io.netty.handler.traffic.GlobalChannelTrafficShapingHandler Maven / Gradle / Ivy
/*
* Copyright 2014 The Netty Project
*
* The Netty Project licenses this file to you under the Apache License,
* version 2.0 (the "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*/
package io.netty.handler.traffic;
import io.netty.buffer.ByteBuf;
import io.netty.channel.Channel;
import io.netty.channel.ChannelHandler.Sharable;
import io.netty.channel.ChannelConfig;
import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.ChannelPromise;
import io.netty.util.Attribute;
import io.netty.util.concurrent.EventExecutor;
import io.netty.util.internal.PlatformDependent;
import io.netty.util.internal.logging.InternalLogger;
import io.netty.util.internal.logging.InternalLoggerFactory;
import java.util.AbstractCollection;
import java.util.ArrayDeque;
import java.util.Collection;
import java.util.Iterator;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicLong;
/**
* This implementation of the {@link AbstractTrafficShapingHandler} is for global
* and per channel traffic shaping, that is to say a global limitation of the bandwidth, whatever
* the number of opened channels and a per channel limitation of the bandwidth.
* This version shall not be in the same pipeline than other TrafficShapingHandler.
*
* The general use should be as follow:
*
* - Create your unique GlobalChannelTrafficShapingHandler like:
* GlobalChannelTrafficShapingHandler myHandler = new GlobalChannelTrafficShapingHandler(executor);
* The executor could be the underlying IO worker pool
* pipeline.addLast(myHandler);
*
* Note that this handler has a Pipeline Coverage of "all" which means only one such handler must be created
* and shared among all channels as the counter must be shared among all channels.
*
* Other arguments can be passed like write or read limitation (in bytes/s where 0 means no limitation)
* or the check interval (in millisecond) that represents the delay between two computations of the
* bandwidth and so the call back of the doAccounting method (0 means no accounting at all).
* Note that as this is a fusion of both Global and Channel Traffic Shaping, limits are in 2 sets,
* respectively Global and Channel.
*
* A value of 0 means no accounting for checkInterval. If you need traffic shaping but no such accounting,
* it is recommended to set a positive value, even if it is high since the precision of the
* Traffic Shaping depends on the period where the traffic is computed. The highest the interval,
* the less precise the traffic shaping will be. It is suggested as higher value something close
* to 5 or 10 minutes.
*
* maxTimeToWait, by default set to 15s, allows to specify an upper bound of time shaping.
*
* - In your handler, you should consider to use the {@code channel.isWritable()} and
* {@code channelWritabilityChanged(ctx)} to handle writability, or through
* {@code future.addListener(new GenericFutureListener())} on the future returned by
* {@code ctx.write()}.
* - You shall also consider to have object size in read or write operations relatively adapted to
* the bandwidth you required: for instance having 10 MB objects for 10KB/s will lead to burst effect,
* while having 100 KB objects for 1 MB/s should be smoothly handle by this TrafficShaping handler.
* - Some configuration methods will be taken as best effort, meaning
* that all already scheduled traffics will not be
* changed, but only applied to new traffics.
* So the expected usage of those methods are to be used not too often,
* accordingly to the traffic shaping configuration.
*
*
* Be sure to call {@link #release()} once this handler is not needed anymore to release all internal resources.
* This will not shutdown the {@link EventExecutor} as it may be shared, so you need to do this by your own.
*/
@Sharable
public class GlobalChannelTrafficShapingHandler extends AbstractTrafficShapingHandler {
private static final InternalLogger logger =
InternalLoggerFactory.getInstance(GlobalChannelTrafficShapingHandler.class);
/**
* All queues per channel
*/
final ConcurrentMap channelQueues = PlatformDependent.newConcurrentHashMap();
/**
* Global queues size
*/
private final AtomicLong queuesSize = new AtomicLong();
/**
* Maximum cumulative writing bytes for one channel among all (as long as channels stay the same)
*/
private final AtomicLong cumulativeWrittenBytes = new AtomicLong();
/**
* Maximum cumulative read bytes for one channel among all (as long as channels stay the same)
*/
private final AtomicLong cumulativeReadBytes = new AtomicLong();
/**
* Max size in the list before proposing to stop writing new objects from next handlers
* for all channel (global)
*/
volatile long maxGlobalWriteSize = DEFAULT_MAX_SIZE * 100; // default 400MB
/**
* Limit in B/s to apply to write
*/
private volatile long writeChannelLimit;
/**
* Limit in B/s to apply to read
*/
private volatile long readChannelLimit;
private static final float DEFAULT_DEVIATION = 0.1F;
private static final float MAX_DEVIATION = 0.4F;
private static final float DEFAULT_SLOWDOWN = 0.4F;
private static final float DEFAULT_ACCELERATION = -0.1F;
private volatile float maxDeviation;
private volatile float accelerationFactor;
private volatile float slowDownFactor;
private volatile boolean readDeviationActive;
private volatile boolean writeDeviationActive;
static final class PerChannel {
ArrayDeque messagesQueue;
TrafficCounter channelTrafficCounter;
long queueSize;
long lastWriteTimestamp;
long lastReadTimestamp;
}
/**
* Create the global TrafficCounter
*/
void createGlobalTrafficCounter(ScheduledExecutorService executor) {
// Default
setMaxDeviation(DEFAULT_DEVIATION, DEFAULT_SLOWDOWN, DEFAULT_ACCELERATION);
if (executor == null) {
throw new IllegalArgumentException("Executor must not be null");
}
TrafficCounter tc = new GlobalChannelTrafficCounter(this, executor, "GlobalChannelTC", checkInterval);
setTrafficCounter(tc);
tc.start();
}
@Override
int userDefinedWritabilityIndex() {
return AbstractTrafficShapingHandler.GLOBALCHANNEL_DEFAULT_USER_DEFINED_WRITABILITY_INDEX;
}
/**
* Create a new instance.
*
* @param executor
* the {@link ScheduledExecutorService} to use for the {@link TrafficCounter}.
* @param writeGlobalLimit
* 0 or a limit in bytes/s
* @param readGlobalLimit
* 0 or a limit in bytes/s
* @param writeChannelLimit
* 0 or a limit in bytes/s
* @param readChannelLimit
* 0 or a limit in bytes/s
* @param checkInterval
* The delay between two computations of performances for
* channels or 0 if no stats are to be computed.
* @param maxTime
* The maximum delay to wait in case of traffic excess.
*/
public GlobalChannelTrafficShapingHandler(ScheduledExecutorService executor,
long writeGlobalLimit, long readGlobalLimit,
long writeChannelLimit, long readChannelLimit,
long checkInterval, long maxTime) {
super(writeGlobalLimit, readGlobalLimit, checkInterval, maxTime);
createGlobalTrafficCounter(executor);
this.writeChannelLimit = writeChannelLimit;
this.readChannelLimit = readChannelLimit;
}
/**
* Create a new instance.
*
* @param executor
* the {@link ScheduledExecutorService} to use for the {@link TrafficCounter}.
* @param writeGlobalLimit
* 0 or a limit in bytes/s
* @param readGlobalLimit
* 0 or a limit in bytes/s
* @param writeChannelLimit
* 0 or a limit in bytes/s
* @param readChannelLimit
* 0 or a limit in bytes/s
* @param checkInterval
* The delay between two computations of performances for
* channels or 0 if no stats are to be computed.
*/
public GlobalChannelTrafficShapingHandler(ScheduledExecutorService executor,
long writeGlobalLimit, long readGlobalLimit,
long writeChannelLimit, long readChannelLimit,
long checkInterval) {
super(writeGlobalLimit, readGlobalLimit, checkInterval);
this.writeChannelLimit = writeChannelLimit;
this.readChannelLimit = readChannelLimit;
createGlobalTrafficCounter(executor);
}
/**
* Create a new instance.
*
* @param executor
* the {@link ScheduledExecutorService} to use for the {@link TrafficCounter}.
* @param writeGlobalLimit
* 0 or a limit in bytes/s
* @param readGlobalLimit
* 0 or a limit in bytes/s
* @param writeChannelLimit
* 0 or a limit in bytes/s
* @param readChannelLimit
* 0 or a limit in bytes/s
*/
public GlobalChannelTrafficShapingHandler(ScheduledExecutorService executor,
long writeGlobalLimit, long readGlobalLimit,
long writeChannelLimit, long readChannelLimit) {
super(writeGlobalLimit, readGlobalLimit);
this.writeChannelLimit = writeChannelLimit;
this.readChannelLimit = readChannelLimit;
createGlobalTrafficCounter(executor);
}
/**
* Create a new instance.
*
* @param executor
* the {@link ScheduledExecutorService} to use for the {@link TrafficCounter}.
* @param checkInterval
* The delay between two computations of performances for
* channels or 0 if no stats are to be computed.
*/
public GlobalChannelTrafficShapingHandler(ScheduledExecutorService executor, long checkInterval) {
super(checkInterval);
createGlobalTrafficCounter(executor);
}
/**
* Create a new instance.
*
* @param executor
* the {@link ScheduledExecutorService} to use for the {@link TrafficCounter}.
*/
public GlobalChannelTrafficShapingHandler(ScheduledExecutorService executor) {
createGlobalTrafficCounter(executor);
}
/**
* @return the current max deviation
*/
public float maxDeviation() {
return maxDeviation;
}
/**
* @return the current acceleration factor
*/
public float accelerationFactor() {
return accelerationFactor;
}
/**
* @return the current slow down factor
*/
public float slowDownFactor() {
return slowDownFactor;
}
/**
* @param maxDeviation
* the maximum deviation to allow during computation of average, default deviation
* being 0.1, so +/-10% of the desired bandwidth. Maximum being 0.4.
* @param slowDownFactor
* the factor set as +x% to the too fast client (minimal value being 0, meaning no
* slow down factor), default being 40% (0.4).
* @param accelerationFactor
* the factor set as -x% to the too slow client (maximal value being 0, meaning no
* acceleration factor), default being -10% (-0.1).
*/
public void setMaxDeviation(float maxDeviation, float slowDownFactor, float accelerationFactor) {
if (maxDeviation > MAX_DEVIATION) {
throw new IllegalArgumentException("maxDeviation must be <= " + MAX_DEVIATION);
}
if (slowDownFactor < 0) {
throw new IllegalArgumentException("slowDownFactor must be >= 0");
}
if (accelerationFactor > 0) {
throw new IllegalArgumentException("accelerationFactor must be <= 0");
}
this.maxDeviation = maxDeviation;
this.accelerationFactor = 1 + accelerationFactor;
this.slowDownFactor = 1 + slowDownFactor;
}
private void computeDeviationCumulativeBytes() {
// compute the maximum cumulativeXxxxBytes among still connected Channels
long maxWrittenBytes = 0;
long maxReadBytes = 0;
long minWrittenBytes = Long.MAX_VALUE;
long minReadBytes = Long.MAX_VALUE;
for (PerChannel perChannel : channelQueues.values()) {
long value = perChannel.channelTrafficCounter.cumulativeWrittenBytes();
if (maxWrittenBytes < value) {
maxWrittenBytes = value;
}
if (minWrittenBytes > value) {
minWrittenBytes = value;
}
value = perChannel.channelTrafficCounter.cumulativeReadBytes();
if (maxReadBytes < value) {
maxReadBytes = value;
}
if (minReadBytes > value) {
minReadBytes = value;
}
}
boolean multiple = channelQueues.size() > 1;
readDeviationActive = multiple && minReadBytes < maxReadBytes / 2;
writeDeviationActive = multiple && minWrittenBytes < maxWrittenBytes / 2;
cumulativeWrittenBytes.set(maxWrittenBytes);
cumulativeReadBytes.set(maxReadBytes);
}
@Override
protected void doAccounting(TrafficCounter counter) {
computeDeviationCumulativeBytes();
super.doAccounting(counter);
}
private long computeBalancedWait(float maxLocal, float maxGlobal, long wait) {
if (maxGlobal == 0) {
// no change
return wait;
}
float ratio = maxLocal / maxGlobal;
// if in the boundaries, same value
if (ratio > maxDeviation) {
if (ratio < 1 - maxDeviation) {
return wait;
} else {
ratio = slowDownFactor;
if (wait < MINIMAL_WAIT) {
wait = MINIMAL_WAIT;
}
}
} else {
ratio = accelerationFactor;
}
return (long) (wait * ratio);
}
/**
* @return the maxGlobalWriteSize
*/
public long getMaxGlobalWriteSize() {
return maxGlobalWriteSize;
}
/**
* Note the change will be taken as best effort, meaning
* that all already scheduled traffics will not be
* changed, but only applied to new traffics.
* So the expected usage of this method is to be used not too often,
* accordingly to the traffic shaping configuration.
*
* @param maxGlobalWriteSize the maximum Global Write Size allowed in the buffer
* globally for all channels before write suspended is set.
*/
public void setMaxGlobalWriteSize(long maxGlobalWriteSize) {
if (maxGlobalWriteSize <= 0) {
throw new IllegalArgumentException("maxGlobalWriteSize must be positive");
}
this.maxGlobalWriteSize = maxGlobalWriteSize;
}
/**
* @return the global size of the buffers for all queues.
*/
public long queuesSize() {
return queuesSize.get();
}
/**
* @param newWriteLimit Channel write limit
* @param newReadLimit Channel read limit
*/
public void configureChannel(long newWriteLimit, long newReadLimit) {
writeChannelLimit = newWriteLimit;
readChannelLimit = newReadLimit;
long now = TrafficCounter.milliSecondFromNano();
for (PerChannel perChannel : channelQueues.values()) {
perChannel.channelTrafficCounter.resetAccounting(now);
}
}
/**
* @return Channel write limit
*/
public long getWriteChannelLimit() {
return writeChannelLimit;
}
/**
* @param writeLimit Channel write limit
*/
public void setWriteChannelLimit(long writeLimit) {
writeChannelLimit = writeLimit;
long now = TrafficCounter.milliSecondFromNano();
for (PerChannel perChannel : channelQueues.values()) {
perChannel.channelTrafficCounter.resetAccounting(now);
}
}
/**
* @return Channel read limit
*/
public long getReadChannelLimit() {
return readChannelLimit;
}
/**
* @param readLimit Channel read limit
*/
public void setReadChannelLimit(long readLimit) {
readChannelLimit = readLimit;
long now = TrafficCounter.milliSecondFromNano();
for (PerChannel perChannel : channelQueues.values()) {
perChannel.channelTrafficCounter.resetAccounting(now);
}
}
/**
* Release all internal resources of this instance.
*/
public final void release() {
trafficCounter.stop();
}
private PerChannel getOrSetPerChannel(ChannelHandlerContext ctx) {
// ensure creation is limited to one thread per channel
Channel channel = ctx.channel();
Integer key = channel.hashCode();
PerChannel perChannel = channelQueues.get(key);
if (perChannel == null) {
perChannel = new PerChannel();
perChannel.messagesQueue = new ArrayDeque();
// Don't start it since managed through the Global one
perChannel.channelTrafficCounter = new TrafficCounter(this, null, "ChannelTC" +
ctx.channel().hashCode(), checkInterval);
perChannel.queueSize = 0L;
perChannel.lastReadTimestamp = TrafficCounter.milliSecondFromNano();
perChannel.lastWriteTimestamp = perChannel.lastReadTimestamp;
channelQueues.put(key, perChannel);
}
return perChannel;
}
@Override
public void handlerAdded(ChannelHandlerContext ctx) throws Exception {
getOrSetPerChannel(ctx);
trafficCounter.resetCumulativeTime();
super.handlerAdded(ctx);
}
@Override
public void handlerRemoved(ChannelHandlerContext ctx) throws Exception {
trafficCounter.resetCumulativeTime();
Channel channel = ctx.channel();
Integer key = channel.hashCode();
PerChannel perChannel = channelQueues.remove(key);
if (perChannel != null) {
// write operations need synchronization
synchronized (perChannel) {
if (channel.isActive()) {
for (ToSend toSend : perChannel.messagesQueue) {
long size = calculateSize(toSend.toSend);
trafficCounter.bytesRealWriteFlowControl(size);
perChannel.channelTrafficCounter.bytesRealWriteFlowControl(size);
perChannel.queueSize -= size;
queuesSize.addAndGet(-size);
ctx.write(toSend.toSend, toSend.promise);
}
} else {
queuesSize.addAndGet(-perChannel.queueSize);
for (ToSend toSend : perChannel.messagesQueue) {
if (toSend.toSend instanceof ByteBuf) {
((ByteBuf) toSend.toSend).release();
}
}
}
perChannel.messagesQueue.clear();
}
}
releaseWriteSuspended(ctx);
releaseReadSuspended(ctx);
super.handlerRemoved(ctx);
}
@Override
public void channelRead(final ChannelHandlerContext ctx, final Object msg) throws Exception {
long size = calculateSize(msg);
long now = TrafficCounter.milliSecondFromNano();
if (size > 0) {
// compute the number of ms to wait before reopening the channel
long waitGlobal = trafficCounter.readTimeToWait(size, getReadLimit(), maxTime, now);
Integer key = ctx.channel().hashCode();
PerChannel perChannel = channelQueues.get(key);
long wait = 0;
if (perChannel != null) {
wait = perChannel.channelTrafficCounter.readTimeToWait(size, readChannelLimit, maxTime, now);
if (readDeviationActive) {
// now try to balance between the channels
long maxLocalRead;
maxLocalRead = perChannel.channelTrafficCounter.cumulativeReadBytes();
long maxGlobalRead = cumulativeReadBytes.get();
if (maxLocalRead <= 0) {
maxLocalRead = 0;
}
if (maxGlobalRead < maxLocalRead) {
maxGlobalRead = maxLocalRead;
}
wait = computeBalancedWait(maxLocalRead, maxGlobalRead, wait);
}
}
if (wait < waitGlobal) {
wait = waitGlobal;
}
wait = checkWaitReadTime(ctx, wait, now);
if (wait >= MINIMAL_WAIT) { // At least 10ms seems a minimal
// time in order to try to limit the traffic
// Only AutoRead AND HandlerActive True means Context Active
ChannelConfig config = ctx.channel().config();
if (logger.isDebugEnabled()) {
logger.debug("Read Suspend: " + wait + ':' + config.isAutoRead() + ':'
+ isHandlerActive(ctx));
}
if (config.isAutoRead() && isHandlerActive(ctx)) {
config.setAutoRead(false);
ctx.attr(READ_SUSPENDED).set(true);
// Create a Runnable to reactive the read if needed. If one was create before it will just be
// reused to limit object creation
Attribute attr = ctx.attr(REOPEN_TASK);
Runnable reopenTask = attr.get();
if (reopenTask == null) {
reopenTask = new ReopenReadTimerTask(ctx);
attr.set(reopenTask);
}
ctx.executor().schedule(reopenTask, wait, TimeUnit.MILLISECONDS);
if (logger.isDebugEnabled()) {
logger.debug("Suspend final status => " + config.isAutoRead() + ':'
+ isHandlerActive(ctx) + " will reopened at: " + wait);
}
}
}
}
informReadOperation(ctx, now);
ctx.fireChannelRead(msg);
}
@Override
protected long checkWaitReadTime(final ChannelHandlerContext ctx, long wait, final long now) {
Integer key = ctx.channel().hashCode();
PerChannel perChannel = channelQueues.get(key);
if (perChannel != null) {
if (wait > maxTime && now + wait - perChannel.lastReadTimestamp > maxTime) {
wait = maxTime;
}
}
return wait;
}
@Override
protected void informReadOperation(final ChannelHandlerContext ctx, final long now) {
Integer key = ctx.channel().hashCode();
PerChannel perChannel = channelQueues.get(key);
if (perChannel != null) {
perChannel.lastReadTimestamp = now;
}
}
private static final class ToSend {
final long relativeTimeAction;
final Object toSend;
final ChannelPromise promise;
final long size;
private ToSend(final long delay, final Object toSend, final long size, final ChannelPromise promise) {
relativeTimeAction = delay;
this.toSend = toSend;
this.size = size;
this.promise = promise;
}
}
protected long maximumCumulativeWrittenBytes() {
return cumulativeWrittenBytes.get();
}
protected long maximumCumulativeReadBytes() {
return cumulativeReadBytes.get();
}
/**
* To allow for instance doAccounting to use the TrafficCounter per channel.
* @return the list of TrafficCounters that exists at the time of the call.
*/
public Collection channelTrafficCounters() {
return new AbstractCollection() {
@Override
public Iterator iterator() {
return new Iterator() {
final Iterator iter = channelQueues.values().iterator();
@Override
public boolean hasNext() {
return iter.hasNext();
}
@Override
public TrafficCounter next() {
return iter.next().channelTrafficCounter;
}
@Override
public void remove() {
throw new UnsupportedOperationException();
}
};
}
@Override
public int size() {
return channelQueues.size();
}
};
}
@Override
public void write(final ChannelHandlerContext ctx, final Object msg, final ChannelPromise promise)
throws Exception {
long size = calculateSize(msg);
long now = TrafficCounter.milliSecondFromNano();
if (size > 0) {
// compute the number of ms to wait before continue with the channel
long waitGlobal = trafficCounter.writeTimeToWait(size, getWriteLimit(), maxTime, now);
Integer key = ctx.channel().hashCode();
PerChannel perChannel = channelQueues.get(key);
long wait = 0;
if (perChannel != null) {
wait = perChannel.channelTrafficCounter.writeTimeToWait(size, writeChannelLimit, maxTime, now);
if (writeDeviationActive) {
// now try to balance between the channels
long maxLocalWrite;
maxLocalWrite = perChannel.channelTrafficCounter.cumulativeWrittenBytes();
long maxGlobalWrite = cumulativeWrittenBytes.get();
if (maxLocalWrite <= 0) {
maxLocalWrite = 0;
}
if (maxGlobalWrite < maxLocalWrite) {
maxGlobalWrite = maxLocalWrite;
}
wait = computeBalancedWait(maxLocalWrite, maxGlobalWrite, wait);
}
}
if (wait < waitGlobal) {
wait = waitGlobal;
}
if (wait >= MINIMAL_WAIT) {
if (logger.isDebugEnabled()) {
logger.debug("Write suspend: " + wait + ':' + ctx.channel().config().isAutoRead() + ':'
+ isHandlerActive(ctx));
}
submitWrite(ctx, msg, size, wait, now, promise);
return;
}
}
// to maintain order of write
submitWrite(ctx, msg, size, 0, now, promise);
}
@Override
protected void submitWrite(final ChannelHandlerContext ctx, final Object msg,
final long size, final long writedelay, final long now,
final ChannelPromise promise) {
Channel channel = ctx.channel();
Integer key = channel.hashCode();
PerChannel perChannel = channelQueues.get(key);
if (perChannel == null) {
// in case write occurs before handlerAdded is raized for this handler
// imply a synchronized only if needed
perChannel = getOrSetPerChannel(ctx);
}
final ToSend newToSend;
long delay = writedelay;
boolean globalSizeExceeded = false;
// write operations need synchronization
synchronized (perChannel) {
if (writedelay == 0 && perChannel.messagesQueue.isEmpty()) {
trafficCounter.bytesRealWriteFlowControl(size);
perChannel.channelTrafficCounter.bytesRealWriteFlowControl(size);
ctx.write(msg, promise);
perChannel.lastWriteTimestamp = now;
return;
}
if (delay > maxTime && now + delay - perChannel.lastWriteTimestamp > maxTime) {
delay = maxTime;
}
newToSend = new ToSend(delay + now, msg, size, promise);
perChannel.messagesQueue.addLast(newToSend);
perChannel.queueSize += size;
queuesSize.addAndGet(size);
checkWriteSuspend(ctx, delay, perChannel.queueSize);
if (queuesSize.get() > maxGlobalWriteSize) {
globalSizeExceeded = true;
}
}
if (globalSizeExceeded) {
setUserDefinedWritability(ctx, false);
}
final long futureNow = newToSend.relativeTimeAction;
final PerChannel forSchedule = perChannel;
ctx.executor().schedule(new Runnable() {
@Override
public void run() {
sendAllValid(ctx, forSchedule, futureNow);
}
}, delay, TimeUnit.MILLISECONDS);
}
private void sendAllValid(final ChannelHandlerContext ctx, final PerChannel perChannel, final long now) {
// write operations need synchronization
synchronized (perChannel) {
ToSend newToSend = perChannel.messagesQueue.pollFirst();
for (; newToSend != null; newToSend = perChannel.messagesQueue.pollFirst()) {
if (newToSend.relativeTimeAction <= now) {
long size = newToSend.size;
trafficCounter.bytesRealWriteFlowControl(size);
perChannel.channelTrafficCounter.bytesRealWriteFlowControl(size);
perChannel.queueSize -= size;
queuesSize.addAndGet(-size);
ctx.write(newToSend.toSend, newToSend.promise);
perChannel.lastWriteTimestamp = now;
} else {
perChannel.messagesQueue.addFirst(newToSend);
break;
}
}
if (perChannel.messagesQueue.isEmpty()) {
releaseWriteSuspended(ctx);
}
}
ctx.flush();
}
@Override
public String toString() {
return new StringBuilder(340).append(super.toString())
.append(" Write Channel Limit: ").append(writeChannelLimit)
.append(" Read Channel Limit: ").append(readChannelLimit).toString();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy