Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
package odkl.analysis.spark.util
import odkl.analysis.spark.util.collection.CollectionOperations
import org.apache.spark.Partitioner
import org.apache.spark.odkl.SparkUtils
import org.apache.spark.rdd.RDD
import scala.reflect.ClassTag
/**
* Created by vyacheslav.baranov on 19/10/15.
*/
trait RDDOperations {
implicit class PairRDDDecorator[K: ClassTag, A: ClassTag](rdd: RDD[(K, A)]) {
/**
* Creates an RDD having each of required objects distributed to all required destinations
*
* If the `data` and/or `mapping` are partitioned with the same partitioner, no shuffle is required.
*
* @param mapping Mapping of keys to destinations. Duplicate destinations from different partitions are coalesced.
* @param partitioner Partitioner to use. Operation is more efficient if data is partitioned with the same partitioner
* @param f Function to apply to values. It's called exactly once for each value in `data`
* @tparam B
* @return
*/
def distributeToPartitions[B, D: ClassTag](mapping: RDD[(K, D)], partitioner: Partitioner)
(f: A => B): RDD[(D, (K, B))] = {
RDDOperations.distributeToPartitions(rdd, mapping, partitioner)(f)
}
/**
* Similar to [[org.apache.spark.rdd.PairRDDFunctions.join]], but ensures that all keys are unique in both RDDs.
*
* Throws [[java.lang.IllegalArgumentException]] if encounters duplicate
*
* @param other
* @tparam B
* @return
*/
def joinUnique[B: ClassTag](other: RDD[(K, B)]): RDD[(K, (A, B))] = {
RDDOperations.joinUnique(rdd, other)
}
/**
* Similar to [[org.apache.spark.rdd.PairRDDFunctions.join]], but ensures that all keys are unique in both RDDs.
*
* Throws [[java.lang.IllegalArgumentException]] if encounters duplicate
*
* @param other
* @tparam B
* @return
*/
def joinUnique[B: ClassTag](other: RDD[(K, B)], numPartitions: Int): RDD[(K, (A, B))] = {
RDDOperations.joinUnique(rdd, other, numPartitions)
}
/**
* Similar to [[org.apache.spark.rdd.PairRDDFunctions.join]], but ensures that all keys are unique in both RDDs.
*
* Throws [[java.lang.IllegalArgumentException]] if encounters duplicate
*
* @param other
* @tparam B
* @return
*/
def joinUnique[B: ClassTag](other: RDD[(K, B)], partitioner: Partitioner): RDD[(K, (A, B))] = {
RDDOperations.joinUnique(rdd, other, partitioner)
}
/**
* Similar to [[org.apache.spark.rdd.PairRDDFunctions.leftOuterJoin]], but ensures that all keys are unique in both RDDs.
*
* Throws [[java.lang.IllegalArgumentException]] if encounters duplicate
*
* @param other
* @tparam B
* @return
*/
def leftJoinUnique[B: ClassTag](other: RDD[(K, B)]): RDD[(K, (A, Option[B]))] = {
RDDOperations.leftJoinUnique(rdd, other)
}
/**
* Similar to [[org.apache.spark.rdd.PairRDDFunctions.leftOuterJoin]], but ensures that all keys are unique in both RDDs.
*
* Throws [[java.lang.IllegalArgumentException]] if encounters duplicate
*
* @param other
* @tparam B
* @return
*/
def leftJoinUnique[B: ClassTag](other: RDD[(K, B)], numPartitions: Int): RDD[(K, (A, Option[B]))] = {
RDDOperations.leftJoinUnique(rdd, other, numPartitions)
}
/**
* Similar to [[org.apache.spark.rdd.PairRDDFunctions.leftOuterJoin]], but ensures that all keys are unique in both RDDs.
*
* Throws [[java.lang.IllegalArgumentException]] if encounters duplicate
*
* @param other
* @tparam B
* @return
*/
def leftJoinUnique[B: ClassTag](other: RDD[(K, B)], partitioner: Partitioner): RDD[(K, (A, Option[B]))] = {
RDDOperations.leftJoinUnique(rdd, other, partitioner)
}
/**
* Utility used to group data by key within RDD partitions by a key, assuming that RDD is already partitioned
* and sorted by key. The RDD data are processed sequentialy without shuffling and materializing them in memory.
* @return RDD with key -> values.
*/
def groupWithinPartitionsByKey: RDD[(K,Iterator[A])] = {
RDDOperations.groupWithinPartitions(rdd)
}
}
implicit class ImplicitRDDDecorator[T: ClassTag](rdd: RDD[T]) extends Serializable {
/**
* Maps RDD preserving partitioning
*
* @param f
* @tparam B
* @return
*/
def mapPreserve[B: ClassTag](f: T => B): RDD[B] = SparkUtils.withScope(rdd.sparkContext, allowNesting = false) {
rdd.mapPartitions(_.map(f), preservesPartitioning = true)
}
/**
* Utility used to group data by key within RDD partitions by a key, assuming that RDD is already partitioned
* and sorted by key. The RDD data are processed sequentialy without shuffling and materializing them in memory.
* @param expr Expression to extract key from a value.
* @return RDD with key -> values.
*/
def groupWithinPartitionsBy[K: ClassTag](expr: T => K): RDD[(K,Iterator[T])] = {
RDDOperations.groupWithinPartitions(rdd.map(x => expr(x) -> x))
}
}
}
object RDDOperations extends RDDOperations with CollectionOperations with Serializable {
/**
* Creates an RDD having each of required objects distributed to all required destinations
*
* If the `data` and/or `mapping` are partitioned with the same partitioner, no shuffle is required.
*
* @param data Source data to process
* @param mapping Mapping of keys to destinations. Duplicate destinations from different partitions are coalesced.
* @param partitioner Partitioner to use. Operation is more efficient if data is partitioned with the same partitioner
* @param f Function to apply to values. It's called exactly once for each value in `data`
* @tparam K
* @tparam A
* @tparam B
* @return
*/
def distributeToPartitions[K: ClassTag, A: ClassTag, B, D: ClassTag](data: RDD[(K, A)], mapping: RDD[(K, D)], partitioner: Partitioner)
(f: A => B): RDD[(D, (K, B))] = SparkUtils.withScope(data.sparkContext, allowNesting = false) {
val res = data.cogroup(mapping, partitioner).flatMap { case (key, (it1, it2)) =>
if (it1.isEmpty || it2.isEmpty) {
Iterator()
} else {
val seq = it1.toSeq
require(seq.size == 1, s"Multiple objects exist for key $key: $seq")
//Coalesce destinations
val destinations = it2.toOpenHashSet
//Produce result
val r = f(seq.head)
for (p <- destinations.iterator) yield p -> (key, r)
}
}
res
}
def joinUnique[K: ClassTag, A: ClassTag, B: ClassTag](
rdd: RDD[(K, A)],
other: RDD[(K, B)]): RDD[(K, (A, B))] = SparkUtils.withScope(rdd.sparkContext, allowNesting = false) {
rdd.cogroup(other)
.flatMap(RDDOperations.uniqueJoinedMapper[K, A, B])
}
def joinUnique[K: ClassTag, A: ClassTag, B: ClassTag](
rdd: RDD[(K, A)],
other: RDD[(K, B)],
numPartitions: Int): RDD[(K, (A, B))] = SparkUtils.withScope(rdd.sparkContext, allowNesting = false) {
rdd.cogroup(other)
.flatMap(RDDOperations.uniqueJoinedMapper[K, A, B])
}
def joinUnique[K: ClassTag, A: ClassTag, B: ClassTag](
rdd: RDD[(K, A)],
other: RDD[(K, B)],
partitioner: Partitioner): RDD[(K, (A, B))] = SparkUtils.withScope(rdd.sparkContext, allowNesting = false) {
rdd.cogroup(other)
.flatMap(RDDOperations.uniqueJoinedMapper[K, A, B])
}
def leftJoinUnique[K: ClassTag, A: ClassTag, B: ClassTag](
rdd: RDD[(K, A)],
other: RDD[(K, B)]): RDD[(K, (A, Option[B]))] = SparkUtils.withScope(rdd.sparkContext, allowNesting = false) {
rdd.cogroup(other)
.flatMap(RDDOperations.uniqueLeftJoinedMapper[K, A, B])
}
def leftJoinUnique[K: ClassTag, A: ClassTag, B: ClassTag](
rdd: RDD[(K, A)],
other: RDD[(K, B)],
numPartitions: Int): RDD[(K, (A, Option[B]))] = SparkUtils.withScope(rdd.sparkContext, allowNesting = false) {
rdd.cogroup(other)
.flatMap(RDDOperations.uniqueLeftJoinedMapper[K, A, B])
}
def leftJoinUnique[K: ClassTag, A: ClassTag, B: ClassTag](
rdd: RDD[(K, A)],
other: RDD[(K, B)],
partitioner: Partitioner): RDD[(K, (A, Option[B]))] = SparkUtils.withScope(rdd.sparkContext, allowNesting = false) {
rdd.cogroup(other)
.flatMap(RDDOperations.uniqueLeftJoinedMapper[K, A, B])
}
/**
* Utility used to group data by key within RDD partitions by a key, assuming that RDD is already partitioned
* and sorted by key. The RDD data are processed sequentialy without shuffling and materializing them in memory.
* @param rdd RDD to group
* @tparam K Type of the key
* @tparam V Type of the value
* @return RDD with key -> values.
*/
def groupWithinPartitions[K: ClassTag, V: ClassTag](rdd: RDD[(K,V)]): RDD[(K,Iterator[V])] = {
rdd.mapPartitions(x => IteratorUtils.groupByKey(x))
}
private def uniqueJoinedMapper[K: ClassTag, A: ClassTag, B: ClassTag](
v: (K, (Iterable[A], Iterable[B]))): Iterator[(K, (A, B))] = {
val key = v._1
val iter1 = v._2._1
val iter2 = v._2._2
require(iter1.size <= 1, s"Expected at most 1 item for key '$key' in left RDD, actually: ${iter1.size}")
require(iter2.size <= 1, s"Expected at most 1 item for key '$key' in right RDD, actually: ${iter2.size}")
if (iter1.size == 1 && iter2.size == 1) {
Iterator(key -> (iter1.head, iter2.head))
} else {
Iterator()
}
}
private def uniqueLeftJoinedMapper[K: ClassTag, A: ClassTag, B: ClassTag](
v: (K, (Iterable[A], Iterable[B]))): Iterator[(K, (A, Option[B]))] = {
val key = v._1
val iter1 = v._2._1
val iter2 = v._2._2
require(iter1.size <= 1, s"Expected at most 1 item for key '$key' in left RDD, actually: ${iter1.size}")
require(iter2.size <= 1, s"Expected at most 1 item for key '$key' in right RDD, actually: ${iter2.size}")
if (iter1.size == 1) {
Iterator(key -> (iter1.head, iter2.headOption))
} else {
Iterator()
}
}
}