All Downloads are FREE. Search and download functionalities are using the official Maven repository.

software.amazon.awssdk.services.forecast.model.EvaluationParameters Maven / Gradle / Ivy

Go to download

The AWS Java SDK for Forecast module holds the client classes that are used for communicating with Forecast.

The newest version!
/*
 * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with
 * the License. A copy of the License is located at
 * 
 * http://aws.amazon.com/apache2.0
 * 
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
 * CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */

package software.amazon.awssdk.services.forecast.model;

import java.io.Serializable;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Objects;
import java.util.Optional;
import java.util.function.BiConsumer;
import java.util.function.Function;
import software.amazon.awssdk.annotations.Generated;
import software.amazon.awssdk.core.SdkField;
import software.amazon.awssdk.core.SdkPojo;
import software.amazon.awssdk.core.protocol.MarshallLocation;
import software.amazon.awssdk.core.protocol.MarshallingType;
import software.amazon.awssdk.core.traits.LocationTrait;
import software.amazon.awssdk.utils.ToString;
import software.amazon.awssdk.utils.builder.CopyableBuilder;
import software.amazon.awssdk.utils.builder.ToCopyableBuilder;

/**
 * 

* Parameters that define how to split a dataset into training data and testing data, and the number of iterations to * perform. These parameters are specified in the predefined algorithms but you can override them in the * CreatePredictor request. *

*/ @Generated("software.amazon.awssdk:codegen") public final class EvaluationParameters implements SdkPojo, Serializable, ToCopyableBuilder { private static final SdkField NUMBER_OF_BACKTEST_WINDOWS_FIELD = SdkField. builder(MarshallingType.INTEGER) .memberName("NumberOfBacktestWindows").getter(getter(EvaluationParameters::numberOfBacktestWindows)) .setter(setter(Builder::numberOfBacktestWindows)) .traits(LocationTrait.builder().location(MarshallLocation.PAYLOAD).locationName("NumberOfBacktestWindows").build()) .build(); private static final SdkField BACK_TEST_WINDOW_OFFSET_FIELD = SdkField. builder(MarshallingType.INTEGER) .memberName("BackTestWindowOffset").getter(getter(EvaluationParameters::backTestWindowOffset)) .setter(setter(Builder::backTestWindowOffset)) .traits(LocationTrait.builder().location(MarshallLocation.PAYLOAD).locationName("BackTestWindowOffset").build()) .build(); private static final List> SDK_FIELDS = Collections.unmodifiableList(Arrays.asList( NUMBER_OF_BACKTEST_WINDOWS_FIELD, BACK_TEST_WINDOW_OFFSET_FIELD)); private static final Map> SDK_NAME_TO_FIELD = Collections .unmodifiableMap(new HashMap>() { { put("NumberOfBacktestWindows", NUMBER_OF_BACKTEST_WINDOWS_FIELD); put("BackTestWindowOffset", BACK_TEST_WINDOW_OFFSET_FIELD); } }); private static final long serialVersionUID = 1L; private final Integer numberOfBacktestWindows; private final Integer backTestWindowOffset; private EvaluationParameters(BuilderImpl builder) { this.numberOfBacktestWindows = builder.numberOfBacktestWindows; this.backTestWindowOffset = builder.backTestWindowOffset; } /** *

* The number of times to split the input data. The default is 1. Valid values are 1 through 5. *

* * @return The number of times to split the input data. The default is 1. Valid values are 1 through 5. */ public final Integer numberOfBacktestWindows() { return numberOfBacktestWindows; } /** *

* The point from the end of the dataset where you want to split the data for model training and testing * (evaluation). Specify the value as the number of data points. The default is the value of the forecast horizon. * BackTestWindowOffset can be used to mimic a past virtual forecast start date. This value must be * greater than or equal to the forecast horizon and less than half of the TARGET_TIME_SERIES dataset length. *

*

* ForecastHorizon <= BackTestWindowOffset < 1/2 * TARGET_TIME_SERIES dataset length *

* * @return The point from the end of the dataset where you want to split the data for model training and testing * (evaluation). Specify the value as the number of data points. The default is the value of the forecast * horizon. BackTestWindowOffset can be used to mimic a past virtual forecast start date. This * value must be greater than or equal to the forecast horizon and less than half of the TARGET_TIME_SERIES * dataset length.

*

* ForecastHorizon <= BackTestWindowOffset < 1/2 * TARGET_TIME_SERIES * dataset length */ public final Integer backTestWindowOffset() { return backTestWindowOffset; } @Override public Builder toBuilder() { return new BuilderImpl(this); } public static Builder builder() { return new BuilderImpl(); } public static Class serializableBuilderClass() { return BuilderImpl.class; } @Override public final int hashCode() { int hashCode = 1; hashCode = 31 * hashCode + Objects.hashCode(numberOfBacktestWindows()); hashCode = 31 * hashCode + Objects.hashCode(backTestWindowOffset()); return hashCode; } @Override public final boolean equals(Object obj) { return equalsBySdkFields(obj); } @Override public final boolean equalsBySdkFields(Object obj) { if (this == obj) { return true; } if (obj == null) { return false; } if (!(obj instanceof EvaluationParameters)) { return false; } EvaluationParameters other = (EvaluationParameters) obj; return Objects.equals(numberOfBacktestWindows(), other.numberOfBacktestWindows()) && Objects.equals(backTestWindowOffset(), other.backTestWindowOffset()); } /** * Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be * redacted from this string using a placeholder value. */ @Override public final String toString() { return ToString.builder("EvaluationParameters").add("NumberOfBacktestWindows", numberOfBacktestWindows()) .add("BackTestWindowOffset", backTestWindowOffset()).build(); } public final Optional getValueForField(String fieldName, Class clazz) { switch (fieldName) { case "NumberOfBacktestWindows": return Optional.ofNullable(clazz.cast(numberOfBacktestWindows())); case "BackTestWindowOffset": return Optional.ofNullable(clazz.cast(backTestWindowOffset())); default: return Optional.empty(); } } @Override public final List> sdkFields() { return SDK_FIELDS; } @Override public final Map> sdkFieldNameToField() { return SDK_NAME_TO_FIELD; } private static Function getter(Function g) { return obj -> g.apply((EvaluationParameters) obj); } private static BiConsumer setter(BiConsumer s) { return (obj, val) -> s.accept((Builder) obj, val); } public interface Builder extends SdkPojo, CopyableBuilder { /** *

* The number of times to split the input data. The default is 1. Valid values are 1 through 5. *

* * @param numberOfBacktestWindows * The number of times to split the input data. The default is 1. Valid values are 1 through 5. * @return Returns a reference to this object so that method calls can be chained together. */ Builder numberOfBacktestWindows(Integer numberOfBacktestWindows); /** *

* The point from the end of the dataset where you want to split the data for model training and testing * (evaluation). Specify the value as the number of data points. The default is the value of the forecast * horizon. BackTestWindowOffset can be used to mimic a past virtual forecast start date. This * value must be greater than or equal to the forecast horizon and less than half of the TARGET_TIME_SERIES * dataset length. *

*

* ForecastHorizon <= BackTestWindowOffset < 1/2 * TARGET_TIME_SERIES dataset * length *

* * @param backTestWindowOffset * The point from the end of the dataset where you want to split the data for model training and testing * (evaluation). Specify the value as the number of data points. The default is the value of the forecast * horizon. BackTestWindowOffset can be used to mimic a past virtual forecast start date. * This value must be greater than or equal to the forecast horizon and less than half of the * TARGET_TIME_SERIES dataset length.

*

* ForecastHorizon <= BackTestWindowOffset < 1/2 * TARGET_TIME_SERIES * dataset length * @return Returns a reference to this object so that method calls can be chained together. */ Builder backTestWindowOffset(Integer backTestWindowOffset); } static final class BuilderImpl implements Builder { private Integer numberOfBacktestWindows; private Integer backTestWindowOffset; private BuilderImpl() { } private BuilderImpl(EvaluationParameters model) { numberOfBacktestWindows(model.numberOfBacktestWindows); backTestWindowOffset(model.backTestWindowOffset); } public final Integer getNumberOfBacktestWindows() { return numberOfBacktestWindows; } public final void setNumberOfBacktestWindows(Integer numberOfBacktestWindows) { this.numberOfBacktestWindows = numberOfBacktestWindows; } @Override public final Builder numberOfBacktestWindows(Integer numberOfBacktestWindows) { this.numberOfBacktestWindows = numberOfBacktestWindows; return this; } public final Integer getBackTestWindowOffset() { return backTestWindowOffset; } public final void setBackTestWindowOffset(Integer backTestWindowOffset) { this.backTestWindowOffset = backTestWindowOffset; } @Override public final Builder backTestWindowOffset(Integer backTestWindowOffset) { this.backTestWindowOffset = backTestWindowOffset; return this; } @Override public EvaluationParameters build() { return new EvaluationParameters(this); } @Override public List> sdkFields() { return SDK_FIELDS; } @Override public Map> sdkFieldNameToField() { return SDK_NAME_TO_FIELD; } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy