All Downloads are FREE. Search and download functionalities are using the official Maven repository.
Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
odkl.analysis.spark.util.SQLOperations.scala Maven / Gradle / Ivy
package odkl.analysis.spark.util
import odkl.analysis.spark.util.collection.CompactBuffer
import org.apache.commons.math3.distribution.NormalDistribution
import org.apache.commons.math3.exception.util.LocalizedFormats
import org.apache.commons.math3.exception.{NotPositiveException, NotStrictlyPositiveException, NumberIsTooLargeException, OutOfRangeException}
import org.apache.commons.math3.util.FastMath
import org.apache.spark.sql.expressions.{MutableAggregationBuffer, UserDefinedAggregateFunction}
import org.apache.spark.sql.types._
import org.apache.spark.sql.{Row, SQLContext, UserDefinedFunction}
import scala.annotation.tailrec
import scala.reflect.ClassTag
/**
* Created by vyacheslav.baranov on 25/11/15.
*/
trait SQLOperations {
def collectAsList(dataType: DataType): UserDefinedAggregateFunction = dataType match {
case IntegerType => new SQLOperations.CollectAsList[Int](dataType)
case LongType => new SQLOperations.CollectAsList[Long](dataType)
case FloatType => new SQLOperations.CollectAsList[Float](dataType)
case DoubleType => new SQLOperations.CollectAsList[Double](dataType)
case StringType => new SQLOperations.CollectAsList[String](dataType)
case _ => new SQLOperations.CollectAsList[Any](dataType)
}
def collectAsSet(dataType: DataType): UserDefinedAggregateFunction = dataType match {
case IntegerType => new SQLOperations.CollectAsSet[Int](dataType)
case LongType => new SQLOperations.CollectAsSet[Long](dataType)
case FloatType => new SQLOperations.CollectAsSet[Float](dataType)
case DoubleType => new SQLOperations.CollectAsSet[Double](dataType)
case StringType => new SQLOperations.CollectAsSet[String](dataType)
case _ => new SQLOperations.CollectAsList[Any](dataType)
}
/**
* Utility used to create UDF-s for Willson confidence interval estimation. Mainly copied from
* org.apache.commons.math3.stat.interval.WilsonScoreInterval, but optimized for multiple evaluations.
*
* See https://habrahabr.ru/company/darudar/blog/143188/ for details.
*
* @param confidence Confidence level (95% by default)
* @param minBound Minimum lower bound value (bellow that result is reset to 0 to achive higher sparsity).
* @return Function for estimation of Wilson confidence interval lower bound.
*/
def willsonLower(sqlContext: SQLContext, confidence: Double = 0.95, minBound: Double = 0.0): UserDefinedFunction = {
if (confidence <= 0 || confidence >= 1)
throw new OutOfRangeException(LocalizedFormats.OUT_OF_BOUNDS_CONFIDENCE_LEVEL, confidence, 0, 1)
val alpha = (1.0 - confidence) / 2
val normalDistribution = new NormalDistribution
val z = normalDistribution.inverseCumulativeProbability(1 - alpha)
val zSquared = FastMath.pow(z, 2)
sqlContext.udf.register(
s"wilsonLowerBound_${Math.round(confidence * 100)}",
(positive: Long, total: Long) => {
if (total <= 0) throw new NotStrictlyPositiveException(LocalizedFormats.NUMBER_OF_TRIALS, total)
if (positive < 0) throw new NotPositiveException(LocalizedFormats.NEGATIVE_NUMBER_OF_SUCCESSES, positive)
if (positive > total) throw new NumberIsTooLargeException(LocalizedFormats.NUMBER_OF_SUCCESS_LARGER_THAN_POPULATION_SIZE, positive, total, true)
val result = if (total <= 0) 0.0 else {
val mean = positive.toDouble / total.toDouble
val factor = 1.0 / (1 + (1.0 / total) * zSquared)
val modifiedSuccessRatio = mean + (1.0 / (2 * total)) * zSquared
val difference = z * FastMath.sqrt(1.0 / total * mean * (1 - mean) + (1.0 / (4 * FastMath.pow(total, 2)) * zSquared))
factor * (modifiedSuccessRatio - difference)
}
if (result < minBound) 0 else result
})
}
}
object SQLOperations extends SQLOperations {
class CollectAsList[T: ClassTag](itemType: DataType) extends UserDefinedAggregateFunction {
override def inputSchema: StructType = new StructType()
.add("item", itemType)
override def bufferSchema: StructType = new StructType()
.add("items", new ArrayType(itemType, true))
override def dataType: DataType = new ArrayType(itemType, true)
override def deterministic: Boolean = true
override def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
val prevItems = buffer.getAs[Seq[T]](0)
val res = appendItem(prevItems, input.getAs[T](0))
buffer.update(0, res)
}
override def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = {
val prevItems1 = buffer1.getAs[Seq[T]](0)
val prevItems2 = buffer2.getAs[Seq[T]](0)
val res = appendItems(prevItems1, prevItems2)
buffer1.update(0, res)
}
override def initialize(buffer: MutableAggregationBuffer): Unit = {
buffer.update(0, new CompactBuffer[T]())
}
override def evaluate(buffer: Row): Any = {
val items = buffer.getAs[Seq[T]](0)
items
}
protected def appendItem(buf: Seq[T], item: T): Seq[T] = buf match {
case cbuf: CompactBuffer[T] =>
cbuf += item
cbuf
case _ =>
val res = new CompactBuffer[T](buf.length + 1)
res ++= buf
res += item
res
}
protected def appendItems(buf: Seq[T], items: Seq[T]): Seq[T] = buf match {
case cbuf: CompactBuffer[T] =>
cbuf ++= items
cbuf
case _ =>
val res = new CompactBuffer[T](buf.length + items.length)
res ++= buf
res ++= items
res
}
}
class CollectAsSet[T: ClassTag](itemType: DataType)(implicit ordering: Ordering[T]) extends CollectAsList[T](itemType) {
override protected def appendItem(buf: Seq[T], item: T): Seq[T] = {
if (item == null) {
buf
} else {
val array: Array[T] = buf.toArray
if (binarySearch(array, item) < 0) {
Array.concat(array, Array(item)).sorted
} else {
array
}
}
}
override protected def appendItems(buf: Seq[T], items: Seq[T]): Seq[T] = {
val array = buf.toArray
val newItems = items.filter(x => x != null && binarySearch(array, x) < 0).toArray
val result = if (newItems.isEmpty) {
array
} else {
Array.concat(array, newItems).sorted
}
result
}
def binarySearch(a: IndexedSeq[T], needle: T): Int = {
@tailrec
def binarySearch(low: Int, high: Int): Int = {
if (low <= high) {
val middle = low + (high - low) / 2
if (ordering.equiv(a(middle), needle))
middle
else if (ordering.lt(a(middle), needle))
binarySearch(middle + 1, high)
else
binarySearch(low, middle - 1)
} else
-(low + 1)
}
binarySearch(0, a.length - 1)
}
}
/**
* Defined whether to choose the last collated event before the item of the first event after the item.
*/
object CollateOrder extends Enumeration {
val Before, After = Value
}
/**
* Returns a key extractor
*
* Currently, optimized for keys of 1 or 2 fields.
*
* @param indexes
* @return
*/
private def keyExtractor(indexes: Seq[Int]): (Row => Any) = {
if (indexes.length == 1) new SingleKeyExtractor(indexes.head)
else if (indexes.length == 2) new Tuple2Extractor(indexes.head, indexes(1))
else new SeqKeyExtractor(indexes)
}
private class SingleKeyExtractor(i: Int) extends (Row => Any) with Serializable {
override def apply(row: Row): Any = row.get(i)
}
private class Tuple2Extractor(i1: Int, i2: Int) extends (Row => Any) with Serializable {
override def apply(row: Row): Any = row.get(i1) -> row.get(i2)
}
private class SeqKeyExtractor(indexes: Seq[Int]) extends (Row => Any) with Serializable {
override def apply(row: Row): Any = indexes.map(row.get)
}
}