All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.xhtmlrenderer.util.ImageUtil Maven / Gradle / Ivy

Go to download

Flying Saucer is a CSS 2.1 renderer written in Java. This artifact contains the core rendering and layout code as well as Java2D output.

There is a newer version: 9.11.0
Show newest version
/*
 * {{{ header & license
 * Copyright (c) 2007 Patrick Wright
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public License
 * as published by the Free Software Foundation; either version 2.1
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 * }}}
 */
package org.xhtmlrenderer.util;

import javax.annotation.CheckReturnValue;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import javax.annotation.ParametersAreNonnullByDefault;
import javax.imageio.ImageIO;
import java.awt.*;
import java.awt.image.BufferedImage;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.util.Base64;
import java.util.Map;
import java.util.logging.Level;

/**
 * Static utility methods for working with images. Meant to suggest "best practices" for the most straightforward
 * cases of working with images.
 *
 * @author pwright
 */
@ParametersAreNonnullByDefault
public class ImageUtil {

    private static final Map qualities = Map.of(
            DownscaleQuality.FAST, new OldScaler(),
            DownscaleQuality.HIGH_QUALITY, new HighQualityScaler(),
            DownscaleQuality.LOW_QUALITY, new FastScaler(),
            DownscaleQuality.AREA, new AreaAverageScaler()
    );

    /**
     * Sets the background of the image to white
     */
    public static void clearImage(BufferedImage image) {
        Graphics2D g2d = (Graphics2D) image.getGraphics();
        g2d.setColor(Color.WHITE);
        g2d.fillRect(0, 0, image.getWidth(), image.getHeight());
        g2d.dispose();
    }

    @Nonnull
    @CheckReturnValue
    public static BufferedImage makeCompatible(BufferedImage image) {
        BufferedImage cimg;
        if (GraphicsEnvironment.isHeadless()) {
            cimg = createCompatibleBufferedImage(image.getWidth(), image.getHeight(), image.getTransparency());
        } else {
            GraphicsConfiguration gc = getGraphicsConfiguration();
            if (image.getColorModel().equals(gc.getColorModel())) {
                return image;
            }
            cimg = gc.createCompatibleImage(image.getWidth(), image.getHeight(), image.getTransparency());
        }

        Graphics cg = cimg.getGraphics();
        cg.drawImage(image, 0, 0, null);
        cg.dispose();
        return cimg;
    }

    /**
     * Helper method to instantiate new BufferedImages; if the graphics environment is actually connected to real
     * screen devices (e.g. not in headless mode), the image will be compatible with the screen device allowing
     * for best performance. In a headless environment, simply creates a new BufferedImage. For non-headless
     * environments, this just sets up and calls
     * {@link java.awt.GraphicsConfiguration#createCompatibleImage(int,int,int)}. The image will not have anything
     * drawn to it, not even a white background; you must do this yourself. The {@link #clearImage(BufferedImage)}
     * method will do this for you if you like.
     *
     * @param width  Target width for the image
     * @param height Target height for the image
     * @param biType Value from the {@link java.awt.image.BufferedImage} class; see docs for
     *               {@link java.awt.image.BufferedImage#BufferedImage(int,int,int)}. The actual type used will
     *               be the type specified in this parameter, if in headless mode, or the type most compatible with the screen, if
     *               in non-headless more.
     * @return A BufferedImage compatible with the screen (best fit).
     */
    @Nonnull
    @CheckReturnValue
    public static BufferedImage createCompatibleBufferedImage(int width, int height, int biType) {
        final BufferedImage image;

        GraphicsEnvironment ge = GraphicsEnvironment.getLocalGraphicsEnvironment();
        if (ge.isHeadlessInstance()) {
            image = new BufferedImage(width, height, biType);
        } else {
            GraphicsConfiguration gc = getGraphicsConfiguration();

            // TODO: check type using image type - can be sniffed; see Filthy Rich Clients
            int type = (biType == BufferedImage.TYPE_INT_ARGB || biType == BufferedImage.TYPE_INT_ARGB_PRE ?
                    Transparency.TRANSLUCENT : Transparency.OPAQUE);

            image = gc.createCompatibleImage(width, height, type);
        }

        return image;
    }

    @Nonnull
    @CheckReturnValue
    private static GraphicsConfiguration getGraphicsConfiguration() {
        GraphicsEnvironment ge = GraphicsEnvironment.getLocalGraphicsEnvironment();
        GraphicsDevice gs = ge.getDefaultScreenDevice();
        return gs.getDefaultConfiguration();
    }

    /**
     * Creates a BufferedImage compatible with the local graphics environment; this is a helper method for a
     * common process and just sets up and calls
     * {@link java.awt.GraphicsConfiguration#createCompatibleImage(int,int,int)}. The image will support
     * transparent pixels.
     *
     * @param width  Target width for the image
     * @param height Target height for the image
     * @return A BufferedImage compatible with the screen (best fit) supporting transparent pixels.
     */
    @Nonnull
    @CheckReturnValue
    public static BufferedImage createCompatibleBufferedImage(int width, int height) {
        return createCompatibleBufferedImage(width, height, Transparency.BITMASK);
    }

    /**
     * Scales an image to the requested width and height, assuming these are both >= 1; size given in pixels.
     * If either width or height is <=0, the current image width or height will be used. This method assumes
     * that, at the moment the method is called, the width and height of the image are available; it won't wait for
     * them. Therefore, the method should be called once the image has completely loaded and not before.
     * 

* Override this method in a subclass to optimize image scaling operations; note that the legacy * {@link Image#getScaledInstance(int, int, int)} is considered to perform poorly compared to more * recent developed techniques. *

* For a discussion of the options from a member of the Java2D team, see * ... * * @param orgImage The image to scale * @return The scaled image instance. */ @Nonnull @CheckReturnValue public static BufferedImage getScaledInstance(ScalingOptions opt, BufferedImage orgImage) { int w = orgImage.getWidth(null); int h = orgImage.getHeight(null); if (opt.sizeMatches(w, h)) { return orgImage; } w = (opt.getTargetWidth() <= 0 ? w : opt.getTargetWidth()); h = (opt.getTargetHeight() <= 0 ? h : opt.getTargetHeight()); Scaler scaler = qualities.get(opt.getDownscalingHint()); opt.setTargetWidth(w); opt.setTargetHeight(h); return scaler.getScaledInstance(orgImage, opt); } /** * Scales an image to the requested width and height, assuming these are both >= 1; size given in pixels. * If either width or height is <=0, the current image width or height will be used. This method assumes y * that, at the moment the method is called, the width and height of the image are available; it won't wait for * them. Therefore, the method should be called once the image has completely loaded and not before. *

* Override this method in a subclass to optimize image scaling operations; note that the legacy * {@link Image#getScaledInstance(int, int, int)} is considered to perform poorly compared to more * recent developed techniques. *

* For a discussion of the options from a member of the Java2D team, see * ... * * @param orgImage The image to scale * @param targetWidth The target width in pixels * @param targetHeight The target height in pixels * @return The scaled image instance. */ @Nonnull @CheckReturnValue public static BufferedImage getScaledInstance(BufferedImage orgImage, int targetWidth, int targetHeight) { String downscaleQuality = Configuration.valueFor("xr.image.scale", DownscaleQuality.HIGH_QUALITY.asString()); DownscaleQuality quality = DownscaleQuality.forString(downscaleQuality, DownscaleQuality.HIGH_QUALITY); Object hint = Configuration.valueFromClassConstant("xr.image.render-quality", RenderingHints.VALUE_INTERPOLATION_BICUBIC); ScalingOptions opt = new ScalingOptions(targetWidth, targetHeight, BufferedImage.TYPE_INT_ARGB, quality, hint); return getScaledInstance(opt, orgImage); } /** * Utility method to convert an AWT Image to a BufferedImage. Size is preserved, BufferedImage is compatible * with current display device. * * @param awtImg image to convert; if already a BufferedImage, returned unmodified * @param type the type of BufferedImage to create; see * {@link java.awt.image.BufferedImage#BufferedImage(int,int,int)} * @return BufferedImage with same content. */ @Nonnull @CheckReturnValue public static BufferedImage convertToBufferedImage(Image awtImg, int type) { final BufferedImage image; if (awtImg instanceof BufferedImage) { image = (BufferedImage) awtImg; } else { image = createCompatibleBufferedImage(awtImg.getWidth(null), awtImg.getHeight(null), type); Graphics2D g = image.createGraphics(); g.drawImage(awtImg, 0, 0, null, null); g.dispose(); } return image; } @Nonnull @CheckReturnValue public static BufferedImage createTransparentImage(int width, int height) { BufferedImage bi = createCompatibleBufferedImage(width, height, BufferedImage.TYPE_INT_ARGB); Graphics2D g2d = bi.createGraphics(); // Make all filled pixels transparent Color transparent = new Color(0, 0, 0, 0); g2d.setColor(transparent); g2d.setComposite(AlphaComposite.Src); g2d.fillRect(0, 0, width, height); g2d.dispose(); return bi; } /** * Detect if given URI represents an embedded base 64 image. * * @param uri URI of the image * @return A boolean */ @CheckReturnValue public static boolean isEmbeddedBase64Image(@Nullable String uri) { return uri != null && uri.startsWith("data:image"); } /** * Get the binary content of an embedded base 64 image. * * @param imageDataUri URI of the embedded image * @return The binary content */ @Nullable @CheckReturnValue public static byte[] getEmbeddedBase64Image(String imageDataUri) { int b64Index = imageDataUri.indexOf("base64,"); if (b64Index != -1) { String b64encoded = imageDataUri.substring(b64Index + "base64,".length()); return Base64.getDecoder().decode(b64encoded); } else { XRLog.load(Level.SEVERE, "Embedded XHTML images must be encoded in base 64."); } return null; } /** * Get the BufferedImage of an embedded base 64 image. * * @param imageDataUri URI of the embedded image * @return The BufferedImage */ @Nullable @CheckReturnValue public static BufferedImage loadEmbeddedBase64Image(String imageDataUri) { try { byte[] buffer = getEmbeddedBase64Image(imageDataUri); if (buffer != null) { return ImageIO.read(new ByteArrayInputStream(buffer)); } } catch (IOException ex) { XRLog.exception("Can't read XHTML embedded image", ex); } return null; } @ParametersAreNonnullByDefault private interface Scaler { /** * Convenience method that returns a scaled instance of the * provided {@code BufferedImage}, taken from * article on java.net by Chris Campbell. *
* Expects the image to be fully loaded (e.g. no need to wait for loading on requesting height or width) * * @param img the original image to be scaled * @param opt scaling options described below: * imageType type of image from {@link BufferedImage} (values starting with TYPE) * hint one of the rendering hints that corresponds to * {@code RenderingHints.KEY_INTERPOLATION} (e.g. * {@code RenderingHints.VALUE_INTERPOLATION_NEAREST_NEIGHBOR}, * {@code RenderingHints.VALUE_INTERPOLATION_BILINEAR}, * {@code RenderingHints.VALUE_INTERPOLATION_BICUBIC}) * higherQuality if true, this method will use a multistep * scaling technique that provides higher quality than the usual * one-step technique (only useful in downscaling cases, where * {@code targetWidth} or {@code targetHeight} is * smaller than the original dimensions, and generally only when * the {@code BILINEAR} hint is specified) * targetWidth the desired width of the scaled instance, * in pixels * targetHeight the desired height of the scaled instance, * in pixels * @return a scaled version of the original {@code BufferedImage} */ @Nonnull @CheckReturnValue BufferedImage getScaledInstance(BufferedImage img, ScalingOptions opt); } @ParametersAreNonnullByDefault private abstract static class AbstractFastScaler implements Scaler { @Override @Nonnull @CheckReturnValue public BufferedImage getScaledInstance(BufferedImage img, ScalingOptions opt) { // target is always >= 1 Image scaled = img.getScaledInstance(opt.getTargetWidth(), opt.getTargetHeight(), getImageScalingMethod()); return convertToBufferedImage(scaled, img.getType()); } protected abstract int getImageScalingMethod(); } /** * Old AWT-style scaling, poor quality */ @ParametersAreNonnullByDefault private static class OldScaler extends AbstractFastScaler { @Override @CheckReturnValue protected int getImageScalingMethod() { return Image.SCALE_FAST; } } /** * AWT-style one-step scaling, using area averaging */ @ParametersAreNonnullByDefault private static class AreaAverageScaler extends AbstractFastScaler { @Override @CheckReturnValue protected int getImageScalingMethod() { return Image.SCALE_AREA_AVERAGING; } } /** * Fast but decent scaling */ @ParametersAreNonnullByDefault private static class FastScaler implements Scaler { @Override @Nonnull @CheckReturnValue public BufferedImage getScaledInstance(BufferedImage img, ScalingOptions opt) { int w, h; // Use one-step technique: scale directly from original // size to target size with a single drawImage() call w = opt.getTargetWidth(); h = opt.getTargetHeight(); BufferedImage scaled = createCompatibleBufferedImage(w, h, img.getType()); Graphics2D g2 = scaled.createGraphics(); opt.applyRenderingHints(g2); g2.drawImage(img, 0, 0, w, h, null); g2.dispose(); return scaled; } } /** * Step-wise downscaling */ @ParametersAreNonnullByDefault private static class HighQualityScaler implements Scaler { @Override @Nonnull @CheckReturnValue public BufferedImage getScaledInstance(BufferedImage img, ScalingOptions opt) { int w, h; int width = img.getWidth(null); int height = img.getHeight(null); // multi-pass only if higher quality requested and we are shrinking image if (opt.getTargetWidth() < width && opt.getTargetHeight() < height) { // Use multistep technique: start with original size, then // scale down in multiple passes with drawImage() // until the target size is reached w = width; h = height; } else { // Use one-step technique: scale directly from original // size to target size with a single drawImage() call w = opt.getTargetWidth(); h = opt.getTargetHeight(); } BufferedImage scaled = img; do { if (w > opt.getTargetWidth()) { w /= 2; if (w < opt.getTargetWidth()) { w = opt.getTargetWidth(); } } if (h > opt.getTargetHeight()) { h /= 2; if (h < opt.getTargetHeight()) { h = opt.getTargetHeight(); } } BufferedImage tmp = createCompatibleBufferedImage(w, h, img.getType()); Graphics2D g2 = tmp.createGraphics(); opt.applyRenderingHints(g2); g2.drawImage(scaled, 0, 0, w, h, null); g2.dispose(); scaled = tmp; } while (w != opt.getTargetWidth() || h != opt.getTargetHeight()); return scaled; } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy