io.netty.util.concurrent.SingleThreadEventExecutor Maven / Gradle / Ivy
/*
* Copyright 2012 The Netty Project
*
* The Netty Project licenses this file to you under the Apache License,
* version 2.0 (the "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*/
package io.netty.util.concurrent;
import io.netty.util.internal.PlatformDependent;
import io.netty.util.internal.logging.InternalLogger;
import io.netty.util.internal.logging.InternalLoggerFactory;
import java.util.ArrayList;
import java.util.LinkedHashSet;
import java.util.List;
import java.util.Queue;
import java.util.Set;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.Executors;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.RejectedExecutionException;
import java.util.concurrent.Semaphore;
import java.util.concurrent.ThreadFactory;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicIntegerFieldUpdater;
/**
* Abstract base class for {@link EventExecutor}'s that execute all its submitted tasks in a single thread.
*
*/
public abstract class SingleThreadEventExecutor extends AbstractScheduledEventExecutor {
private static final InternalLogger logger =
InternalLoggerFactory.getInstance(SingleThreadEventExecutor.class);
private static final int ST_NOT_STARTED = 1;
private static final int ST_STARTED = 2;
private static final int ST_SHUTTING_DOWN = 3;
private static final int ST_SHUTDOWN = 4;
private static final int ST_TERMINATED = 5;
private static final Runnable WAKEUP_TASK = new Runnable() {
@Override
public void run() {
// Do nothing.
}
};
private static final AtomicIntegerFieldUpdater STATE_UPDATER;
static {
AtomicIntegerFieldUpdater updater =
PlatformDependent.newAtomicIntegerFieldUpdater(SingleThreadEventExecutor.class, "state");
if (updater == null) {
updater = AtomicIntegerFieldUpdater.newUpdater(SingleThreadEventExecutor.class, "state");
}
STATE_UPDATER = updater;
}
private final EventExecutorGroup parent;
private final Queue taskQueue;
private final Thread thread;
private final Semaphore threadLock = new Semaphore(0);
private final Set shutdownHooks = new LinkedHashSet();
private final boolean addTaskWakesUp;
private long lastExecutionTime;
@SuppressWarnings({ "FieldMayBeFinal", "unused" })
private volatile int state = ST_NOT_STARTED;
private volatile long gracefulShutdownQuietPeriod;
private volatile long gracefulShutdownTimeout;
private long gracefulShutdownStartTime;
private final Promise> terminationFuture = new DefaultPromise(GlobalEventExecutor.INSTANCE);
/**
* Create a new instance
*
* @param parent the {@link EventExecutorGroup} which is the parent of this instance and belongs to it
* @param threadFactory the {@link ThreadFactory} which will be used for the used {@link Thread}
* @param addTaskWakesUp {@code true} if and only if invocation of {@link #addTask(Runnable)} will wake up the
* executor thread
*/
protected SingleThreadEventExecutor(
EventExecutorGroup parent, ThreadFactory threadFactory, boolean addTaskWakesUp) {
if (threadFactory == null) {
throw new NullPointerException("threadFactory");
}
this.parent = parent;
this.addTaskWakesUp = addTaskWakesUp;
thread = threadFactory.newThread(new Runnable() {
@Override
public void run() {
boolean success = false;
updateLastExecutionTime();
try {
SingleThreadEventExecutor.this.run();
success = true;
} catch (Throwable t) {
logger.warn("Unexpected exception from an event executor: ", t);
} finally {
for (;;) {
int oldState = STATE_UPDATER.get(SingleThreadEventExecutor.this);
if (oldState >= ST_SHUTTING_DOWN || STATE_UPDATER.compareAndSet(
SingleThreadEventExecutor.this, oldState, ST_SHUTTING_DOWN)) {
break;
}
}
// Check if confirmShutdown() was called at the end of the loop.
if (success && gracefulShutdownStartTime == 0) {
logger.error(
"Buggy " + EventExecutor.class.getSimpleName() + " implementation; " +
SingleThreadEventExecutor.class.getSimpleName() + ".confirmShutdown() must be called " +
"before run() implementation terminates.");
}
try {
// Run all remaining tasks and shutdown hooks.
for (;;) {
if (confirmShutdown()) {
break;
}
}
} finally {
try {
cleanup();
} finally {
STATE_UPDATER.set(SingleThreadEventExecutor.this, ST_TERMINATED);
threadLock.release();
if (!taskQueue.isEmpty()) {
logger.warn(
"An event executor terminated with " +
"non-empty task queue (" + taskQueue.size() + ')');
}
terminationFuture.setSuccess(null);
}
}
}
}
});
taskQueue = newTaskQueue();
}
/**
* Create a new {@link Queue} which will holds the tasks to execute. This default implementation will return a
* {@link LinkedBlockingQueue} but if your sub-class of {@link SingleThreadEventExecutor} will not do any blocking
* calls on the this {@link Queue} it may make sense to {@code @Override} this and return some more performant
* implementation that does not support blocking operations at all.
