitrarily); } case UP: if (x >= 0) { return (cmpXToRoundArbitrarily <= 0) ? roundArbitrarily : Math.nextUp(roundArbitrarily); } else { return (cmpXToRoundArbitrarily >= 0) ? roundArbitrarily : DoubleUtils.nextDown(roundArbitrarily); } case HALF_DOWN: case HALF_UP: case HALF_EVEN: { long roundFloor; double roundFloorAsDouble; long roundCeiling; double roundCeilingAsDouble; if (cmpXToRoundArbitrarily >= 0) { roundFloorAsDouble = roundArbitrarily; roundFloor = roundArbitrarilyAsLong; roundCeilingAsDouble = Math.nextUp(roundArbitrarily); roundCeiling = (long) Math.ceil(roundCeilingAsDouble); } else { roundCeilingAsDouble = roundArbitrarily; roundCeiling = roundArbitrarilyAsLong; roundFloorAsDouble = DoubleUtils.nextDown(roundArbitrarily); roundFloor = (long) Math.floor(roundFloorAsDouble); } long deltaToFloor = x - roundFloor; long deltaToCeiling = roundCeiling - x; if (roundCeiling == Long.MAX_VALUE) { // correct for Long.MAX_VALUE as discussed above: roundCeilingAsDouble must be 2^63, but // roundCeiling is 2^63-1. deltaToCeiling++; } int diff = Longs.compare(deltaToFloor, deltaToCeiling); if (diff < 0) { // closer to floor return roundFloorAsDouble; } else if (diff > 0) { // closer to ceiling return roundCeilingAsDouble; } // halfway between the representable values; do the half-whatever logic switch (mode) { case HALF_EVEN: return ((DoubleUtils.getSignificand(roundFloorAsDouble) & 1L) == 0) ? roundFloorAsDouble : roundCeilingAsDouble; case HALF_DOWN: return (x >= 0) ? roundFloorAsDouble : roundCeilingAsDouble; case HALF_UP: return (x >= 0) ? roundCeilingAsDouble : roundFloorAsDouble; default: throw new AssertionError("impossible"); } } } throw new AssertionError("impossible"); } private LongMath() {} }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy