All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.xmlobjects.gml.util.jama.Matrix Maven / Gradle / Ivy

There is a newer version: 1.1.2
Show newest version
/*
 * gml-objects - A Java mapping for the OGC Geography Markup Language (GML)
 * https://github.com/xmlobjects/gml-objects
 *
 * Copyright 2019-2024 Claus Nagel 
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.xmlobjects.gml.util.jama;

import java.io.BufferedReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.text.DecimalFormat;
import java.text.DecimalFormatSymbols;
import java.text.NumberFormat;
import java.util.Locale;

/**
 * Jama = Java Matrix class.
 * 

* The Java Matrix Class provides the fundamental operations of numerical * linear algebra. Various constructors create Matrices from two dimensional * arrays of double precision floating point numbers. Various "gets" and * "sets" provide access to submatrices and matrix elements. Several methods * implement basic matrix arithmetic, including matrix addition and * multiplication, matrix norms, and element-by-element array operations. * Methods for reading and printing matrices are also included. All the * operations in this version of the Matrix Class involve real matrices. * Complex matrices may be handled in a future version. *

* Five fundamental matrix decompositions, which consist of pairs or triples * of matrices, permutation vectors, and the like, produce results in five * decomposition classes. These decompositions are accessed by the Matrix * class to compute solutions of simultaneous linear equations, determinants, * inverses and other matrix functions. The five decompositions are: *

    *
  • Cholesky Decomposition of symmetric, positive definite matrices. *
  • LU Decomposition of rectangular matrices. *
  • QR Decomposition of rectangular matrices. *
  • Singular Value Decomposition of rectangular matrices. *
  • Eigenvalue Decomposition of both symmetric and nonsymmetric square matrices. *
*
*
Example of use:
*
Solve a linear system A x = b and compute the residual norm, ||b - A x||. *
 * double[][] vals = {{1.,2.,3},{4.,5.,6.},{7.,8.,10.}};
 * Matrix A = new Matrix(vals);
 * Matrix b = Matrix.random(3,1);
 * Matrix x = A.solve(b);
 * Matrix r = A.times(x).minus(b);
 * double rnorm = r.normInf();
 * 
*
* * @author The MathWorks, Inc. and the National Institute of Standards and Technology. * @version 5 August 1998 */ public class Matrix implements Cloneable, java.io.Serializable { /* ------------------------ Class variables * ------------------------ */ /** * Array for internal storage of elements. * * @serial internal array storage. */ private double[][] A; /** * Row and column dimensions. * * @serial row dimension. * @serial column dimension. */ private int m, n; /* ------------------------ Constructors * ------------------------ */ /** * Construct an m-by-n matrix of zeros. * * @param m Number of rows. * @param n Number of colums. */ public Matrix(int m, int n) { this.m = m; this.n = n; A = new double[m][n]; } /** * Construct an m-by-n constant matrix. * * @param m Number of rows. * @param n Number of colums. * @param s Fill the matrix with this scalar value. */ public Matrix(int m, int n, double s) { this.m = m; this.n = n; A = new double[m][n]; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { A[i][j] = s; } } } /** * Construct a matrix from a 2-D array. * * @param A Two-dimensional array of doubles. * @throws IllegalArgumentException All rows must have the same length * @see #constructWithCopy */ public Matrix(double[][] A) { m = A.length; n = A[0].length; for (int i = 0; i < m; i++) { if (A[i].length != n) { throw new IllegalArgumentException("All rows must have the same length."); } } this.A = A; } /** * Construct a matrix quickly without checking arguments. * * @param A Two-dimensional array of doubles. * @param m Number of rows. * @param n Number of colums. */ public Matrix(double[][] A, int m, int n) { this.A = A; this.m = m; this.n = n; } /** * Construct a matrix from a one-dimensional packed array * * @param vals One-dimensional array of doubles, packed by columns (ala Fortran). * @param m Number of rows. * @throws IllegalArgumentException Array length must be a multiple of m. */ public Matrix(double vals[], int m) { this.m = m; n = (m != 0 ? vals.length / m : 0); if (m * n != vals.length) { throw new IllegalArgumentException("Array length must be a multiple of m."); } A = new double[m][n]; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { A[i][j] = vals[i + j * m]; } } } /* ------------------------ Public Methods * ------------------------ */ /** * Construct a matrix from a copy of a 2-D array. * * @param A Two-dimensional array of doubles. * @return copy of A * @throws IllegalArgumentException All rows must have the same length */ public static Matrix constructWithCopy(double[][] A) { int m = A.length; int n = A[0].length; Matrix X = new Matrix(m, n); double[][] C = X.getArray(); for (int i = 0; i < m; i++) { if (A[i].length != n) { throw new IllegalArgumentException ("All rows must have the same length."); } for (int j = 0; j < n; j++) { C[i][j] = A[i][j]; } } return X; } /** * Make a deep copy of a matrix * * @return deep copy of this matrix */ public Matrix copy() { Matrix X = new Matrix(m, n); double[][] C = X.getArray(); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { C[i][j] = A[i][j]; } } return X; } /** * Clone the Matrix object. */ public Object clone() { return this.copy(); } /** * Access the internal two-dimensional array. * * @return Pointer to the two-dimensional array of matrix elements. */ public double[][] getArray() { return A; } /** * Copy the internal two-dimensional array. * * @return Two-dimensional array copy of matrix elements. */ public double[][] getArrayCopy() { double[][] C = new double[m][n]; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { C[i][j] = A[i][j]; } } return C; } /** * Make a one-dimensional column packed copy of the internal array. * * @return Matrix elements packed in a one-dimensional array by columns. */ public double[] getColumnPackedCopy() { double[] vals = new double[m * n]; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { vals[i + j * m] = A[i][j]; } } return vals; } /** * Make a one-dimensional row packed copy of the internal array. * * @return Matrix elements packed in a one-dimensional array by rows. */ public double[] getRowPackedCopy() { double[] vals = new double[m * n]; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { vals[i * n + j] = A[i][j]; } } return vals; } /** * Get row dimension. * * @return m, the number of rows. */ public int getRowDimension() { return m; } /** * Get column dimension. * * @return n, the number of columns. */ public int getColumnDimension() { return n; } /** * Get a single element. * * @param i Row index. * @param j Column index. * @return A(i, j) * @throws ArrayIndexOutOfBoundsException out of array bounds */ public double get(int i, int j) { return A[i][j]; } /** * Get a submatrix. * * @param i0 Initial row index * @param i1 Final row index * @param j0 Initial column index * @param j1 Final column index * @return A(i0 : i1, j0 : j1) * @throws ArrayIndexOutOfBoundsException Submatrix indices */ public Matrix getMatrix(int i0, int i1, int j0, int j1) { Matrix X = new Matrix(i1 - i0 + 1, j1 - j0 + 1); double[][] B = X.getArray(); try { for (int i = i0; i <= i1; i++) { for (int j = j0; j <= j1; j++) { B[i - i0][j - j0] = A[i][j]; } } } catch (ArrayIndexOutOfBoundsException e) { throw new ArrayIndexOutOfBoundsException("Submatrix indices"); } return X; } /** * Get a submatrix. * * @param r Array of row indices. * @param c Array of column indices. * @return A(r ( :), c(:)) * @throws ArrayIndexOutOfBoundsException Submatrix indices */ public Matrix getMatrix(int[] r, int[] c) { Matrix X = new Matrix(r.length, c.length); double[][] B = X.getArray(); try { for (int i = 0; i < r.length; i++) { for (int j = 0; j < c.length; j++) { B[i][j] = A[r[i]][c[j]]; } } } catch (ArrayIndexOutOfBoundsException e) { throw new ArrayIndexOutOfBoundsException("Submatrix indices"); } return X; } /** * Get a submatrix. * * @param i0 Initial row index * @param i1 Final row index * @param c Array of column indices. * @return A(i0 : i1, c ( :)) * @throws ArrayIndexOutOfBoundsException Submatrix indices */ public Matrix getMatrix(int i0, int i1, int[] c) { Matrix X = new Matrix(i1 - i0 + 1, c.length); double[][] B = X.getArray(); try { for (int i = i0; i <= i1; i++) { for (int j = 0; j < c.length; j++) { B[i - i0][j] = A[i][c[j]]; } } } catch (ArrayIndexOutOfBoundsException e) { throw new ArrayIndexOutOfBoundsException("Submatrix indices"); } return X; } /** * Get a submatrix. * * @param r Array of row indices. * @param j0 Initial column index * @param j1 Final column index * @return A(r ( :), j0:j1) * @throws ArrayIndexOutOfBoundsException Submatrix indices */ public Matrix getMatrix(int[] r, int j0, int j1) { Matrix X = new Matrix(r.length, j1 - j0 + 1); double[][] B = X.getArray(); try { for (int i = 0; i < r.length; i++) { for (int j = j0; j <= j1; j++) { B[i][j - j0] = A[r[i]][j]; } } } catch (ArrayIndexOutOfBoundsException e) { throw new ArrayIndexOutOfBoundsException("Submatrix indices"); } return X; } /** * Set a single element. * * @param i Row index. * @param j Column index. * @param s A(i,j). * @throws ArrayIndexOutOfBoundsException out of array bounds */ public void set(int i, int j, double s) { A[i][j] = s; } /** * Set a submatrix. * * @param i0 Initial row index * @param i1 Final row index * @param j0 Initial column index * @param j1 Final column index * @param X A(i0:i1,j0:j1) * @throws ArrayIndexOutOfBoundsException Submatrix indices */ public void setMatrix(int i0, int i1, int j0, int j1, Matrix X) { try { for (int i = i0; i <= i1; i++) { for (int j = j0; j <= j1; j++) { A[i][j] = X.get(i - i0, j - j0); } } } catch (ArrayIndexOutOfBoundsException e) { throw new ArrayIndexOutOfBoundsException("Submatrix indices"); } } /** * Set a submatrix. * * @param r Array of row indices. * @param c Array of column indices. * @param X A(r(:),c(:)) * @throws ArrayIndexOutOfBoundsException Submatrix indices */ public void setMatrix(int[] r, int[] c, Matrix X) { try { for (int i = 0; i < r.length; i++) { for (int j = 0; j < c.length; j++) { A[r[i]][c[j]] = X.get(i, j); } } } catch (ArrayIndexOutOfBoundsException e) { throw new ArrayIndexOutOfBoundsException("Submatrix indices"); } } /** * Set a submatrix. * * @param r Array of row indices. * @param j0 Initial column index * @param j1 Final column index * @param X A(r(:),j0:j1) * @throws ArrayIndexOutOfBoundsException Submatrix indices */ public void setMatrix(int[] r, int j0, int j1, Matrix X) { try { for (int i = 0; i < r.length; i++) { for (int j = j0; j <= j1; j++) { A[r[i]][j] = X.get(i, j - j0); } } } catch (ArrayIndexOutOfBoundsException e) { throw new ArrayIndexOutOfBoundsException("Submatrix indices"); } } /** * Set a submatrix. * * @param i0 Initial row index * @param i1 Final row index * @param c Array of column indices. * @param X A(i0:i1,c(:)) * @throws ArrayIndexOutOfBoundsException Submatrix indices */ public void setMatrix(int i0, int i1, int[] c, Matrix X) { try { for (int i = i0; i <= i1; i++) { for (int j = 0; j < c.length; j++) { A[i][c[j]] = X.get(i - i0, j); } } } catch (ArrayIndexOutOfBoundsException e) { throw new ArrayIndexOutOfBoundsException("Submatrix indices"); } } /** * Matrix transpose. * * @return A' */ public Matrix transpose() { Matrix X = new Matrix(n, m); double[][] C = X.getArray(); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { C[j][i] = A[i][j]; } } return X; } /** * One norm * * @return maximum column sum. */ public double norm1() { double f = 0; for (int j = 0; j < n; j++) { double s = 0; for (int i = 0; i < m; i++) { s += Math.abs(A[i][j]); } f = Math.max(f, s); } return f; } /** * Two norm * * @return maximum singular value. */ public double norm2() { return (new SingularValueDecomposition(this).norm2()); } /** * Infinity norm * * @return maximum row sum. */ public double normInf() { double f = 0; for (int i = 0; i < m; i++) { double s = 0; for (int j = 0; j < n; j++) { s += Math.abs(A[i][j]); } f = Math.max(f, s); } return f; } /** * Frobenius norm * * @return sqrt of sum of squares of all elements. */ public double normF() { double f = 0; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { f = Maths.hypot(f, A[i][j]); } } return f; } /** * Unary minus * * @return -A */ public Matrix uminus() { Matrix X = new Matrix(m, n); double[][] C = X.getArray(); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { C[i][j] = -A[i][j]; } } return X; } /** * C = A + B * * @param B another matrix * @return A + B */ public Matrix plus(Matrix B) { checkMatrixDimensions(B); Matrix X = new Matrix(m, n); double[][] C = X.getArray(); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { C[i][j] = A[i][j] + B.A[i][j]; } } return X; } /** * A = A + B * * @param B another matrix * @return A + B */ public Matrix plusEquals(Matrix B) { checkMatrixDimensions(B); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { A[i][j] = A[i][j] + B.A[i][j]; } } return this; } /** * C = A - B * * @param B another matrix * @return A - B */ public Matrix minus(Matrix B) { checkMatrixDimensions(B); Matrix X = new Matrix(m, n); double[][] C = X.getArray(); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { C[i][j] = A[i][j] - B.A[i][j]; } } return X; } /** * A = A - B * * @param B another matrix * @return A - B */ public Matrix minusEquals(Matrix B) { checkMatrixDimensions(B); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { A[i][j] = A[i][j] - B.A[i][j]; } } return this; } /** * Element-by-element multiplication, C = A.*B * * @param B another matrix * @return A.*B */ public Matrix arrayTimes(Matrix B) { checkMatrixDimensions(B); Matrix X = new Matrix(m, n); double[][] C = X.getArray(); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { C[i][j] = A[i][j] * B.A[i][j]; } } return X; } /** * Element-by-element multiplication in place, A = A.*B * * @param B another matrix * @return A.*B */ public Matrix arrayTimesEquals(Matrix B) { checkMatrixDimensions(B); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { A[i][j] = A[i][j] * B.A[i][j]; } } return this; } /** * Element-by-element right division, C = A./B * * @param B another matrix * @return A./B */ public Matrix arrayRightDivide(Matrix B) { checkMatrixDimensions(B); Matrix X = new Matrix(m, n); double[][] C = X.getArray(); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { C[i][j] = A[i][j] / B.A[i][j]; } } return X; } /** * Element-by-element right division in place, A = A./B * * @param B another matrix * @return A./B */ public Matrix arrayRightDivideEquals(Matrix B) { checkMatrixDimensions(B); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { A[i][j] = A[i][j] / B.A[i][j]; } } return this; } /** * Element-by-element left division, C = A.\B * * @param B another matrix * @return A.\B */ public Matrix arrayLeftDivide(Matrix B) { checkMatrixDimensions(B); Matrix X = new Matrix(m, n); double[][] C = X.getArray(); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { C[i][j] = B.A[i][j] / A[i][j]; } } return X; } /** * Element-by-element left division in place, A = A.\B * * @param B another matrix * @return A.\B */ public Matrix arrayLeftDivideEquals(Matrix B) { checkMatrixDimensions(B); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { A[i][j] = B.A[i][j] / A[i][j]; } } return this; } /** * Multiply a matrix by a scalar, C = s*A * * @param s scalar * @return s*A */ public Matrix times(double s) { Matrix X = new Matrix(m, n); double[][] C = X.getArray(); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { C[i][j] = s * A[i][j]; } } return X; } /** * Multiply a matrix by a scalar in place, A = s*A * * @param s scalar * @return replace A by s*A */ public Matrix timesEquals(double s) { for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { A[i][j] = s * A[i][j]; } } return this; } /** * Linear algebraic matrix multiplication, A * B * * @param B another matrix * @return Matrix product, A * B * @throws IllegalArgumentException Matrix inner dimensions must agree. */ public Matrix times(Matrix B) { if (B.m != n) { throw new IllegalArgumentException("Matrix inner dimensions must agree."); } Matrix X = new Matrix(m, B.n); double[][] C = X.getArray(); double[] Bcolj = new double[n]; for (int j = 0; j < B.n; j++) { for (int k = 0; k < n; k++) { Bcolj[k] = B.A[k][j]; } for (int i = 0; i < m; i++) { double[] Arowi = A[i]; double s = 0; for (int k = 0; k < n; k++) { s += Arowi[k] * Bcolj[k]; } C[i][j] = s; } } return X; } /** * LU Decomposition * * @return LUDecomposition * @see LUDecomposition */ public LUDecomposition lu() { return new LUDecomposition(this); } /** * QR Decomposition * * @return QRDecomposition * @see QRDecomposition */ public QRDecomposition qr() { return new QRDecomposition(this); } /** * Cholesky Decomposition * * @return CholeskyDecomposition * @see CholeskyDecomposition */ public CholeskyDecomposition chol() { return new CholeskyDecomposition(this); } /** * Singular Value Decomposition * * @return SingularValueDecomposition * @see SingularValueDecomposition */ public SingularValueDecomposition svd() { return new SingularValueDecomposition(this); } /** * Eigenvalue Decomposition * * @return EigenvalueDecomposition * @see EigenvalueDecomposition */ public EigenvalueDecomposition eig() { return new EigenvalueDecomposition(this); } /** * Solve A*X = B * * @param B right hand side * @return solution if A is square, least squares solution otherwise */ public Matrix solve(Matrix B) { return (m == n ? (new LUDecomposition(this)).solve(B) : (new QRDecomposition(this)).solve(B)); } /** * Solve X*A = B, which is also A'*X' = B' * * @param B right hand side * @return solution if A is square, least squares solution otherwise. */ public Matrix solveTranspose(Matrix B) { return transpose().solve(B.transpose()); } /** * Matrix inverse or pseudoinverse * * @return inverse(A) if A is square, pseudoinverse otherwise. */ public Matrix inverse() { return solve(identity(m, m)); } /** * Matrix determinant * * @return determinant */ public double det() { return new LUDecomposition(this).det(); } /** * Matrix rank * * @return effective numerical rank, obtained from SVD. */ public int rank() { return new SingularValueDecomposition(this).rank(); } /** * Matrix condition (2 norm) * * @return ratio of largest to smallest singular value. */ public double cond() { return new SingularValueDecomposition(this).cond(); } /** * Matrix trace. * * @return sum of the diagonal elements. */ public double trace() { double t = 0; for (int i = 0; i < Math.min(m, n); i++) { t += A[i][i]; } return t; } /** * Generate matrix with random elements * * @param m Number of rows. * @param n Number of colums. * @return An m-by-n matrix with uniformly distributed random elements. */ public static Matrix random(int m, int n) { Matrix A = new Matrix(m, n); double[][] X = A.getArray(); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { X[i][j] = Math.random(); } } return A; } /** * Generate identity matrix * * @param m Number of rows. * @param n Number of colums. * @return An m-by-n matrix with ones on the diagonal and zeros elsewhere. */ public static Matrix identity(int m, int n) { Matrix A = new Matrix(m, n); double[][] X = A.getArray(); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { X[i][j] = (i == j ? 1.0 : 0.0); } } return A; } /** * Print the matrix to stdout. Line the elements up in columns * with a Fortran-like 'Fw.d' style format. * * @param w Column width. * @param d Number of digits after the decimal. */ public void print(int w, int d) { print(new PrintWriter(System.out, true), w, d); } /** * Print the matrix to the output stream. Line the elements up in * columns with a Fortran-like 'Fw.d' style format. * * @param output Output stream. * @param w Column width. * @param d Number of digits after the decimal. */ public void print(PrintWriter output, int w, int d) { DecimalFormat format = new DecimalFormat(); format.setDecimalFormatSymbols(new DecimalFormatSymbols(Locale.US)); format.setMinimumIntegerDigits(1); format.setMaximumFractionDigits(d); format.setMinimumFractionDigits(d); format.setGroupingUsed(false); print(output, format, w + 2); } /** * Print the matrix to stdout. Line the elements up in columns. * Use the format object, and right justify within columns of width * characters. * Note that is the matrix is to be read back in, you probably will want * to use a NumberFormat that is set to US Locale. * * @param format A Formatting object for individual elements. * @param width Field width for each column. * @see java.text.DecimalFormat#setDecimalFormatSymbols */ public void print(NumberFormat format, int width) { print(new PrintWriter(System.out, true), format, width); } // DecimalFormat is a little disappointing coming from Fortran or C's printf. // Since it doesn't pad on the left, the elements will come out different // widths. Consequently, we'll pass the desired column width in as an // argument and do the extra padding ourselves. /** * Print the matrix to the output stream. Line the elements up in columns. * Use the format object, and right justify within columns of width * characters. * Note that is the matrix is to be read back in, you probably will want * to use a NumberFormat that is set to US Locale. * * @param output the output stream. * @param format A formatting object to format the matrix elements * @param width Column width. * @see java.text.DecimalFormat#setDecimalFormatSymbols */ public void print(PrintWriter output, NumberFormat format, int width) { output.println(); // start on new line. for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { String s = format.format(A[i][j]); // format the number int padding = Math.max(1, width - s.length()); // At _least_ 1 space for (int k = 0; k < padding; k++) output.print(' '); output.print(s); } output.println(); } output.println(); // end with blank line. } /** * Read a matrix from a stream. The format is the same the print method, * so printed matrices can be read back in (provided they were printed using * US Locale). Elements are separated by * whitespace, all the elements for each row appear on a single line, * the last row is followed by a blank line. * * @param input the input stream. * @return matrix * @throws java.io.IOException failed to read from stream */ public static Matrix read(BufferedReader input) throws java.io.IOException { StreamTokenizer tokenizer = new StreamTokenizer(input); // Although StreamTokenizer will parse numbers, it doesn't recognize // scientific notation (E or D); however, Double.valueOf does. // The strategy here is to disable StreamTokenizer's number parsing. // We'll only get whitespace delimited words, EOL's and EOF's. // These words should all be numbers, for Double.valueOf to parse. tokenizer.resetSyntax(); tokenizer.wordChars(0, 255); tokenizer.whitespaceChars(0, ' '); tokenizer.eolIsSignificant(true); java.util.Vector vD = new java.util.Vector(); // Ignore initial empty lines while (tokenizer.nextToken() == StreamTokenizer.TT_EOL) ; if (tokenizer.ttype == StreamTokenizer.TT_EOF) throw new java.io.IOException("Unexpected EOF on matrix read."); do { vD.addElement(Double.valueOf(tokenizer.sval)); // Read & store 1st row. } while (tokenizer.nextToken() == StreamTokenizer.TT_WORD); int n = vD.size(); // Now we've got the number of columns! double row[] = new double[n]; for (int j = 0; j < n; j++) // extract the elements of the 1st row. row[j] = vD.elementAt(j).doubleValue(); java.util.Vector v = new java.util.Vector(); v.addElement(row); // Start storing rows instead of columns. while (tokenizer.nextToken() == StreamTokenizer.TT_WORD) { // While non-empty lines v.addElement(row = new double[n]); int j = 0; do { if (j >= n) throw new java.io.IOException ("Row " + v.size() + " is too long."); row[j++] = Double.valueOf(tokenizer.sval).doubleValue(); } while (tokenizer.nextToken() == StreamTokenizer.TT_WORD); if (j < n) throw new java.io.IOException ("Row " + v.size() + " is too short."); } int m = v.size(); // Now we've got the number of rows. double[][] A = new double[m][]; v.copyInto(A); // copy the rows out of the vector return new Matrix(A); } /* ------------------------ Private Methods * ------------------------ */ /** * Check if size(A) == size(B) **/ private void checkMatrixDimensions(Matrix B) { if (B.m != m || B.n != n) { throw new IllegalArgumentException("Matrix dimensions must agree."); } } private static final long serialVersionUID = 1; }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy