org.mozilla.javascript.optimizer.Block Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of js Show documentation
Show all versions of js Show documentation
Rhino is an open-source implementation of JavaScript written entirely in Java. It is typically embedded into Java applications to provide scripting to end users.
/* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is Rhino code, released
* May 6, 1999.
*
* The Initial Developer of the Original Code is
* Netscape Communications Corporation.
* Portions created by the Initial Developer are Copyright (C) 1997-1999
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Norris Boyd
* Igor Bukanov
* Roger Lawrence
*
* Alternatively, the contents of this file may be used under the terms of
* the GNU General Public License Version 2 or later (the "GPL"), in which
* case the provisions of the GPL are applicable instead of those above. If
* you wish to allow use of your version of this file only under the terms of
* the GPL and not to allow others to use your version of this file under the
* MPL, indicate your decision by deleting the provisions above and replacing
* them with the notice and other provisions required by the GPL. If you do
* not delete the provisions above, a recipient may use your version of this
* file under either the MPL or the GPL.
*
* ***** END LICENSE BLOCK ***** */
package org.mozilla.javascript.optimizer;
import org.mozilla.javascript.*;
import java.util.Hashtable;
import java.io.PrintWriter;
import java.io.StringWriter;
class Block
{
private static class FatBlock
{
private static Block[] reduceToArray(ObjToIntMap map)
{
Block[] result = null;
if (!map.isEmpty()) {
result = new Block[map.size()];
int i = 0;
ObjToIntMap.Iterator iter = map.newIterator();
for (iter.start(); !iter.done(); iter.next()) {
FatBlock fb = (FatBlock)(iter.getKey());
result[i++] = fb.realBlock;
}
}
return result;
}
void addSuccessor(FatBlock b) { successors.put(b, 0); }
void addPredecessor(FatBlock b) { predecessors.put(b, 0); }
Block[] getSuccessors() { return reduceToArray(successors); }
Block[] getPredecessors() { return reduceToArray(predecessors); }
// all the Blocks that come immediately after this
private ObjToIntMap successors = new ObjToIntMap();
// all the Blocks that come immediately before this
private ObjToIntMap predecessors = new ObjToIntMap();
Block realBlock;
}
Block(int startNodeIndex, int endNodeIndex)
{
itsStartNodeIndex = startNodeIndex;
itsEndNodeIndex = endNodeIndex;
}
static void runFlowAnalyzes(OptFunctionNode fn, Node[] statementNodes)
{
int paramCount = fn.fnode.getParamCount();
int varCount = fn.fnode.getParamAndVarCount();
int[] varTypes = new int[varCount];
// If the variable is a parameter, it could have any type.
for (int i = 0; i != paramCount; ++i) {
varTypes[i] = Optimizer.AnyType;
}
// If the variable is from a "var" statement, its typeEvent will be set
// when we see the setVar node.
for (int i = paramCount; i != varCount; ++i) {
varTypes[i] = Optimizer.NoType;
}
Block[] theBlocks = buildBlocks(statementNodes);
if (DEBUG) {
++debug_blockCount;
System.out.println("-------------------"+fn.fnode.getFunctionName()+" "+debug_blockCount+"--------");
System.out.println(toString(theBlocks, statementNodes));
}
reachingDefDataFlow(fn, statementNodes, theBlocks, varTypes);
typeFlow(fn, statementNodes, theBlocks, varTypes);
if (DEBUG) {
for (int i = 0; i < theBlocks.length; i++) {
System.out.println("For block " + theBlocks[i].itsBlockID);
theBlocks[i].printLiveOnEntrySet(fn);
}
System.out.println("Variable Table, size = " + varCount);
for (int i = 0; i != varCount; i++) {
System.out.println("["+i+"] type: "+varTypes[i]);
}
}
for (int i = paramCount; i != varCount; i++) {
if (varTypes[i] == Optimizer.NumberType) {
fn.setIsNumberVar(i);
}
}
}
private static Block[] buildBlocks(Node[] statementNodes)
{
// a mapping from each target node to the block it begins
Hashtable theTargetBlocks = new Hashtable();
ObjArray theBlocks = new ObjArray();
// there's a block that starts at index 0
int beginNodeIndex = 0;
for (int i = 0; i < statementNodes.length; i++) {
switch (statementNodes[i].getType()) {
case Token.TARGET :
{
if (i != beginNodeIndex) {
FatBlock fb = newFatBlock(beginNodeIndex, i - 1);
if (statementNodes[beginNodeIndex].getType()
== Token.TARGET)
theTargetBlocks.put(statementNodes[beginNodeIndex], fb);
theBlocks.add(fb);
// start the next block at this node
beginNodeIndex = i;
}
}
break;
case Token.IFNE :
case Token.IFEQ :
case Token.GOTO :
{
FatBlock fb = newFatBlock(beginNodeIndex, i);
if (statementNodes[beginNodeIndex].getType()
== Token.TARGET)
theTargetBlocks.put(statementNodes[beginNodeIndex], fb);
theBlocks.add(fb);
// start the next block at the next node
beginNodeIndex = i + 1;
}
break;
}
}
if (beginNodeIndex != statementNodes.length) {
FatBlock fb = newFatBlock(beginNodeIndex, statementNodes.length - 1);
if (statementNodes[beginNodeIndex].getType() == Token.TARGET)
theTargetBlocks.put(statementNodes[beginNodeIndex], fb);
theBlocks.add(fb);
}
// build successor and predecessor links
for (int i = 0; i < theBlocks.size(); i++) {
FatBlock fb = (FatBlock)(theBlocks.get(i));
Node blockEndNode = statementNodes[fb.realBlock.itsEndNodeIndex];
int blockEndNodeType = blockEndNode.getType();
if ((blockEndNodeType != Token.GOTO)
&& (i < (theBlocks.size() - 1))) {
FatBlock fallThruTarget = (FatBlock)(theBlocks.get(i + 1));
fb.addSuccessor(fallThruTarget);
fallThruTarget.addPredecessor(fb);
}
if ( (blockEndNodeType == Token.IFNE)
|| (blockEndNodeType == Token.IFEQ)
|| (blockEndNodeType == Token.GOTO) ) {
Node target = ((Node.Jump)blockEndNode).target;
FatBlock branchTargetBlock
= (FatBlock)(theTargetBlocks.get(target));
target.putProp(Node.TARGETBLOCK_PROP,
branchTargetBlock.realBlock);
fb.addSuccessor(branchTargetBlock);
branchTargetBlock.addPredecessor(fb);
}
}
Block[] result = new Block[theBlocks.size()];
for (int i = 0; i < theBlocks.size(); i++) {
FatBlock fb = (FatBlock)(theBlocks.get(i));
Block b = fb.realBlock;
b.itsSuccessors = fb.getSuccessors();
b.itsPredecessors = fb.getPredecessors();
b.itsBlockID = i;
result[i] = b;
}
return result;
}
private static FatBlock newFatBlock(int startNodeIndex, int endNodeIndex)
{
FatBlock fb = new FatBlock();
fb.realBlock = new Block(startNodeIndex, endNodeIndex);
return fb;
}
private static String toString(Block[] blockList, Node[] statementNodes)
{
if (!DEBUG) return null;
StringWriter sw = new StringWriter();
PrintWriter pw = new PrintWriter(sw);
pw.println(blockList.length + " Blocks");
for (int i = 0; i < blockList.length; i++) {
Block b = blockList[i];
pw.println("#" + b.itsBlockID);
pw.println("from " + b.itsStartNodeIndex
+ " "
+ statementNodes[b.itsStartNodeIndex].toString());
pw.println("thru " + b.itsEndNodeIndex
+ " "
+ statementNodes[b.itsEndNodeIndex].toString());
pw.print("Predecessors ");
if (b.itsPredecessors != null) {
for (int j = 0; j < b.itsPredecessors.length; j++)
pw.print(b.itsPredecessors[j].itsBlockID + " ");
pw.println();
}
else
pw.println("none");
pw.print("Successors ");
if (b.itsSuccessors != null) {
for (int j = 0; j < b.itsSuccessors.length; j++)
pw.print(b.itsSuccessors[j].itsBlockID + " ");
pw.println();
}
else
pw.println("none");
}
return sw.toString();
}
private static void reachingDefDataFlow(OptFunctionNode fn, Node[] statementNodes, Block theBlocks[], int[] varTypes)
{
/*
initialize the liveOnEntry and liveOnExit sets, then discover the variables
that are def'd by each function, and those that are used before being def'd
(hence liveOnEntry)
*/
for (int i = 0; i < theBlocks.length; i++) {
theBlocks[i].initLiveOnEntrySets(fn, statementNodes);
}
/*
this visits every block starting at the last, re-adding the predecessors of
any block whose inputs change as a result of the dataflow.
REMIND, better would be to visit in CFG postorder
*/
boolean visit[] = new boolean[theBlocks.length];
boolean doneOnce[] = new boolean[theBlocks.length];
int vIndex = theBlocks.length - 1;
boolean needRescan = false;
visit[vIndex] = true;
while (true) {
if (visit[vIndex] || !doneOnce[vIndex]) {
doneOnce[vIndex] = true;
visit[vIndex] = false;
if (theBlocks[vIndex].doReachedUseDataFlow()) {
Block pred[] = theBlocks[vIndex].itsPredecessors;
if (pred != null) {
for (int i = 0; i < pred.length; i++) {
int index = pred[i].itsBlockID;
visit[index] = true;
needRescan |= (index > vIndex);
}
}
}
}
if (vIndex == 0) {
if (needRescan) {
vIndex = theBlocks.length - 1;
needRescan = false;
}
else
break;
}
else
vIndex--;
}
/*
if any variable is live on entry to block 0, we have to mark it as
not jRegable - since it means that someone is trying to access the
'undefined'-ness of that variable.
*/
theBlocks[0].markAnyTypeVariables(varTypes);
}
private static void typeFlow(OptFunctionNode fn, Node[] statementNodes, Block theBlocks[], int[] varTypes)
{
boolean visit[] = new boolean[theBlocks.length];
boolean doneOnce[] = new boolean[theBlocks.length];
int vIndex = 0;
boolean needRescan = false;
visit[vIndex] = true;
while (true) {
if (visit[vIndex] || !doneOnce[vIndex]) {
doneOnce[vIndex] = true;
visit[vIndex] = false;
if (theBlocks[vIndex].doTypeFlow(fn, statementNodes, varTypes))
{
Block succ[] = theBlocks[vIndex].itsSuccessors;
if (succ != null) {
for (int i = 0; i < succ.length; i++) {
int index = succ[i].itsBlockID;
visit[index] = true;
needRescan |= (index < vIndex);
}
}
}
}
if (vIndex == (theBlocks.length - 1)) {
if (needRescan) {
vIndex = 0;
needRescan = false;
}
else
break;
}
else
vIndex++;
}
}
private static boolean assignType(int[] varTypes, int index, int type)
{
return type != (varTypes[index] |= type);
}
private void markAnyTypeVariables(int[] varTypes)
{
for (int i = 0; i != varTypes.length; i++) {
if (itsLiveOnEntrySet.test(i)) {
assignType(varTypes, i, Optimizer.AnyType);
}
}
}
/*
We're tracking uses and defs - in order to
build the def set and to identify the last use
nodes.
The itsNotDefSet is built reversed then flipped later.
*/
private void lookForVariableAccess(OptFunctionNode fn, Node n)
{
switch (n.getType()) {
case Token.DEC :
case Token.INC :
{
Node child = n.getFirstChild();
if (child.getType() == Token.GETVAR) {
int varIndex = fn.getVarIndex(child);
if (!itsNotDefSet.test(varIndex))
itsUseBeforeDefSet.set(varIndex);
itsNotDefSet.set(varIndex);
}
}
break;
case Token.SETVAR :
{
Node lhs = n.getFirstChild();
Node rhs = lhs.getNext();
lookForVariableAccess(fn, rhs);
itsNotDefSet.set(fn.getVarIndex(n));
}
break;
case Token.GETVAR :
{
int varIndex = fn.getVarIndex(n);
if (!itsNotDefSet.test(varIndex))
itsUseBeforeDefSet.set(varIndex);
}
break;
default :
Node child = n.getFirstChild();
while (child != null) {
lookForVariableAccess(fn, child);
child = child.getNext();
}
break;
}
}
/*
build the live on entry/exit sets.
Then walk the trees looking for defs/uses of variables
and build the def and useBeforeDef sets.
*/
private void initLiveOnEntrySets(OptFunctionNode fn, Node[] statementNodes)
{
int listLength = fn.getVarCount();
itsUseBeforeDefSet = new DataFlowBitSet(listLength);
itsNotDefSet = new DataFlowBitSet(listLength);
itsLiveOnEntrySet = new DataFlowBitSet(listLength);
itsLiveOnExitSet = new DataFlowBitSet(listLength);
for (int i = itsStartNodeIndex; i <= itsEndNodeIndex; i++) {
Node n = statementNodes[i];
lookForVariableAccess(fn, n);
}
itsNotDefSet.not(); // truth in advertising
}
/*
the liveOnEntry of each successor is the liveOnExit for this block.
The liveOnEntry for this block is -
liveOnEntry = liveOnExit - defsInThisBlock + useBeforeDefsInThisBlock
*/
private boolean doReachedUseDataFlow()
{
itsLiveOnExitSet.clear();
if (itsSuccessors != null)
for (int i = 0; i < itsSuccessors.length; i++)
itsLiveOnExitSet.or(itsSuccessors[i].itsLiveOnEntrySet);
return itsLiveOnEntrySet.df2(itsLiveOnExitSet,
itsUseBeforeDefSet, itsNotDefSet);
}
/*
the type of an expression is relatively unknown. Cases we can be sure
about are -
Literals,
Arithmetic operations - always return a Number
*/
private static int findExpressionType(OptFunctionNode fn, Node n,
int[] varTypes)
{
switch (n.getType()) {
case Token.NUMBER :
return Optimizer.NumberType;
case Token.CALL :
case Token.NEW :
case Token.REF_CALL :
return Optimizer.AnyType;
case Token.GETELEM :
return Optimizer.AnyType;
case Token.GETVAR :
return varTypes[fn.getVarIndex(n)];
case Token.INC :
case Token.DEC :
case Token.DIV:
case Token.MOD:
case Token.BITOR:
case Token.BITXOR:
case Token.BITAND:
case Token.LSH:
case Token.RSH:
case Token.URSH:
case Token.SUB :
return Optimizer.NumberType;
case Token.ADD : {
// if the lhs & rhs are known to be numbers, we can be sure that's
// the result, otherwise it could be a string.
Node child = n.getFirstChild();
int lType = findExpressionType(fn, child, varTypes);
int rType = findExpressionType(fn, child.getNext(), varTypes);
return lType | rType; // we're not distinguishng strings yet
}
}
Node child = n.getFirstChild();
if (child == null) {
return Optimizer.AnyType;
} else {
int result = Optimizer.NoType;
while (child != null) {
result |= findExpressionType(fn, child, varTypes);
child = child.getNext();
}
return result;
}
}
private static boolean findDefPoints(OptFunctionNode fn, Node n,
int[] varTypes)
{
boolean result = false;
Node child = n.getFirstChild();
switch (n.getType()) {
default :
while (child != null) {
result |= findDefPoints(fn, child, varTypes);
child = child.getNext();
}
break;
case Token.DEC :
case Token.INC :
if (child.getType() == Token.GETVAR) {
// theVar is a Number now
int i = fn.getVarIndex(child);
result |= assignType(varTypes, i, Optimizer.NumberType);
}
break;
case Token.SETPROP :
case Token.SETPROP_OP :
if (child.getType() == Token.GETVAR) {
int i = fn.getVarIndex(child);
assignType(varTypes, i, Optimizer.AnyType);
}
while (child != null) {
result |= findDefPoints(fn, child, varTypes);
child = child.getNext();
}
break;
case Token.SETVAR : {
Node rValue = child.getNext();
int theType = findExpressionType(fn, rValue, varTypes);
int i = fn.getVarIndex(n);
result |= assignType(varTypes, i, theType);
break;
}
}
return result;
}
private boolean doTypeFlow(OptFunctionNode fn, Node[] statementNodes,
int[] varTypes)
{
boolean changed = false;
for (int i = itsStartNodeIndex; i <= itsEndNodeIndex; i++) {
Node n = statementNodes[i];
if (n != null)
changed |= findDefPoints(fn, n, varTypes);
}
return changed;
}
private void printLiveOnEntrySet(OptFunctionNode fn)
{
if (DEBUG) {
for (int i = 0; i < fn.getVarCount(); i++) {
String name = fn.fnode.getParamOrVarName(i);
if (itsUseBeforeDefSet.test(i))
System.out.println(name + " is used before def'd");
if (itsNotDefSet.test(i))
System.out.println(name + " is not def'd");
if (itsLiveOnEntrySet.test(i))
System.out.println(name + " is live on entry");
if (itsLiveOnExitSet.test(i))
System.out.println(name + " is live on exit");
}
}
}
// all the Blocks that come immediately after this
private Block[] itsSuccessors;
// all the Blocks that come immediately before this
private Block[] itsPredecessors;
private int itsStartNodeIndex; // the Node at the start of the block
private int itsEndNodeIndex; // the Node at the end of the block
private int itsBlockID; // a unique index for each block
// reaching def bit sets -
private DataFlowBitSet itsLiveOnEntrySet;
private DataFlowBitSet itsLiveOnExitSet;
private DataFlowBitSet itsUseBeforeDefSet;
private DataFlowBitSet itsNotDefSet;
static final boolean DEBUG = false;
private static int debug_blockCount;
}