java.org.locationtech.jts.triangulate.ConformingDelaunayTriangulationBuilder Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jts Show documentation
Show all versions of jts Show documentation
Libraries for Elasticsearch
The newest version!
/*
* Copyright (c) 2016 Vivid Solutions.
*
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* and Eclipse Distribution License v. 1.0 which accompanies this distribution.
* The Eclipse Public License is available at http://www.eclipse.org/legal/epl-v10.html
* and the Eclipse Distribution License is available at
*
* http://www.eclipse.org/org/documents/edl-v10.php.
*/
package org.locationtech.jts.triangulate;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.TreeMap;
import org.locationtech.jts.geom.Coordinate;
import org.locationtech.jts.geom.Envelope;
import org.locationtech.jts.geom.Geometry;
import org.locationtech.jts.geom.GeometryCollection;
import org.locationtech.jts.geom.GeometryFactory;
import org.locationtech.jts.geom.LineString;
import org.locationtech.jts.geom.MultiLineString;
import org.locationtech.jts.geom.Polygon;
import org.locationtech.jts.geom.util.LinearComponentExtracter;
import org.locationtech.jts.triangulate.quadedge.QuadEdgeSubdivision;
import org.locationtech.jts.triangulate.quadedge.Vertex;
/**
* A utility class which creates Conforming Delaunay Triangulations
* from collections of points and linear constraints, and extract the resulting
* triangulation edges or triangles as geometries.
*
* @author Martin Davis
*
*/
public class ConformingDelaunayTriangulationBuilder
{
private Collection siteCoords;
private Geometry constraintLines;
private double tolerance = 0.0;
private QuadEdgeSubdivision subdiv = null;
private Map constraintVertexMap = new TreeMap();
public ConformingDelaunayTriangulationBuilder()
{
}
/**
* Sets the sites (point or vertices) which will be triangulated.
* All vertices of the given geometry will be used as sites.
* The site vertices do not have to contain the constraint
* vertices as well; any site vertices which are
* identical to a constraint vertex will be removed
* from the site vertex set.
*
* @param geom the geometry from which the sites will be extracted.
*/
public void setSites(Geometry geom)
{
siteCoords = DelaunayTriangulationBuilder.extractUniqueCoordinates(geom);
}
/**
* Sets the linear constraints to be conformed to.
* All linear components in the input will be used as constraints.
* The constraint vertices do not have to be disjoint from
* the site vertices.
* The constraints must not contain duplicate segments (up to orientation).
*
* @param constraintLines the lines to constraint to
*/
public void setConstraints(Geometry constraintLines)
{
this.constraintLines = constraintLines;
}
/**
* Sets the snapping tolerance which will be used
* to improved the robustness of the triangulation computation.
* A tolerance of 0.0 specifies that no snapping will take place.
*
* @param tolerance the tolerance distance to use
*/
public void setTolerance(double tolerance)
{
this.tolerance = tolerance;
}
private void create()
{
if (subdiv != null) return;
Envelope siteEnv = DelaunayTriangulationBuilder.envelope(siteCoords);
List segments = new ArrayList();
if (constraintLines != null) {
siteEnv.expandToInclude(constraintLines.getEnvelopeInternal());
createVertices(constraintLines);
segments = createConstraintSegments(constraintLines);
}
List sites = createSiteVertices(siteCoords);
ConformingDelaunayTriangulator cdt = new ConformingDelaunayTriangulator(sites, tolerance);
cdt.setConstraints(segments, new ArrayList(constraintVertexMap.values()));
cdt.formInitialDelaunay();
cdt.enforceConstraints();
subdiv = cdt.getSubdivision();
}
private List createSiteVertices(Collection coords)
{
List verts = new ArrayList();
for (Iterator i = coords.iterator(); i.hasNext(); ) {
Coordinate coord = (Coordinate) i.next();
if (constraintVertexMap.containsKey(coord))
continue;
verts.add(new ConstraintVertex(coord));
}
return verts;
}
private void createVertices(Geometry geom)
{
Coordinate[] coords = geom.getCoordinates();
for (int i = 0; i < coords.length; i++) {
Vertex v = new ConstraintVertex(coords[i]);
constraintVertexMap.put(coords[i], v);
}
}
private static List createConstraintSegments(Geometry geom)
{
List lines = LinearComponentExtracter.getLines(geom);
List constraintSegs = new ArrayList();
for (Iterator i = lines.iterator(); i.hasNext(); ) {
LineString line = (LineString) i.next();
createConstraintSegments(line, constraintSegs);
}
return constraintSegs;
}
private static void createConstraintSegments(LineString line, List constraintSegs)
{
Coordinate[] coords = line.getCoordinates();
for (int i = 1; i < coords.length; i++) {
constraintSegs.add(new Segment(coords[i-1], coords[i]));
}
}
/**
* Gets the QuadEdgeSubdivision which models the computed triangulation.
*
* @return the subdivision containing the triangulation
*/
public QuadEdgeSubdivision getSubdivision()
{
create();
return subdiv;
}
/**
* Gets the edges of the computed triangulation as a {@link MultiLineString}.
*
* @param geomFact the geometry factory to use to create the output
* @return the edges of the triangulation
*/
public Geometry getEdges(GeometryFactory geomFact)
{
create();
return subdiv.getEdges(geomFact);
}
/**
* Gets the faces of the computed triangulation as a {@link GeometryCollection}
* of {@link Polygon}.
*
* @param geomFact the geometry factory to use to create the output
* @return the faces of the triangulation
*/
public Geometry getTriangles(GeometryFactory geomFact)
{
create();
return subdiv.getTriangles(geomFact);
}
}