wvlet.log.io.StopWatch.scala Maven / Gradle / Ivy
/*
* Copyright 2012 Taro L. Saito
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package wvlet.log.io
import java.util
import wvlet.log.{LogLevel, LogRecord, Logger}
import scala.collection.mutable.LinkedHashMap
//--------------------------------------
//
// StopWatch.scala
// Since: 2012/01/09 8:31
//
//--------------------------------------
/**
* Timer trait measures the performance of code blocks. Extend this trait and wrap the code to measure with
* `time(code_name){ ... }`:
*
* {{{
* class A extends Timer {
* val t : TimeReport = time("performance test") {
* // write any code here
* block("A") {
* // code A
* }
* block("B") {
* // code B
* }
* }
* // report elapsed time of A, B and the total running time
* println(t)
*
* t("A").average // the average of running time of code block "A" (min and max are also available)
* }
*
* }}}
*
* Timer can take the average of repetitive executions:
*
* {{{
* class Rep extends Timer {
*
* // Repeat 10 times the evaluation of the whole block
* val t = time("repetitive evaluation", repeat=10) {
* // This part will be executed 1000 x 10 times
* block("A", repeat=1000) {
* // code A
* }
*
* // This part will be executed 1000 x 10 times
* block("B", repeat=1000) {
* // code B
* }
* }
*
* println(t)
*
* // Which code is faster?
* if(t("A") <= t("B"))
* println("A is faster")
* else
* println("B is faster")
* }
* }}}
*
* When measuring Scala (Java) code performances, you should take the average of execution times and reorder the code
* block execution orders, because JVM has JIT compiler, which optimizes the code at runtime. And also cache usage and
* the running state of the garbage core (GC) affects the code performance. By repeating the executions of the entire
* or individual blocks with the `repeat` option, you can avoid such pitfalls of benchmarking.
*
* @author
* leo
*/
trait Timer extends Serializable {
import scala.jdk.CollectionConverters.*
@transient private[this] val holder =
new ThreadLocal[util.ArrayDeque[TimeReport]] {
override def initialValue() = new util.ArrayDeque[TimeReport]()
}
private def contextStack = holder.get()
private def createNewBlock[A](
blockName: String,
globalRepeat: Int = 1,
individualBlockRepeat: Int = 1,
f: => A
): TimeReport =
new TimeReport {
val name: String = blockName
val repeat: Int = globalRepeat
val blockRepeat: Int = individualBlockRepeat
def body() = f
}
import wvlet.log.LogLevel.*
/**
* Measure the execution time of the code block
*
* @param blockName
* @param logLevel
* @param repeat
* the number of repetitive execution
* @param f
* @tparam A
* @return
*/
protected def time[A](blockName: String, logLevel: LogLevel = INFO, repeat: Int = 1, blockRepeat: Int = 1)(
f: => A
): TimeReport = {
def pushContext(t: TimeReport): Unit = contextStack.push(t)
def popContext: Unit = contextStack.pop
val m = createNewBlock(blockName, repeat, blockRepeat, f)
try {
pushContext(m)
m.measure
} finally {
popContext
reportLog(m, logLevel)
}
}
protected def block[A](name: String)(f: => A): TimeReport = {
val m = contextStack.asScala.lastOption match {
case None =>
throw new IllegalStateException("block {} should be enclosed inside time {}")
case Some(context) => {
context.getOrElseUpdate(name, createNewBlock(name, context.blockRepeat, context.blockRepeat, f))
}
}
m.measure
}
protected def reportLog(m: TimeReport, logLevel: LogLevel): Unit = {
val l = if (classOf[Logger].isAssignableFrom(this.getClass)) {
this.asInstanceOf[Logger].log(LogRecord(logLevel, None, m.report, None))
} else {
Logger(this.getClass.getName)
.log(LogRecord(logLevel, None, m.report, None))
}
}
}
/**
* Summary of the execution times of the code blocks
*/
trait TimeReport extends Ordered[TimeReport] {
val name: String
def body(): Unit
private[TimeReport] val s = new StopWatch
private lazy val subMeasure = new LinkedHashMap[String, TimeReport]
private var _executionCount = 0
val repeat: Int
val blockRepeat: Int
private var maxInterval: Double = 0.0
private var minInterval: Double = Double.MaxValue
private val timeReport = Seq.newBuilder[Double]
{
s.stop
s.reset
}
def containsBlock(name: String) = {
subMeasure.contains(name)
}
def apply(name: String): TimeReport = {
subMeasure(name)
}
def getOrElseUpdate(name: String, t: => TimeReport): TimeReport = {
subMeasure.getOrElseUpdate(name, t)
}
def executionCount: Int = _executionCount
def measure: TimeReport = {
for (i <- 0 until repeat) {
s.resume
try {
body()
} finally {
val intervalTime = s.stop
timeReport += intervalTime
_executionCount += 1
maxInterval = math.max(maxInterval, intervalTime)
minInterval = math.min(minInterval, intervalTime)
}
}
this
}
def compare(that: TimeReport) =
this.elapsedSeconds.compareTo(that.elapsedSeconds)
def min: Double = minInterval
def max: Double = maxInterval
def averageWithoutMinMax = {
if (executionCount > 2) {
(s.getElapsedTime - min - max) / (_executionCount - 2)
} else {
average
}
}
def median: Double = {
val r = timeReport.result()
r.length
r.sorted.apply(r.length / 2)
}
def average: Double = {
s.getElapsedTime / _executionCount
}
def elapsedSeconds: Double = {
s.getElapsedTime
}
def toHumanReadableFormat(time: Double): String = {
val symbol = Seq("", "m", "n")
val digits = math.log10(time)
val unitIndex = {
if (digits.isNaN || digits.isInfinity || digits >= -2.0) {
0
} else {
val u = -((digits - 1) / 3.0).toInt
if (u >= symbol.length) symbol.length - 1 else u
}
}
require(
unitIndex >= 0 && (unitIndex < symbol.length),
s"unitIndex must be between 0 to 2: $unitIndex, digits:$digits"
)
val v = time * math.pow(10, unitIndex * 3)
val str = f"$v%.3f ${symbol(unitIndex)}sec."
f"$str%-11s"
}
def genReportLine: String = {
f"-$name%-15s\ttotal:${toHumanReadableFormat(s.getElapsedTime)}, count:${executionCount}%,5d, avg:${toHumanReadableFormat(
average
)}, min:${toHumanReadableFormat(minInterval)}, median:${toHumanReadableFormat(median)}, max:${toHumanReadableFormat(maxInterval)}"
}
def report: String = {
def indent(level: Int, s: String): String = {
(for (i <- 0 until level * 2) yield ' ').mkString + s
}
val lines = Seq.newBuilder[String]
lines += indent(0, genReportLine)
for ((k, v) <- subMeasure) {
lines += indent(1, v.genReportLine)
}
lines.result().mkString("\n")
}
override def toString: String = report
}
class StopWatch {
object State extends Enumeration {
val RUNNING, STOPPED = Value
}
private var lastSystemTime: Double = System.nanoTime().toDouble
private var elapsedTimeAccumulated: Double = 0L
private var state = State.RUNNING
private val NANO_UNIT: Double = 1000000000d
/**
* Gets the elapsed time since this instance is created in seconds.
*
* @return
* the elapsed time in seconds.
*/
def getElapsedTime: Double = {
if (state == State.RUNNING) {
val now = System.nanoTime().toDouble
val diff = now - lastSystemTime
(elapsedTimeAccumulated + diff) / NANO_UNIT
} else {
elapsedTimeAccumulated / NANO_UNIT
}
}
/**
* Reset the stop watch. The subsequent calls to getElapsedTime or getIntervalTime will measure the time interval
* beginning from this method call.
*/
def reset: Unit = {
lastSystemTime = System.nanoTime().toDouble
elapsedTimeAccumulated = 0L
}
/**
* Stop the timer
*
* @return
* interval time since the last resume call
*/
def stop: Double = {
if (state == State.STOPPED) {
return 0.0
}
// elapsed time
val now = System.nanoTime().toDouble
val diff = now - lastSystemTime
elapsedTimeAccumulated += diff
lastSystemTime = now
state = State.STOPPED
diff / NANO_UNIT
}
/**
* Resume the timer
*/
def resume: Unit = {
if (state == State.RUNNING) {
return
}
lastSystemTime = System.nanoTime().toDouble
state = State.RUNNING
}
def reportElapsedTime: String = {
"%.2f sec." format (getElapsedTime)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy