All Downloads are FREE. Search and download functionalities are using the official Maven repository.

java.org.locationtech.jts.operation.distance3d.PlanarPolygon3D Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (c) 2016 Martin Davis.
 *
 * All rights reserved. This program and the accompanying materials
 * are made available under the terms of the Eclipse Public License v1.0
 * and Eclipse Distribution License v. 1.0 which accompanies this distribution.
 * The Eclipse Public License is available at http://www.eclipse.org/legal/epl-v10.html
 * and the Eclipse Distribution License is available at
 *
 * http://www.eclipse.org/org/documents/edl-v10.php.
 */

package org.locationtech.jts.operation.distance3d;

import org.locationtech.jts.algorithm.RayCrossingCounter;
import org.locationtech.jts.geom.Coordinate;
import org.locationtech.jts.geom.CoordinateSequence;
import org.locationtech.jts.geom.LineString;
import org.locationtech.jts.geom.Location;
import org.locationtech.jts.geom.Polygon;
import org.locationtech.jts.math.Plane3D;
import org.locationtech.jts.math.Vector3D;

/**
 * Models a polygon lying in a plane in 3-dimensional Cartesian space.
 * The polygon representation is supplied
 * by a {@link Polygon},
 * containing coordinates with XYZ ordinates.
 * 3D polygons are assumed to lie in a single plane.
 * The plane best fitting the polygon coordinates is
 * computed and is represented by a {@link Plane3D}.
 * 
 * @author mdavis
 *
 */
public class PlanarPolygon3D {

	private Plane3D plane;
	private Polygon poly;
	private int facingPlane = -1;

	public PlanarPolygon3D(Polygon poly) {
		this.poly = poly;
		plane = findBestFitPlane(poly);
		facingPlane = plane.closestAxisPlane();
	}

	/**
	 * Finds a best-fit plane for the polygon, 
	 * by sampling a few points from the exterior ring.
	 * 

* The algorithm used is Newell's algorithm: * - a base point for the plane is determined from the average of all vertices * - the normal vector is determined by * computing the area of the projections on each of the axis planes * * @param poly the polygon to determine the plane for * @return the best-fit plane */ private Plane3D findBestFitPlane(Polygon poly) { CoordinateSequence seq = poly.getExteriorRing().getCoordinateSequence(); Coordinate basePt = averagePoint(seq); Vector3D normal = averageNormal(seq); return new Plane3D(normal, basePt); } /** * Computes an average normal vector from a list of polygon coordinates. * Uses Newell's method, which is based * on the fact that the vector with components * equal to the areas of the projection of the polygon onto * the Cartesian axis planes is normal. * * @param seq the sequence of coordinates for the polygon * @return a normal vector */ private Vector3D averageNormal(CoordinateSequence seq) { int n = seq.size(); Coordinate sum = new Coordinate(0,0,0); Coordinate p1 = new Coordinate(0,0,0); Coordinate p2 = new Coordinate(0,0,0); for (int i = 0; i < n - 1; i++) { seq.getCoordinate(i, p1); seq.getCoordinate(i+1, p2); sum.x += (p1.y - p2.y)*(p1.z + p2.z); sum.y += (p1.z - p2.z)*(p1.x + p2.x); sum.z += (p1.x - p2.x)*(p1.y + p2.y); } sum.x /= n; sum.y /= n; sum.z /= n; Vector3D norm = Vector3D.create(sum).normalize(); return norm; } /** * Computes a point which is the average of all coordinates * in a sequence. * If the sequence lies in a single plane, * the computed point also lies in the plane. * * @param seq a coordinate sequence * @return a Coordinate with averaged ordinates */ private Coordinate averagePoint(CoordinateSequence seq) { Coordinate a = new Coordinate(0,0,0); int n = seq.size(); for (int i = 0; i < n; i++) { a.x += seq.getOrdinate(i, CoordinateSequence.X); a.y += seq.getOrdinate(i, CoordinateSequence.Y); a.z += seq.getOrdinate(i, CoordinateSequence.Z); } a.x /= n; a.y /= n; a.z /= n; return a; } public Plane3D getPlane() { return plane; } public Polygon getPolygon() { return poly; } public boolean intersects(Coordinate intPt) { if (Location.EXTERIOR == locate(intPt, poly.getExteriorRing())) return false; for (int i = 0; i < poly.getNumInteriorRing(); i++) { if (Location.INTERIOR == locate(intPt, poly.getInteriorRingN(i))) return false; } return true; } private int locate(Coordinate pt, LineString ring) { CoordinateSequence seq = ring.getCoordinateSequence(); CoordinateSequence seqProj = project(seq, facingPlane); Coordinate ptProj = project(pt, facingPlane); return RayCrossingCounter.locatePointInRing(ptProj, seqProj); } public boolean intersects(Coordinate pt, LineString ring) { CoordinateSequence seq = ring.getCoordinateSequence(); CoordinateSequence seqProj = project(seq, facingPlane); Coordinate ptProj = project(pt, facingPlane); return Location.EXTERIOR != RayCrossingCounter.locatePointInRing(ptProj, seqProj); } private static CoordinateSequence project(CoordinateSequence seq, int facingPlane) { switch (facingPlane) { case Plane3D.XY_PLANE: return AxisPlaneCoordinateSequence.projectToXY(seq); case Plane3D.XZ_PLANE: return AxisPlaneCoordinateSequence.projectToXZ(seq); default: return AxisPlaneCoordinateSequence.projectToYZ(seq); } } private static Coordinate project(Coordinate p, int facingPlane) { switch (facingPlane) { case Plane3D.XY_PLANE: return new Coordinate(p.x, p.y); case Plane3D.XZ_PLANE: return new Coordinate(p.x, p.z); // Plane3D.YZ default: return new Coordinate(p.y, p.z); } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy