
org.zoodb.jdo.internal.util.PrimLongMapLI Maven / Gradle / Ivy
Show all versions of parent Show documentation
package org.zoodb.jdo.internal.util;
import java.io.IOException;
import java.io.Serializable;
import java.util.AbstractCollection;
import java.util.AbstractSet;
import java.util.Collection;
import java.util.Collections;
import java.util.ConcurrentModificationException;
import java.util.Hashtable;
import java.util.Iterator;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Set;
/*
* @(#)HashMap.java 1.73 07/03/13
*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
*/
/**
* Copy of ZZPrimLongMapLI.
*/
/**
* Hash table based implementation of the Map interface. This
* implementation provides all of the optional map operations, and permits
* null values and the null key. (The HashMap
* class is roughly equivalent to Hashtable, except that it is
* unsynchronized and permits nulls.) This class makes no guarantees as to
* the order of the map; in particular, it does not guarantee that the order
* will remain constant over time.
*
* This implementation provides constant-time performance for the basic
* operations (get and put), assuming the hash function
* disperses the elements properly among the buckets. Iteration over
* collection views requires time proportional to the "capacity" of the
* HashMap instance (the number of buckets) plus its size (the number
* of key-value mappings). Thus, it's very important not to set the initial
* capacity too high (or the load factor too low) if iteration performance is
* important.
*
*
An instance of HashMap has two parameters that affect its
* performance: initial capacity and load factor. The
* capacity is the number of buckets in the hash table, and the initial
* capacity is simply the capacity at the time the hash table is created. The
* load factor is a measure of how full the hash table is allowed to
* get before its capacity is automatically increased. When the number of
* entries in the hash table exceeds the product of the load factor and the
* current capacity, the hash table is rehashed (that is, internal data
* structures are rebuilt) so that the hash table has approximately twice the
* number of buckets.
*
*
As a general rule, the default load factor (.75) offers a good tradeoff
* between time and space costs. Higher values decrease the space overhead
* but increase the lookup cost (reflected in most of the operations of the
* HashMap class, including get and put). The
* expected number of entries in the map and its load factor should be taken
* into account when setting its initial capacity, so as to minimize the
* number of rehash operations. If the initial capacity is greater
* than the maximum number of entries divided by the load factor, no
* rehash operations will ever occur.
*
*
If many mappings are to be stored in a HashMap instance,
* creating it with a sufficiently large capacity will allow the mappings to
* be stored more efficiently than letting it perform automatic rehashing as
* needed to grow the table.
*
*
Note that this implementation is not synchronized.
* If multiple threads access a hash map concurrently, and at least one of
* the threads modifies the map structurally, it must be
* synchronized externally. (A structural modification is any operation
* that adds or deletes one or more mappings; merely changing the value
* associated with a key that an instance already contains is not a
* structural modification.) This is typically accomplished by
* synchronizing on some object that naturally encapsulates the map.
*
* If no such object exists, the map should be "wrapped" using the
* {@link Collections#synchronizedMap Collections.synchronizedMap}
* method. This is best done at creation time, to prevent accidental
* unsynchronized access to the map:
* Map m = Collections.synchronizedMap(new HashMap(...));
*
* The iterators returned by all of this class's "collection view methods"
* are fail-fast: if the map is structurally modified at any time after
* the iterator is created, in any way except through the iterator's own
* remove method, the iterator will throw a
* {@link ConcurrentModificationException}. Thus, in the face of concurrent
* modification, the iterator fails quickly and cleanly, rather than risking
* arbitrary, non-deterministic behavior at an undetermined time in the
* future.
*
*
Note that the fail-fast behavior of an iterator cannot be guaranteed
* as it is, generally speaking, impossible to make any hard guarantees in the
* presence of unsynchronized concurrent modification. Fail-fast iterators
* throw ConcurrentModificationException on a best-effort basis.
* Therefore, it would be wrong to write a program that depended on this
* exception for its correctness: the fail-fast behavior of iterators
* should be used only to detect bugs.
*
*
This class is a member of the
*
* Java Collections Framework.
*
* @param the type of mapped values
*
* @author Doug Lea
* @author Josh Bloch
* @author Arthur van Hoff
* @author Neal Gafter
* @version 1.73, 03/13/07
* @see Object#hashCode()
* @see Collection
* @see Map
* @see PrimLongTreeMap
* @see Hashtable
* @since 1.2
*/
public class PrimLongMapLI
implements Cloneable, Serializable {
/**
* The default initial capacity - MUST be a power of two.
*/
static final int DEFAULT_INITIAL_CAPACITY = 16;
/**
* The maximum capacity, used if a higher value is implicitly specified
* by either of the constructors with arguments.
* MUST be a power of two <= 1<<30.
*/
static final int MAXIMUM_CAPACITY = 1 << 30;
/**
* The load factor used when none specified in constructor.
*/
static final float DEFAULT_LOAD_FACTOR = 0.75f;
/**
* The table, resized as necessary. Length MUST Always be a power of two.
*/
private transient Entry[] table;
/**
* The number of key-value mappings contained in this map.
*/
private transient int size;
/**
* The next size value at which to resize (capacity * load factor).
* @serial
*/
private int threshold;
/**
* The load factor for the hash table.
*
* @serial
*/
private final float loadFactor;
/**
* The number of times this HashMap has been structurally modified
* Structural modifications are those that change the number of mappings in
* the HashMap or otherwise modify its internal structure (e.g.,
* rehash). This field is used to make iterators on Collection-views of
* the HashMap fail-fast. (See ConcurrentModificationException).
*/
private transient volatile int modCount; //TODO, volatile?
/**
* Constructs an empty HashMap with the specified initial
* capacity and load factor.
*
* @param initialCapacity the initial capacity
* @param loadFactor the load factor
* @throws IllegalArgumentException if the initial capacity is negative
* or the load factor is nonpositive
*/
@SuppressWarnings("unchecked")
public PrimLongMapLI(int initialCapacity, final float loadFactor) {
if (initialCapacity < 0) {
throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity);
}
if (initialCapacity > MAXIMUM_CAPACITY) {
initialCapacity = MAXIMUM_CAPACITY;
}
if (loadFactor <= 0 || Float.isNaN(loadFactor)) {
throw new IllegalArgumentException("Illegal load factor: " + loadFactor);
}
// Find a power of 2 >= initialCapacity
int capacity = 1;
while (capacity < initialCapacity) {
capacity <<= 1;
}
this.loadFactor = loadFactor;
threshold = (int) (capacity * loadFactor);
table = new Entry[capacity];
init();
}
/**
* Constructs an empty HashMap with the specified initial
* capacity and the default load factor (0.75).
*
* @param initialCapacity the initial capacity.
* @throws IllegalArgumentException if the initial capacity is negative.
*/
public PrimLongMapLI(final int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
/**
* Constructs an empty HashMap with the default initial capacity
* (16) and the default load factor (0.75).
*/
@SuppressWarnings("unchecked")
public PrimLongMapLI() {
this.loadFactor = DEFAULT_LOAD_FACTOR;
threshold = (int) (DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);
table = new Entry[DEFAULT_INITIAL_CAPACITY];
init();
}
/**
* Constructs a new HashMap with the same mappings as the
* specified Map. The HashMap is created with
* default load factor (0.75) and an initial capacity sufficient to
* hold the mappings in the specified Map.
*
* @param m the map whose mappings are to be placed in this map
* @throws NullPointerException if the specified map is null
*/
public PrimLongMapLI(PrimLongMapLI extends V> m) {
this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
putAllForCreate(m);
}
// internal utilities
/**
* Initialization hook for subclasses. This method is called
* in all constructors and pseudo-constructors (clone, readObject)
* after HashMap has been initialized but before any entries have
* been inserted. (In the absence of this method, readObject would
* require explicit knowledge of subclasses.)
*/
private void init() {
}
/**
* Applies a supplemental hash function to a given hashCode, which
* defends against poor quality hash functions. This is critical
* because HashMap uses power-of-two length hash tables, that
* otherwise encounter collisions for hashCodes that do not differ
* in lower bits. Note: Null keys always map to hash 0, thus index 0.
*/
// private static int hash(Long key) {
// // This function ensures that hashCodes that differ only by
// // constant multiples at each bit position have a bounded
// // number of collisions (approximately 8 at default load factor).
//// int h = (int) key.getBits();
//// h ^= (h >>> 20) ^ (h >>> 12);
//// return h ^ (h >>> 7) ^ (h >>> 4);
// //The following should be sufficient. The returned bits are usually collision free and
// //equally distributed, making them ideal hash values for a Map like this.
// // (see indexFor() ). Tilmann Zaeschke
// //Above that, calls to getBits() can be inlined and should be much faster than calls
// //to hasCode().
// return key==null ? 0 : (int) key; //TODO disallow null?
// }
/**
* Returns index for hash code h.
*/
static int indexFor(long h, int length) {
return (int)h & (length - 1);
}
/**
* Returns the number of key-value mappings in this map.
*
* @return the number of key-value mappings in this map
*/
public int size() {
return size;
}
/**
* Returns true if this map contains no key-value mappings.
*
* @return true if this map contains no key-value mappings
*/
public boolean isEmpty() {
return size == 0;
}
/**
* Returns the value to which the specified key is mapped,
* or {@code null} if this map contains no mapping for the key.
*
* More formally, if this map contains a mapping from a key
* {@code k} to a value {@code v} such that {@code (key==null ? k==null :
* key.equals(k))}, then this method returns {@code v}; otherwise
* it returns {@code null}. (There can be at most one such mapping.)
*
*
A return value of {@code null} does not necessarily
* indicate that the map contains no mapping for the key; it's also
* possible that the map explicitly maps the key to {@code null}.
* The {@link #containsKey containsKey} operation may be used to
* distinguish these two cases.
*
* @see #put(long, Object)
*/
public V get(long keyBits) {
for (Entry e = table[indexFor(keyBits, table.length)];
e != null;
e = e.next) {
if (e.key == keyBits) {
return e.value;
}
}
return null;
}
/**
* Returns true if this map contains a mapping for the
* specified key.
*
* @param key The key whose presence in this map is to be tested
* @return true if this map contains a mapping for the specified
* key.
*/
public boolean containsKey(long key) {
return getEntry(key) != null;
}
/**
* Returns the entry associated with the specified key in the
* HashMap. Returns null if the HashMap contains no mapping
* for the key.
*/
private final Entry getEntry(long keyBits) {
for (Entry e = table[indexFor(keyBits, table.length)];
e != null;
e = e.next) {
if (e.key == keyBits) {
return e;
}
}
return null;
}
/**
* Associates the specified value with the specified key in this map.
* If the map previously contained a mapping for the key, the old
* value is replaced.
*
* @param keyBits key with which the specified value is to be associated
* @param value value to be associated with the specified key
* @return the previous value associated with key, or
* null if there was no mapping for key.
* (A null return can also indicate that the map
* previously associated null with key.)
*/
public V put(long keyBits, V value) {
int i = indexFor(keyBits, table.length);
for (Entry e = table[i]; e != null; e = e.next) {
if (e.key == keyBits) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;
addEntry(keyBits, value, i);
return null;
}
/**
* This method is used instead of put by constructors and
* pseudoconstructors (clone, readObject). It does not resize the table,
* check for comodification, etc. It calls createEntry rather than
* addEntry.
*/
private void putForCreate(long key, V value) {
int i = indexFor(key, table.length);
/**
* Look for preexisting entry for key. This will never happen for
* clone or deserialize. It will only happen for construction if the
* input Map is a sorted map whose ordering is inconsistent w/ equals.
*/
for (Entry e = table[i]; e != null; e = e.next) {
if (e.key == key) {
e.value = value;
return;
}
}
createEntry(key, value, i);
}
@SuppressWarnings({ "rawtypes", "unchecked" })
private void putAllForCreate(final PrimLongMapLI extends V> m) {
for (final Iterator i = m.entrySet().iterator(); i.hasNext();) {
final PrimLongMapLI.Entry extends V> e = (Entry extends V>) i.next();
putForCreate(e.getKey(), e.getValue());
}
}
/**
* Rehashes the contents of this map into a new array with a
* larger capacity. This method is called automatically when the
* number of keys in this map reaches its threshold.
*
* If current capacity is MAXIMUM_CAPACITY, this method does not
* resize the map, but sets threshold to Integer.MAX_VALUE.
* This has the effect of preventing future calls.
*
* @param newCapacity the new capacity, MUST be a power of two;
* must be greater than current capacity unless current
* capacity is MAXIMUM_CAPACITY (in which case value
* is irrelevant).
*/
private void resize(int newCapacity) {
Entry[] oldTable = table;
int oldCapacity = oldTable.length;
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return;
}
@SuppressWarnings("unchecked")
Entry[] newTable = new Entry[newCapacity];
transfer(newTable);
table = newTable;
threshold = (int) (newCapacity * loadFactor);
}
/**
* Transfers all entries from current table to newTable.
*/
private void transfer(Entry[] newTable) {
Entry[] src = table;
int newCapacity = newTable.length;
for (Entry e: src) {
// for (int j = 0; j < src.length; j++) {
// Entry e = src[j];
if (e != null) {
//src[j] = null; //TZ: seems unnecessary
do {
Entry next = e.next;
int i = indexFor(e.key, newCapacity);
e.next = newTable[i];
newTable[i] = e;
e = next;
} while (e != null);
}
}
}
/**
* Copies all of the mappings from the specified map to this map.
* These mappings will replace any mappings that this map had for
* any of the keys currently in the specified map.
*
* @param m mappings to be stored in this map
* @throws NullPointerException if the specified map is null
*/
@SuppressWarnings({ "rawtypes", "unchecked" })
public void putAll(PrimLongMapLI extends V> m) {
int numKeysToBeAdded = m.size();
if (numKeysToBeAdded == 0) {
return;
}
/*
* Expand the map if the map if the number of mappings to be added
* is greater than or equal to threshold. This is conservative; the
* obvious condition is (m.size() + size) >= threshold, but this
* condition could result in a map with twice the appropriate capacity,
* if the keys to be added overlap with the keys already in this map.
* By using the conservative calculation, we subject ourself
* to at most one extra resize.
*/
if (numKeysToBeAdded > threshold) {
int targetCapacity = (int) (numKeysToBeAdded / loadFactor + 1);
if (targetCapacity > MAXIMUM_CAPACITY) {
targetCapacity = MAXIMUM_CAPACITY;
}
int newCapacity = table.length;
while (newCapacity < targetCapacity) {
newCapacity <<= 1;
}
if (newCapacity > table.length) {
resize(newCapacity);
}
}
for (final Iterator i = m.entrySet().iterator(); i.hasNext();) {
PrimLongMapLI.Entry extends V> e = (Entry extends V>) i.next();
put(e.getKey(), e.getValue());
}
}
/**
* Removes the mapping for the specified key from this map if present.
*
* @param key key whose mapping is to be removed from the map
* @return the previous value associated with key, or
* null if there was no mapping for key.
* (A null return can also indicate that the map
* previously associated null with key.)
*/
public V remove(long key) {
Entry e = removeEntryForKey(key);
return e == null ? null : e.value;
}
/**
* Removes and returns the entry associated with the specified key
* in the HashMap. Returns null if the HashMap contains no mapping
* for this key.
*/
private final Entry removeEntryForKey(long keyBits) {
int i = indexFor(keyBits, table.length);
Entry prev = table[i];
Entry e = prev;
while (e != null) {
Entry next = e.next;
if (e.key == keyBits) {
modCount++;
size--;
if (prev == e) {
table[i] = next;
} else {
prev.next = next;
}
e.recordRemoval(this);
return e;
}
prev = e;
e = next;
}
return e;
}
/**
* Special version of remove for EntrySet.
*/
private final Entry removeMapping(Entry entry) {
long keyBits = entry.key;
int i = indexFor(keyBits, table.length);
Entry prev = table[i];
Entry e = prev;
while (e != null) {
Entry next = e.next;
if (e.key == keyBits) {
modCount++;
size--;
if (prev == e) {
table[i] = next;
} else {
prev.next = next;
}
e.recordRemoval(this);
return e;
}
prev = e;
e = next;
}
return e;
}
/**
* Removes all of the mappings from this map.
* The map will be empty after this call returns.
*/
public void clear() {
modCount++;
Entry[] tab = table;
for (int i = 0; i < tab.length; i++) {
tab[i] = null;
}
size = 0;
}
/**
* Returns true if this map maps one or more keys to the
* specified value.
*
* @param value value whose presence in this map is to be tested
* @return true if this map maps one or more keys to the
* specified value
*/
public boolean containsValue(V value) {
if (value == null) {
return containsNullValue();
}
Entry[] tab = table;
for (int i = 0; i < tab.length; i++) {
for (Entry e = tab[i]; e != null; e = e.next) {
if (value.equals(e.value)) {
return true;
}
}
}
return false;
}
/**
* Special-case code for containsValue with null argument
*/
private boolean containsNullValue() {
Entry[] tab = table;
for (int i = 0; i < tab.length; i++) {
for (Entry e = tab[i]; e != null; e = e.next) {
if (e.value == null) {
return true;
}
}
}
return false;
}
/**
* Returns a shallow copy of this HashMap instance: the keys and
* values themselves are not cloned.
*
* @return a shallow copy of this map
*/
@SuppressWarnings("unchecked")
public PrimLongMapLI clone() {
PrimLongMapLI result = null;
try {
result = (PrimLongMapLI) super.clone();
} catch (CloneNotSupportedException e) {
// assert false;
}
result.table = new Entry[table.length];
result.entrySet = null;
result.modCount = 0;
result.size = 0;
result.init();
result.putAllForCreate(this);
return result;
}
public static class Entry {
private final long key;
private V value;
private Entry next;
/**
* Creates new entry.
*/
Entry(long k, V v, Entry n) {
value = v;
next = n;
key = k;
}
public final long getKey() {
return key;
}
public final V getValue() {
return value;
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
@SuppressWarnings({ "unchecked", "rawtypes" })
public final boolean equals(Object o) {
if (!(o instanceof Entry)) {
return false;
}
if (this == o) {
return true;
}
Entry e = (Entry) o;
long k1 = key;
long k2 = e.key;
if (k1 == k2) {
Object v1 = getValue();
Object v2 = e.getValue();
if (v1 == v2 || (v1 != null && v1.equals(v2))) {
return true;
}
}
return false;
}
public final int hashCode() {
return ((int) key) //hashCode()) -> see hash(...)
^ (value == null ? 0 : value.hashCode());
}
public final String toString() {
return getKey() + "=" + getValue();
}
/**
* This method is invoked whenever the value in an entry is
* overwritten by an invocation of put(k,v) for a key k that's already
* in the HashMap.
*/
void recordAccess(PrimLongMapLI m) {
}
/**
* This method is invoked whenever the entry is
* removed from the table.
*/
void recordRemoval(PrimLongMapLI m) {
}
}
/**
* Adds a new entry with the specified key, value and hash code to
* the specified bucket. It is the responsibility of this
* method to resize the table if appropriate.
*
* Subclass overrides this to alter the behavior of put method.
*/
private void addEntry(long key, V value, int bucketIndex) {
Entry e = table[bucketIndex];
table[bucketIndex] = new Entry(key, value, e);
if (size++ >= threshold) {
resize(2 * table.length);
}
}
/**
* Like addEntry except that this version is used when creating entries
* as part of Map construction or "pseudo-construction" (cloning,
* deserialization). This version needn't worry about resizing the table.
*
* Subclass overrides this to alter the behavior of HashMap(Map),
* clone, and readObject.
*/
private void createEntry(long key, V value, int bucketIndex) {
Entry e = table[bucketIndex];
table[bucketIndex] = new Entry(key, value, e);
size++;
}
private abstract class HashIterator implements Iterator {
private Entry next; // next entry to return
private int expectedModCount; // For fast-fail
private int index; // current slot
private Entry current; // current entry
HashIterator() {
expectedModCount = modCount;
if (size > 0) { // advance to first entry
Entry[] t = table;
while (index < t.length && (next = t[index++]) == null) {
//nothing
}
}
}
public final boolean hasNext() {
return next != null;
}
public final boolean hasNextEntry() {
return next != null;
}
final Entry nextEntry() {
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
Entry e = next;
if (e == null) {
throw new NoSuchElementException();
}
if ((next = e.next) == null) {
Entry[] t = table;
while (index < t.length && (next = t[index++]) == null) {}
}
current = e;
return e;
}
public void remove() {
if (current == null) {
throw new IllegalStateException();
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
long k = current.key;
current = null;
PrimLongMapLI.this.removeEntryForKey(k);
expectedModCount = modCount;
}
}
public final class ValueIterator extends HashIterator {
public V next() {
return nextEntry().value;
}
public V nextValue() {
return nextEntry().value;
}
}
private final class KeyIterator extends HashIterator {
public Long next() {
return nextEntry().key;
}
}
private final class EntryIterator extends HashIterator> {
public Entry next() {
return nextEntry();
}
}
// Subclass overrides these to alter behavior of views' iterator() method
private KeyIterator newKeyIterator() {
return new KeyIterator();
}
private ValueIterator newValueIterator() {
return new ValueIterator();
}
private EntryIterator newEntryIterator() {
return new EntryIterator();
}
// Views
/**
* Each of these fields are initialized to contain an instance of the
* appropriate view the first time this view is requested. The views are
* stateless, so there's no reason to create more than one of each.
*/
private transient volatile Set keySet = null;
private transient volatile PrimLongValues values = null;
private transient Set> entrySet = null;
/**
* Returns a {@link Set} view of the keys contained in this map.
* The set is backed by the map, so changes to the map are
* reflected in the set, and vice-versa. If the map is modified
* while an iteration over the set is in progress (except through
* the iterator's own remove operation), the results of
* the iteration are undefined. The set supports element removal,
* which removes the corresponding mapping from the map, via the
* Iterator.remove, Set.remove,
* removeAll, retainAll, and clear
* operations. It does not support the add or addAll
* operations.
*/
public Set keySet() {
Set ks = keySet;
return ks != null ? ks : (keySet = new KeySet());
}
private final class KeySet extends AbstractSet {
public KeyIterator iterator() {
return newKeyIterator();
}
public int size() {
return size;
}
public boolean contains(Object o) {
return containsKey((Long) o);
}
public boolean remove(Object o) {
return PrimLongMapLI.this.removeEntryForKey((Long) o) != null;
}
public void clear() {
PrimLongMapLI.this.clear();
}
}
/**
* Returns a {@link Collection} view of the values contained in this map.
* The collection is backed by the map, so changes to the map are
* reflected in the collection, and vice-versa. If the map is
* modified while an iteration over the collection is in progress
* (except through the iterator's own remove operation),
* the results of the iteration are undefined. The collection
* supports element removal, which removes the corresponding
* mapping from the map, via the Iterator.remove,
* Collection.remove, removeAll,
* retainAll and clear operations. It does not
* support the add or addAll operations.
*/
public PrimLongValues values() {
PrimLongValues vs = values;
return vs != null ? vs : (values = new PrimLongValues());
}
public final class PrimLongValues extends AbstractCollection {
public ValueIterator iterator() {
return newValueIterator();
}
public int size() {
return size;
}
@SuppressWarnings("unchecked")
public boolean contains(Object o) {
return containsValue((V) o);
}
public void clear() {
PrimLongMapLI.this.clear();
}
}
/**
* Returns a {@link Set} view of the mappings contained in this map.
* The set is backed by the map, so changes to the map are
* reflected in the set, and vice-versa. If the map is modified
* while an iteration over the set is in progress (except through
* the iterator's own remove operation, or through the
* setValue operation on a map entry returned by the
* iterator) the results of the iteration are undefined. The set
* supports element removal, which removes the corresponding
* mapping from the map, via the Iterator.remove,
* Set.remove, removeAll, retainAll and
* clear operations. It does not support the
* add or addAll operations.
*
* @return a set view of the mappings contained in this map
*/
public Set> entrySet() {
return entrySet0();
}
private Set> entrySet0() {
Set> es = entrySet;
return es != null ? es : (entrySet = new EntrySet());
}
private final class EntrySet extends AbstractSet> {
public EntryIterator iterator() {
return newEntryIterator();
}
@SuppressWarnings("unchecked")
public boolean contains(Object o) {
if (!(o instanceof Entry)) {
return false;
}
Entry e = (Entry) o;
Entry candidate = getEntry(e.getKey());
return candidate != null && candidate.equals(e);
}
@SuppressWarnings("unchecked")
public boolean remove(Object o) {
return removeMapping((Entry) o) != null;
}
public int size() {
return size;
}
public void clear() {
PrimLongMapLI.this.clear();
}
}
/**
* Save the state of the HashMap instance to a stream (i.e.,
* serialize it).
*
* @serialData The capacity of the HashMap (the length of the
* bucket array) is emitted (int), followed by the
* size (an int, the number of key-value
* mappings), followed by the key (Object) and value (Object)
* for each key-value mapping. The key-value mappings are
* emitted in no particular order.
*/
private void writeObject(java.io.ObjectOutputStream s) throws IOException {
Iterator> i = (size > 0) ? entrySet0().iterator() : null;
// Write out the threshold, loadfactor, and any hidden stuff
s.defaultWriteObject();
// Write out number of buckets
s.writeInt(table.length);
// Write out size (number of Mappings)
s.writeInt(size);
// Write out keys and values (alternating)
if (i != null) {
while (i.hasNext()) {
Entry e = i.next();
s.writeObject(e.getKey());
s.writeObject(e.getValue());
}
}
}
private static final long serialVersionUID = 362498820763181265L;
/**
* Reconstitute the HashMap instance from a stream (i.e.,
* deserialize it).
*/
@SuppressWarnings("unchecked")
private void readObject(java.io.ObjectInputStream s)
throws IOException, ClassNotFoundException {
// Read in the threshold, loadfactor, and any hidden stuff
s.defaultReadObject();
// Read in number of buckets and allocate the bucket array;
int numBuckets = s.readInt();
table = new Entry[numBuckets];
init(); // Give subclass a chance to do its thing.
// Read in size (number of Mappings)
int size = s.readInt();
// Read the keys and values, and put the mappings in the HashMap
for (int i = 0; i < size; i++) {
Long key = (Long) s.readObject();
V value = (V) s.readObject();
putForCreate(key, value);
}
}
// These methods are used when serializing HashSets
// private int capacity() { return table.length; }
// private float loadFactor() { return loadFactor; }
}