*/
protected Queue newTaskQueue() {
return new LinkedBlockingQueue();
}
@Override
public EventExecutorGroup parent() {
return parent;
}
/**
* Interrupt the current running {@link Thread}.
*/
protected void interruptThread() {
thread.interrupt();
}
/**
* @see {@link Queue#poll()}
*/
protected Runnable pollTask() {
assert inEventLoop();
for (;;) {
Runnable task = taskQueue.poll();
if (task == WAKEUP_TASK) {
continue;
}
return task;
}
}
/**
* Take the next {@link Runnable} from the task queue and so will block if no task is currently present.
*
* Be aware that this method will throw an {@link UnsupportedOperationException} if the task queue, which was
* created via {@link #newTaskQueue()}, does not implement {@link BlockingQueue}.
*
*
* @return {@code null} if the executor thread has been interrupted or waken up.
*/
protected Runnable takeTask() {
assert inEventLoop();
if (!(taskQueue instanceof BlockingQueue)) {
throw new UnsupportedOperationException();
}
BlockingQueue taskQueue = (BlockingQueue) this.taskQueue;
for (;;) {
ScheduledFutureTask> scheduledTask = peekScheduledTask();
if (scheduledTask == null) {
Runnable task = null;
try {
task = taskQueue.take();
if (task == WAKEUP_TASK) {
task = null;
}
} catch (InterruptedException e) {
// Ignore
}
return task;
} else {
long delayNanos = scheduledTask.delayNanos();
Runnable task = null;
if (delayNanos > 0) {
try {
task = taskQueue.poll(delayNanos, TimeUnit.NANOSECONDS);
} catch (InterruptedException e) {
return null;
}
}
if (task == null) {
// We need to fetch the scheduled tasks now as otherwise there may be a chance that
// scheduled tasks are never executed if there is always one task in the taskQueue.
// This is for example true for the read task of OIO Transport
// See https://github.com/netty/netty/issues/1614
fetchFromScheduledTaskQueue();
task = taskQueue.poll();
}
if (task != null) {
return task;
}
}
}
}
private void fetchFromScheduledTaskQueue() {
if (hasScheduledTasks()) {
long nanoTime = AbstractScheduledEventExecutor.nanoTime();
for (;;) {
Runnable scheduledTask = pollScheduledTask(nanoTime);
if (scheduledTask == null) {
break;
}
taskQueue.add(scheduledTask);
}
}
}
/**
* @see {@link Queue#peek()}
*/
protected Runnable peekTask() {
assert inEventLoop();
return taskQueue.peek();
}
/**
* @see {@link Queue#isEmpty()}
*/
protected boolean hasTasks() {
assert inEventLoop();
return !taskQueue.isEmpty();
}
/**
* Return the number of tasks that are pending for processing.
*
* Be aware that this operation may be expensive as it depends on the internal implementation of the
* SingleThreadEventExecutor. So use it was care!
*/
public final int pendingTasks() {
return taskQueue.size();
}
/**
* Add a task to the task queue, or throws a {@link RejectedExecutionException} if this instance was shutdown
* before.
*/
protected void addTask(Runnable task) {
if (task == null) {
throw new NullPointerException("task");
}
if (isShutdown()) {
reject();
}
taskQueue.add(task);
}
/**
* @see {@link Queue#remove(Object)}
*/
protected boolean removeTask(Runnable task) {
if (task == null) {
throw new NullPointerException("task");
}
return taskQueue.remove(task);
}
/**
* Poll all tasks from the task queue and run them via {@link Runnable#run()} method.
*
* @return {@code true} if and only if at least one task was run
*/
protected boolean runAllTasks() {
fetchFromScheduledTaskQueue();
Runnable task = pollTask();
if (task == null) {
return false;
}
for (;;) {
try {
task.run();
} catch (Throwable t) {
logger.warn("A task raised an exception.", t);
}
task = pollTask();
if (task == null) {
lastExecutionTime = ScheduledFutureTask.nanoTime();
return true;
}
}
}
/**
* Poll all tasks from the task queue and run them via {@link Runnable#run()} method. This method stops running
* the tasks in the task queue and returns if it ran longer than {@code timeoutNanos}.
*/
protected boolean runAllTasks(long timeoutNanos) {
fetchFromScheduledTaskQueue();
Runnable task = pollTask();
if (task == null) {
return false;
}
final long deadline = ScheduledFutureTask.nanoTime() + timeoutNanos;
long runTasks = 0;
long lastExecutionTime;
for (;;) {
try {
task.run();
} catch (Throwable t) {
logger.warn("A task raised an exception.", t);
}
runTasks ++;
// Check timeout every 64 tasks because nanoTime() is relatively expensive.
// XXX: Hard-coded value - will make it configurable if it is really a problem.
if ((runTasks & 0x3F) == 0) {
lastExecutionTime = ScheduledFutureTask.nanoTime();
if (lastExecutionTime >= deadline) {
break;
}
}
task = pollTask();
if (task == null) {
lastExecutionTime = ScheduledFutureTask.nanoTime();
break;
}
}
this.lastExecutionTime = lastExecutionTime;
return true;
}
/**
* Returns the amount of time left until the scheduled task with the closest dead line is executed.
*/
protected long delayNanos(long currentTimeNanos) {
ScheduledFutureTask> scheduledTask = peekScheduledTask();
if (scheduledTask == null) {
return SCHEDULE_PURGE_INTERVAL;
}
return scheduledTask.delayNanos(currentTimeNanos);
}
/**
* Updates the internal timestamp that tells when a submitted task was executed most recently.
* {@link #runAllTasks()} and {@link #runAllTasks(long)} updates this timestamp automatically, and thus there's
* usually no need to call this method. However, if you take the tasks manually using {@link #takeTask()} or
* {@link #pollTask()}, you have to call this method at the end of task execution loop for accurate quiet period
* checks.
*/
protected void updateLastExecutionTime() {
lastExecutionTime = ScheduledFutureTask.nanoTime();
}
/**
*
*/
protected abstract void run();
/**
* Do nothing, sub-classes may override
*/
protected void cleanup() {
// NOOP
}
protected void wakeup(boolean inEventLoop) {
if (!inEventLoop || STATE_UPDATER.get(this) == ST_SHUTTING_DOWN) {
taskQueue.add(WAKEUP_TASK);
}
}
@Override
public boolean inEventLoop(Thread thread) {
return thread == this.thread;
}
/**
* Add a {@link Runnable} which will be executed on shutdown of this instance
*/
public void addShutdownHook(final Runnable task) {
if (inEventLoop()) {
shutdownHooks.add(task);
} else {
execute(new Runnable() {
@Override
public void run() {
shutdownHooks.add(task);
}
});
}
}
/**
* Remove a previous added {@link Runnable} as a shutdown hook
*/
public void removeShutdownHook(final Runnable task) {
if (inEventLoop()) {
shutdownHooks.remove(task);
} else {
execute(new Runnable() {
@Override
public void run() {
shutdownHooks.remove(task);
}
});
}
}
private boolean runShutdownHooks() {
boolean ran = false;
// Note shutdown hooks can add / remove shutdown hooks.
while (!shutdownHooks.isEmpty()) {
List copy = new ArrayList(shutdownHooks);
shutdownHooks.clear();
for (Runnable task: copy) {
try {
task.run();
} catch (Throwable t) {
logger.warn("Shutdown hook raised an exception.", t);
} finally {
ran = true;
}
}
}
if (ran) {
lastExecutionTime = ScheduledFutureTask.nanoTime();
}
return ran;
}
@Override
public Future> shutdownGracefully(long quietPeriod, long timeout, TimeUnit unit) {
if (quietPeriod < 0) {
throw new IllegalArgumentException("quietPeriod: " + quietPeriod + " (expected >= 0)");
}
if (timeout < quietPeriod) {
throw new IllegalArgumentException(
"timeout: " + timeout + " (expected >= quietPeriod (" + quietPeriod + "))");
}
if (unit == null) {
throw new NullPointerException("unit");
}
if (isShuttingDown()) {
return terminationFuture();
}
boolean inEventLoop = inEventLoop();
boolean wakeup;
int oldState;
for (;;) {
if (isShuttingDown()) {
return terminationFuture();
}
int newState;
wakeup = true;
oldState = STATE_UPDATER.get(this);
if (inEventLoop) {
newState = ST_SHUTTING_DOWN;
} else {
switch (oldState) {
case ST_NOT_STARTED:
case ST_STARTED:
newState = ST_SHUTTING_DOWN;
break;
default:
newState = oldState;
wakeup = false;
}
}
if (STATE_UPDATER.compareAndSet(this, oldState, newState)) {
break;
}
}
gracefulShutdownQuietPeriod = unit.toNanos(quietPeriod);
gracefulShutdownTimeout = unit.toNanos(timeout);
if (oldState == ST_NOT_STARTED) {
thread.start();
}
if (wakeup) {
wakeup(inEventLoop);
}
return terminationFuture();
}
@Override
public Future> terminationFuture() {
return terminationFuture;
}
@Override
@Deprecated
public void shutdown() {
if (isShutdown()) {
return;
}
boolean inEventLoop = inEventLoop();
boolean wakeup;
int oldState;
for (;;) {
if (isShuttingDown()) {
return;
}
int newState;
wakeup = true;
oldState = STATE_UPDATER.get(this);
if (inEventLoop) {
newState = ST_SHUTDOWN;
} else {
switch (oldState) {
case ST_NOT_STARTED:
case ST_STARTED:
case ST_SHUTTING_DOWN:
newState = ST_SHUTDOWN;
break;
default:
newState = oldState;
wakeup = false;
}
}
if (STATE_UPDATER.compareAndSet(this, oldState, newState)) {
break;
}
}
if (oldState == ST_NOT_STARTED) {
thread.start();
}
if (wakeup) {
wakeup(inEventLoop);
}
}
@Override
public boolean isShuttingDown() {
return STATE_UPDATER.get(this) >= ST_SHUTTING_DOWN;
}
@Override
public boolean isShutdown() {
return STATE_UPDATER.get(this) >= ST_SHUTDOWN;
}
@Override
public boolean isTerminated() {
return STATE_UPDATER.get(this) == ST_TERMINATED;
}
/**
* Confirm that the shutdown if the instance should be done now!
*/
protected boolean confirmShutdown() {
if (!isShuttingDown()) {
return false;
}
if (!inEventLoop()) {
throw new IllegalStateException("must be invoked from an event loop");
}
cancelScheduledTasks();
if (gracefulShutdownStartTime == 0) {
gracefulShutdownStartTime = ScheduledFutureTask.nanoTime();
}
if (runAllTasks() || runShutdownHooks()) {
if (isShutdown()) {
// Executor shut down - no new tasks anymore.
return true;
}
// There were tasks in the queue. Wait a little bit more until no tasks are queued for the quiet period.
wakeup(true);
return false;
}
final long nanoTime = ScheduledFutureTask.nanoTime();
if (isShutdown() || nanoTime - gracefulShutdownStartTime > gracefulShutdownTimeout) {
return true;
}
if (nanoTime - lastExecutionTime <= gracefulShutdownQuietPeriod) {
// Check if any tasks were added to the queue every 100ms.
// TODO: Change the behavior of takeTask() so that it returns on timeout.
wakeup(true);
try {
Thread.sleep(100);
} catch (InterruptedException e) {
// Ignore
}
return false;
}
// No tasks were added for last quiet period - hopefully safe to shut down.
// (Hopefully because we really cannot make a guarantee that there will be no execute() calls by a user.)
return true;
}
@Override
public boolean awaitTermination(long timeout, TimeUnit unit) throws InterruptedException {
if (unit == null) {
throw new NullPointerException("unit");
}
if (inEventLoop()) {
throw new IllegalStateException("cannot await termination of the current thread");
}
if (threadLock.tryAcquire(timeout, unit)) {
threadLock.release();
}
return isTerminated();
}
@Override
public void execute(Runnable task) {
if (task == null) {
throw new NullPointerException("task");
}
boolean inEventLoop = inEventLoop();
if (inEventLoop) {
addTask(task);
} else {
startThread();
addTask(task);
if (isShutdown() && removeTask(task)) {
reject();
}
}
if (!addTaskWakesUp && wakesUpForTask(task)) {
wakeup(inEventLoop);
}
}
@SuppressWarnings("unused")
protected boolean wakesUpForTask(Runnable task) {
return true;
}
protected static void reject() {
throw new RejectedExecutionException("event executor terminated");
}
// ScheduledExecutorService implementation
private static final long SCHEDULE_PURGE_INTERVAL = TimeUnit.SECONDS.toNanos(1);
private void startThread() {
if (STATE_UPDATER.get(this) == ST_NOT_STARTED) {
if (STATE_UPDATER.compareAndSet(this, ST_NOT_STARTED, ST_STARTED)) {
schedule(new ScheduledFutureTask(
this, Executors.callable(new PurgeTask(), null),
ScheduledFutureTask.deadlineNanos(SCHEDULE_PURGE_INTERVAL), -SCHEDULE_PURGE_INTERVAL));
thread.start();
}
}
}
private final class PurgeTask implements Runnable {
@Override
public void run() {
purgeCancelledScheduledTasks();
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy