All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.common.math.StatsAccumulator Maven / Gradle / Ivy

Go to download

This artifact provides a single jar that contains all classes required to use remote Jakarta Enterprise Beans and Jakarta Messaging, including all dependencies. It is intended for use by those not using maven, maven users should just import the Jakarta Enterprise Beans and Jakarta Messaging BOM's instead (shaded JAR's cause lots of problems with maven, as it is very easy to inadvertently end up with different versions on classes on the class path).

The newest version!
/*
 * Copyright (C) 2012 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
 * in compliance with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License
 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing permissions and limitations under
 * the License.
 */

package com.google.common.math;

import static com.google.common.base.Preconditions.checkState;
import static com.google.common.math.DoubleUtils.ensureNonNegative;
import static com.google.common.primitives.Doubles.isFinite;
import static java.lang.Double.NaN;
import static java.lang.Double.isNaN;

import com.google.common.annotations.GwtIncompatible;
import com.google.common.annotations.J2ktIncompatible;
import java.util.Iterator;
import java.util.stream.DoubleStream;
import java.util.stream.IntStream;
import java.util.stream.LongStream;

/**
 * A mutable object which accumulates double values and tracks some basic statistics over all the
 * values added so far. The values may be added singly or in groups. This class is not thread safe.
 *
 * @author Pete Gillin
 * @author Kevin Bourrillion
 * @since 20.0
 */
@J2ktIncompatible
@GwtIncompatible
@ElementTypesAreNonnullByDefault
public final class StatsAccumulator {

  // These fields must satisfy the requirements of Stats' constructor as well as those of the stat
  // methods of this class.
  private long count = 0;
  private double mean = 0.0; // any finite value will do, we only use it to multiply by zero for sum
  private double sumOfSquaresOfDeltas = 0.0;
  private double min = NaN; // any value will do
  private double max = NaN; // any value will do

  /** Adds the given value to the dataset. */
  public void add(double value) {
    if (count == 0) {
      count = 1;
      mean = value;
      min = value;
      max = value;
      if (!isFinite(value)) {
        sumOfSquaresOfDeltas = NaN;
      }
    } else {
      count++;
      if (isFinite(value) && isFinite(mean)) {
        // Art of Computer Programming vol. 2, Knuth, 4.2.2, (15) and (16)
        double delta = value - mean;
        mean += delta / count;
        sumOfSquaresOfDeltas += delta * (value - mean);
      } else {
        mean = calculateNewMeanNonFinite(mean, value);
        sumOfSquaresOfDeltas = NaN;
      }
      min = Math.min(min, value);
      max = Math.max(max, value);
    }
  }

  /**
   * Adds the given values to the dataset.
   *
   * @param values a series of values, which will be converted to {@code double} values (this may
   *     cause loss of precision)
   */
  public void addAll(Iterable values) {
    for (Number value : values) {
      add(value.doubleValue());
    }
  }

  /**
   * Adds the given values to the dataset.
   *
   * @param values a series of values, which will be converted to {@code double} values (this may
   *     cause loss of precision)
   */
  public void addAll(Iterator values) {
    while (values.hasNext()) {
      add(values.next().doubleValue());
    }
  }

  /**
   * Adds the given values to the dataset.
   *
   * @param values a series of values
   */
  public void addAll(double... values) {
    for (double value : values) {
      add(value);
    }
  }

  /**
   * Adds the given values to the dataset.
   *
   * @param values a series of values
   */
  public void addAll(int... values) {
    for (int value : values) {
      add(value);
    }
  }

  /**
   * Adds the given values to the dataset.
   *
   * @param values a series of values, which will be converted to {@code double} values (this may
   *     cause loss of precision for longs of magnitude over 2^53 (slightly over 9e15))
   */
  public void addAll(long... values) {
    for (long value : values) {
      add(value);
    }
  }

  /**
   * Adds the given values to the dataset. The stream will be completely consumed by this method.
   *
   * @param values a series of values
   * @since 28.2
   */
  public void addAll(DoubleStream values) {
    addAll(values.collect(StatsAccumulator::new, StatsAccumulator::add, StatsAccumulator::addAll));
  }

  /**
   * Adds the given values to the dataset. The stream will be completely consumed by this method.
   *
   * @param values a series of values
   * @since 28.2
   */
  public void addAll(IntStream values) {
    addAll(values.collect(StatsAccumulator::new, StatsAccumulator::add, StatsAccumulator::addAll));
  }

  /**
   * Adds the given values to the dataset. The stream will be completely consumed by this method.
   *
   * @param values a series of values, which will be converted to {@code double} values (this may
   *     cause loss of precision for longs of magnitude over 2^53 (slightly over 9e15))
   * @since 28.2
   */
  public void addAll(LongStream values) {
    addAll(values.collect(StatsAccumulator::new, StatsAccumulator::add, StatsAccumulator::addAll));
  }

  /**
   * Adds the given statistics to the dataset, as if the individual values used to compute the
   * statistics had been added directly.
   */
  public void addAll(Stats values) {
    if (values.count() == 0) {
      return;
    }
    merge(values.count(), values.mean(), values.sumOfSquaresOfDeltas(), values.min(), values.max());
  }

  /**
   * Adds the given statistics to the dataset, as if the individual values used to compute the
   * statistics had been added directly.
   *
   * @since 28.2
   */
  public void addAll(StatsAccumulator values) {
    if (values.count() == 0) {
      return;
    }
    merge(values.count(), values.mean(), values.sumOfSquaresOfDeltas(), values.min(), values.max());
  }

  private void merge(
      long otherCount,
      double otherMean,
      double otherSumOfSquaresOfDeltas,
      double otherMin,
      double otherMax) {
    if (count == 0) {
      count = otherCount;
      mean = otherMean;
      sumOfSquaresOfDeltas = otherSumOfSquaresOfDeltas;
      min = otherMin;
      max = otherMax;
    } else {
      count += otherCount;
      if (isFinite(mean) && isFinite(otherMean)) {
        // This is a generalized version of the calculation in add(double) above.
        double delta = otherMean - mean;
        mean += delta * otherCount / count;
        sumOfSquaresOfDeltas += otherSumOfSquaresOfDeltas + delta * (otherMean - mean) * otherCount;
      } else {
        mean = calculateNewMeanNonFinite(mean, otherMean);
        sumOfSquaresOfDeltas = NaN;
      }
      min = Math.min(min, otherMin);
      max = Math.max(max, otherMax);
    }
  }

  /** Returns an immutable snapshot of the current statistics. */
  public Stats snapshot() {
    return new Stats(count, mean, sumOfSquaresOfDeltas, min, max);
  }

  /** Returns the number of values. */
  public long count() {
    return count;
  }

  /**
   * Returns the arithmetic mean of the
   * values. The count must be non-zero.
   *
   * 

If these values are a sample drawn from a population, this is also an unbiased estimator of * the arithmetic mean of the population. * *

Non-finite values

* *

If the dataset contains {@link Double#NaN} then the result is {@link Double#NaN}. If it * contains both {@link Double#POSITIVE_INFINITY} and {@link Double#NEGATIVE_INFINITY} then the * result is {@link Double#NaN}. If it contains {@link Double#POSITIVE_INFINITY} and finite values * only or {@link Double#POSITIVE_INFINITY} only, the result is {@link Double#POSITIVE_INFINITY}. * If it contains {@link Double#NEGATIVE_INFINITY} and finite values only or {@link * Double#NEGATIVE_INFINITY} only, the result is {@link Double#NEGATIVE_INFINITY}. * * @throws IllegalStateException if the dataset is empty */ public double mean() { checkState(count != 0); return mean; } /** * Returns the sum of the values. * *

Non-finite values

* *

If the dataset contains {@link Double#NaN} then the result is {@link Double#NaN}. If it * contains both {@link Double#POSITIVE_INFINITY} and {@link Double#NEGATIVE_INFINITY} then the * result is {@link Double#NaN}. If it contains {@link Double#POSITIVE_INFINITY} and finite values * only or {@link Double#POSITIVE_INFINITY} only, the result is {@link Double#POSITIVE_INFINITY}. * If it contains {@link Double#NEGATIVE_INFINITY} and finite values only or {@link * Double#NEGATIVE_INFINITY} only, the result is {@link Double#NEGATIVE_INFINITY}. */ public final double sum() { return mean * count; } /** * Returns the population * variance of the values. The count must be non-zero. * *

This is guaranteed to return zero if the dataset contains only exactly one finite value. It * is not guaranteed to return zero when the dataset consists of the same value multiple times, * due to numerical errors. However, it is guaranteed never to return a negative result. * *

Non-finite values

* *

If the dataset contains any non-finite values ({@link Double#POSITIVE_INFINITY}, {@link * Double#NEGATIVE_INFINITY}, or {@link Double#NaN}) then the result is {@link Double#NaN}. * * @throws IllegalStateException if the dataset is empty */ public final double populationVariance() { checkState(count != 0); if (isNaN(sumOfSquaresOfDeltas)) { return NaN; } if (count == 1) { return 0.0; } return ensureNonNegative(sumOfSquaresOfDeltas) / count; } /** * Returns the * population standard deviation of the values. The count must be non-zero. * *

This is guaranteed to return zero if the dataset contains only exactly one finite value. It * is not guaranteed to return zero when the dataset consists of the same value multiple times, * due to numerical errors. However, it is guaranteed never to return a negative result. * *

Non-finite values

* *

If the dataset contains any non-finite values ({@link Double#POSITIVE_INFINITY}, {@link * Double#NEGATIVE_INFINITY}, or {@link Double#NaN}) then the result is {@link Double#NaN}. * * @throws IllegalStateException if the dataset is empty */ public final double populationStandardDeviation() { return Math.sqrt(populationVariance()); } /** * Returns the unbiased sample * variance of the values. If this dataset is a sample drawn from a population, this is an * unbiased estimator of the population variance of the population. The count must be greater than * one. * *

This is not guaranteed to return zero when the dataset consists of the same value multiple * times, due to numerical errors. However, it is guaranteed never to return a negative result. * *

Non-finite values

* *

If the dataset contains any non-finite values ({@link Double#POSITIVE_INFINITY}, {@link * Double#NEGATIVE_INFINITY}, or {@link Double#NaN}) then the result is {@link Double#NaN}. * * @throws IllegalStateException if the dataset is empty or contains a single value */ public final double sampleVariance() { checkState(count > 1); if (isNaN(sumOfSquaresOfDeltas)) { return NaN; } return ensureNonNegative(sumOfSquaresOfDeltas) / (count - 1); } /** * Returns the * corrected sample standard deviation of the values. If this dataset is a sample drawn from a * population, this is an estimator of the population standard deviation of the population which * is less biased than {@link #populationStandardDeviation()} (the unbiased estimator depends on * the distribution). The count must be greater than one. * *

This is not guaranteed to return zero when the dataset consists of the same value multiple * times, due to numerical errors. However, it is guaranteed never to return a negative result. * *

Non-finite values

* *

If the dataset contains any non-finite values ({@link Double#POSITIVE_INFINITY}, {@link * Double#NEGATIVE_INFINITY}, or {@link Double#NaN}) then the result is {@link Double#NaN}. * * @throws IllegalStateException if the dataset is empty or contains a single value */ public final double sampleStandardDeviation() { return Math.sqrt(sampleVariance()); } /** * Returns the lowest value in the dataset. The count must be non-zero. * *

Non-finite values

* *

If the dataset contains {@link Double#NaN} then the result is {@link Double#NaN}. If it * contains {@link Double#NEGATIVE_INFINITY} and not {@link Double#NaN} then the result is {@link * Double#NEGATIVE_INFINITY}. If it contains {@link Double#POSITIVE_INFINITY} and finite values * only then the result is the lowest finite value. If it contains {@link * Double#POSITIVE_INFINITY} only then the result is {@link Double#POSITIVE_INFINITY}. * * @throws IllegalStateException if the dataset is empty */ public double min() { checkState(count != 0); return min; } /** * Returns the highest value in the dataset. The count must be non-zero. * *

Non-finite values

* *

If the dataset contains {@link Double#NaN} then the result is {@link Double#NaN}. If it * contains {@link Double#POSITIVE_INFINITY} and not {@link Double#NaN} then the result is {@link * Double#POSITIVE_INFINITY}. If it contains {@link Double#NEGATIVE_INFINITY} and finite values * only then the result is the highest finite value. If it contains {@link * Double#NEGATIVE_INFINITY} only then the result is {@link Double#NEGATIVE_INFINITY}. * * @throws IllegalStateException if the dataset is empty */ public double max() { checkState(count != 0); return max; } double sumOfSquaresOfDeltas() { return sumOfSquaresOfDeltas; } /** * Calculates the new value for the accumulated mean when a value is added, in the case where at * least one of the previous mean and the value is non-finite. */ static double calculateNewMeanNonFinite(double previousMean, double value) { /* * Desired behaviour is to match the results of applying the naive mean formula. In particular, * the update formula can subtract infinities in cases where the naive formula would add them. * * Consequently: * 1. If the previous mean is finite and the new value is non-finite then the new mean is that * value (whether it is NaN or infinity). * 2. If the new value is finite and the previous mean is non-finite then the mean is unchanged * (whether it is NaN or infinity). * 3. If both the previous mean and the new value are non-finite and... * 3a. ...either or both is NaN (so mean != value) then the new mean is NaN. * 3b. ...they are both the same infinities (so mean == value) then the mean is unchanged. * 3c. ...they are different infinities (so mean != value) then the new mean is NaN. */ if (isFinite(previousMean)) { // This is case 1. return value; } else if (isFinite(value) || previousMean == value) { // This is case 2. or 3b. return previousMean; } else { // This is case 3a. or 3c. return NaN; } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy