org.apache.spark.ml.odkl.ExtendedMultivariateOnlineSummarizer.scala Maven / Gradle / Ivy
The newest version!
package org.apache.spark.ml.odkl
import java.io.{IOException, ObjectInputStream, ObjectOutputStream, OutputStream}
import java.nio.ByteBuffer
import com.esotericsoftware.kryo.io.{Input, Output}
import com.esotericsoftware.kryo.{DefaultSerializer, Kryo, Serializer}
import com.tdunning.math.stats.AVLTreeDigest
import org.apache.spark.Logging
import org.apache.spark.mllib.linalg.{Vector, Vectors}
import org.apache.spark.mllib.stat.MultivariateOnlineSummarizer
/**
* Created by dmitriybugaichenko on 30.12.15.
*
* Utility used for estimating extended stat for the set of vectors. In addition to mean, deviation and count
* estimates percentiles
*
* @param dimension Expected dimension of vectors to aggregate
* @param compression How should accuracy be traded for size? A value of N here will give quantile errors
* almost always less than 3/N with considerably smaller errors expected for extreme
* quantiles. Conversely, you should expect to track about 5 N centroids for this
* accuracy.
*/
class ExtendedMultivariateOnlineSummarizer
(
val dimension: Int,
val compression: Double) extends MultivariateOnlineSummarizer with Serializable with Logging {
val percentileAggregators = Array.tabulate(dimension) { i => new SeriallizableAvlTreeDigest(compression) }
override def add(sample: Vector): this.type = {
require(sample.size == dimension, s"Expecting vector of size $dimension")
super.add(sample)
for (i <- 0 until dimension) percentileAggregators(i).add(sample(i))
this
}
override def merge(other: MultivariateOnlineSummarizer): this.type = {
require(other.isInstanceOf[ExtendedMultivariateOnlineSummarizer], "Extended summarizer expected.")
require(dimension == other.asInstanceOf[ExtendedMultivariateOnlineSummarizer].dimension, s"Expecting summarizer with the same dimansion $dimension")
super.merge(other)
for (i <- 0 until dimension) try {
percentileAggregators(i).add(other.asInstanceOf[ExtendedMultivariateOnlineSummarizer].percentileAggregators(i))
} catch {
case e: Exception => logError(s"Exception while aggregating index $i", e)
}
this
}
def percentile(p: Double): Vector = {
require(p > 0 && p < 1, "Expected p between 0 and 1 both excluding")
require(count > 0, "Expected at least one sample")
Vectors.dense(Array.tabulate(dimension) {
i => percentileAggregators(i).percentile(p)
})
}
}
/**
* Serializable wrapper over the TDigest
*
* @param initialCompression How should accuracy be traded for size? A value of N here will give quantile errors
* almost always less than 3/N with considerably smaller errors expected for extreme
* quantiles. Conversely, you should expect to track about 5 N centroids for this
* accuracy.
*/
@DefaultSerializer(classOf[SeriallizableAvlTreeDigest])
class SeriallizableAvlTreeDigest(val initialCompression: Double = 100) extends Serializer[SeriallizableAvlTreeDigest] with Serializable {
def this() = this(100)
def this(dig : AVLTreeDigest) = {
this(dig.compression())
digest = dig
}
var digest = new AVLTreeDigest(initialCompression)
def effectiveCompression = digest.compression()
@throws(classOf[IOException])
private def writeObject(out: ObjectOutputStream): Unit = {
writeToOutputStream(out)
}
def writeToOutputStream(out: OutputStream): Unit = {
val bytes = Array.ofDim[Byte](digest.smallByteSize() + 4)
val buffer: ByteBuffer = ByteBuffer.wrap(bytes)
digest.asSmallBytes(buffer.putInt(bytes.length - 4))
out.write(bytes)
}
@throws(classOf[IOException])
private def readObject(in: ObjectInputStream): Unit = {
val size: Int = in.readInt()
val bytes = Array.ofDim[Byte](size)
in.readFully(bytes)
digest = AVLTreeDigest.fromBytes(ByteBuffer.wrap(bytes))
}
def add(x: Double) = digest.add(x)
def add(x: SeriallizableAvlTreeDigest) = digest.add(x.digest)
def percentile(p: Double) = {
require(p > 0 && p < 1, "Expected p between 0 and 1 both excluding")
digest.quantile(p)
}
override def write(kryo: Kryo, output: Output, obj: SeriallizableAvlTreeDigest): Unit = {
obj.writeToOutputStream(output)
}
override def read(kryo: Kryo, input: Input, `type`: Class[SeriallizableAvlTreeDigest]): SeriallizableAvlTreeDigest = {
val size = input.readInt()
val bytes = Array.ofDim[Byte](size)
input.read(bytes)
new SeriallizableAvlTreeDigest(AVLTreeDigest.fromBytes(ByteBuffer.wrap(bytes)))
}
}