All Downloads are FREE. Search and download functionalities are using the official Maven repository.

software.amazon.awssdk.services.machinelearning.model.CreateMlModelRequest Maven / Gradle / Ivy

/*
 * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with
 * the License. A copy of the License is located at
 * 
 * http://aws.amazon.com/apache2.0
 * 
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
 * CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */

package software.amazon.awssdk.services.machinelearning.model;

import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import java.util.Map;
import java.util.Objects;
import java.util.Optional;
import java.util.function.BiConsumer;
import java.util.function.Consumer;
import java.util.function.Function;
import software.amazon.awssdk.annotations.Generated;
import software.amazon.awssdk.awscore.AwsRequestOverrideConfiguration;
import software.amazon.awssdk.core.SdkField;
import software.amazon.awssdk.core.SdkPojo;
import software.amazon.awssdk.core.protocol.MarshallLocation;
import software.amazon.awssdk.core.protocol.MarshallingType;
import software.amazon.awssdk.core.traits.LocationTrait;
import software.amazon.awssdk.core.traits.MapTrait;
import software.amazon.awssdk.core.util.DefaultSdkAutoConstructMap;
import software.amazon.awssdk.core.util.SdkAutoConstructMap;
import software.amazon.awssdk.utils.ToString;
import software.amazon.awssdk.utils.builder.CopyableBuilder;
import software.amazon.awssdk.utils.builder.ToCopyableBuilder;

/**
 */
@Generated("software.amazon.awssdk:codegen")
public final class CreateMlModelRequest extends MachineLearningRequest implements
        ToCopyableBuilder {
    private static final SdkField ML_MODEL_ID_FIELD = SdkField. builder(MarshallingType.STRING)
            .memberName("MLModelId").getter(getter(CreateMlModelRequest::mlModelId)).setter(setter(Builder::mlModelId))
            .traits(LocationTrait.builder().location(MarshallLocation.PAYLOAD).locationName("MLModelId").build()).build();

    private static final SdkField ML_MODEL_NAME_FIELD = SdkField. builder(MarshallingType.STRING)
            .memberName("MLModelName").getter(getter(CreateMlModelRequest::mlModelName)).setter(setter(Builder::mlModelName))
            .traits(LocationTrait.builder().location(MarshallLocation.PAYLOAD).locationName("MLModelName").build()).build();

    private static final SdkField ML_MODEL_TYPE_FIELD = SdkField. builder(MarshallingType.STRING)
            .memberName("MLModelType").getter(getter(CreateMlModelRequest::mlModelTypeAsString))
            .setter(setter(Builder::mlModelType))
            .traits(LocationTrait.builder().location(MarshallLocation.PAYLOAD).locationName("MLModelType").build()).build();

    private static final SdkField> PARAMETERS_FIELD = SdkField
            .> builder(MarshallingType.MAP)
            .memberName("Parameters")
            .getter(getter(CreateMlModelRequest::parameters))
            .setter(setter(Builder::parameters))
            .traits(LocationTrait.builder().location(MarshallLocation.PAYLOAD).locationName("Parameters").build(),
                    MapTrait.builder()
                            .keyLocationName("key")
                            .valueLocationName("value")
                            .valueFieldInfo(
                                    SdkField. builder(MarshallingType.STRING)
                                            .traits(LocationTrait.builder().location(MarshallLocation.PAYLOAD)
                                                    .locationName("value").build()).build()).build()).build();

    private static final SdkField TRAINING_DATA_SOURCE_ID_FIELD = SdkField. builder(MarshallingType.STRING)
            .memberName("TrainingDataSourceId").getter(getter(CreateMlModelRequest::trainingDataSourceId))
            .setter(setter(Builder::trainingDataSourceId))
            .traits(LocationTrait.builder().location(MarshallLocation.PAYLOAD).locationName("TrainingDataSourceId").build())
            .build();

    private static final SdkField RECIPE_FIELD = SdkField. builder(MarshallingType.STRING).memberName("Recipe")
            .getter(getter(CreateMlModelRequest::recipe)).setter(setter(Builder::recipe))
            .traits(LocationTrait.builder().location(MarshallLocation.PAYLOAD).locationName("Recipe").build()).build();

    private static final SdkField RECIPE_URI_FIELD = SdkField. builder(MarshallingType.STRING)
            .memberName("RecipeUri").getter(getter(CreateMlModelRequest::recipeUri)).setter(setter(Builder::recipeUri))
            .traits(LocationTrait.builder().location(MarshallLocation.PAYLOAD).locationName("RecipeUri").build()).build();

    private static final List> SDK_FIELDS = Collections.unmodifiableList(Arrays.asList(ML_MODEL_ID_FIELD,
            ML_MODEL_NAME_FIELD, ML_MODEL_TYPE_FIELD, PARAMETERS_FIELD, TRAINING_DATA_SOURCE_ID_FIELD, RECIPE_FIELD,
            RECIPE_URI_FIELD));

    private final String mlModelId;

    private final String mlModelName;

    private final String mlModelType;

    private final Map parameters;

    private final String trainingDataSourceId;

    private final String recipe;

    private final String recipeUri;

    private CreateMlModelRequest(BuilderImpl builder) {
        super(builder);
        this.mlModelId = builder.mlModelId;
        this.mlModelName = builder.mlModelName;
        this.mlModelType = builder.mlModelType;
        this.parameters = builder.parameters;
        this.trainingDataSourceId = builder.trainingDataSourceId;
        this.recipe = builder.recipe;
        this.recipeUri = builder.recipeUri;
    }

    /**
     * 

* A user-supplied ID that uniquely identifies the MLModel. *

* * @return A user-supplied ID that uniquely identifies the MLModel. */ public String mlModelId() { return mlModelId; } /** *

* A user-supplied name or description of the MLModel. *

* * @return A user-supplied name or description of the MLModel. */ public String mlModelName() { return mlModelName; } /** *

* The category of supervised learning that this MLModel will address. Choose from the following types: *

*
    *
  • Choose REGRESSION if the MLModel will be used to predict a numeric value.
  • *
  • Choose BINARY if the MLModel result has two possible values.
  • *
  • Choose MULTICLASS if the MLModel result has a limited number of values.
  • *
*

* For more information, see the Amazon Machine * Learning Developer Guide. *

*

* If the service returns an enum value that is not available in the current SDK version, {@link #mlModelType} will * return {@link MLModelType#UNKNOWN_TO_SDK_VERSION}. The raw value returned by the service is available from * {@link #mlModelTypeAsString}. *

* * @return The category of supervised learning that this MLModel will address. Choose from the * following types:

*
    *
  • Choose REGRESSION if the MLModel will be used to predict a numeric value.
  • *
  • Choose BINARY if the MLModel result has two possible values.
  • *
  • Choose MULTICLASS if the MLModel result has a limited number of values.
  • *
*

* For more information, see the Amazon * Machine Learning Developer Guide. * @see MLModelType */ public MLModelType mlModelType() { return MLModelType.fromValue(mlModelType); } /** *

* The category of supervised learning that this MLModel will address. Choose from the following types: *

*
    *
  • Choose REGRESSION if the MLModel will be used to predict a numeric value.
  • *
  • Choose BINARY if the MLModel result has two possible values.
  • *
  • Choose MULTICLASS if the MLModel result has a limited number of values.
  • *
*

* For more information, see the Amazon Machine * Learning Developer Guide. *

*

* If the service returns an enum value that is not available in the current SDK version, {@link #mlModelType} will * return {@link MLModelType#UNKNOWN_TO_SDK_VERSION}. The raw value returned by the service is available from * {@link #mlModelTypeAsString}. *

* * @return The category of supervised learning that this MLModel will address. Choose from the * following types:

*
    *
  • Choose REGRESSION if the MLModel will be used to predict a numeric value.
  • *
  • Choose BINARY if the MLModel result has two possible values.
  • *
  • Choose MULTICLASS if the MLModel result has a limited number of values.
  • *
*

* For more information, see the Amazon * Machine Learning Developer Guide. * @see MLModelType */ public String mlModelTypeAsString() { return mlModelType; } /** * Returns true if the Parameters property was specified by the sender (it may be empty), or false if the sender did * not specify the value (it will be empty). For responses returned by the SDK, the sender is the AWS service. */ public boolean hasParameters() { return parameters != null && !(parameters instanceof SdkAutoConstructMap); } /** *

* A list of the training parameters in the MLModel. The list is implemented as a map of key-value * pairs. *

*

* The following is the current set of training parameters: *

*
    *
  • *

    * sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending on the input data, the * size of the model might affect its performance. *

    *

    * The value is an integer that ranges from 100000 to 2147483648. The default value is * 33554432. *

    *
  • *
  • *

    * sgd.maxPasses - The number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from 1 to 10000. The * default value is 10. *

    *
  • *
  • *

    * sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling the data improves a * model's ability to find the optimal solution for a variety of data types. The valid values are auto * and none. The default value is none. We strongly recommend that you shuffle your data. *

    *
  • *
  • *

    * sgd.l1RegularizationAmount - The coefficient regularization L1 norm. It controls overfitting the * data by penalizing large coefficients. This tends to drive coefficients to zero, resulting in a sparse feature * set. If you use this parameter, start by specifying a small value, such as 1.0E-08. *

    *

    * The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. Use this parameter sparingly. *

    *
  • *
  • *

    * sgd.l2RegularizationAmount - The coefficient regularization L2 norm. It controls overfitting the * data by penalizing large coefficients. This tends to drive coefficients to small, nonzero values. If you use this * parameter, start by specifying a small value, such as 1.0E-08. *

    *

    * The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not use L2 * normalization. This parameter can't be used when L1 is specified. Use this parameter sparingly. *

    *
  • *
*

* Attempts to modify the collection returned by this method will result in an UnsupportedOperationException. *

*

* You can use {@link #hasParameters()} to see if a value was sent in this field. *

* * @return A list of the training parameters in the MLModel. The list is implemented as a map of * key-value pairs.

*

* The following is the current set of training parameters: *

*
    *
  • *

    * sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending on the input * data, the size of the model might affect its performance. *

    *

    * The value is an integer that ranges from 100000 to 2147483648. The default * value is 33554432. *

    *
  • *
  • *

    * sgd.maxPasses - The number of times that the training process traverses the observations to * build the MLModel. The value is an integer that ranges from 1 to * 10000. The default value is 10. *

    *
  • *
  • *

    * sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling the data improves * a model's ability to find the optimal solution for a variety of data types. The valid values are * auto and none. The default value is none. We strongly recommend that you shuffle your * data. *

    *
  • *
  • *

    * sgd.l1RegularizationAmount - The coefficient regularization L1 norm. It controls overfitting * the data by penalizing large coefficients. This tends to drive coefficients to zero, resulting in a * sparse feature set. If you use this parameter, start by specifying a small value, such as * 1.0E-08. *

    *

    * The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not * use L1 normalization. This parameter can't be used when L2 is specified. Use this parameter * sparingly. *

    *
  • *
  • *

    * sgd.l2RegularizationAmount - The coefficient regularization L2 norm. It controls overfitting * the data by penalizing large coefficients. This tends to drive coefficients to small, nonzero values. If * you use this parameter, start by specifying a small value, such as 1.0E-08. *

    *

    * The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not * use L2 normalization. This parameter can't be used when L1 is specified. Use this parameter * sparingly. *

    *
  • */ public Map parameters() { return parameters; } /** *

    * The DataSource that points to the training data. *

    * * @return The DataSource that points to the training data. */ public String trainingDataSourceId() { return trainingDataSourceId; } /** *

    * The data recipe for creating the MLModel. You must specify either the recipe or its URI. If you * don't specify a recipe or its URI, Amazon ML creates a default. *

    * * @return The data recipe for creating the MLModel. You must specify either the recipe or its URI. If * you don't specify a recipe or its URI, Amazon ML creates a default. */ public String recipe() { return recipe; } /** *

    * The Amazon Simple Storage Service (Amazon S3) location and file name that contains the MLModel * recipe. You must specify either the recipe or its URI. If you don't specify a recipe or its URI, Amazon ML * creates a default. *

    * * @return The Amazon Simple Storage Service (Amazon S3) location and file name that contains the * MLModel recipe. You must specify either the recipe or its URI. If you don't specify a recipe * or its URI, Amazon ML creates a default. */ public String recipeUri() { return recipeUri; } @Override public Builder toBuilder() { return new BuilderImpl(this); } public static Builder builder() { return new BuilderImpl(); } public static Class serializableBuilderClass() { return BuilderImpl.class; } @Override public int hashCode() { int hashCode = 1; hashCode = 31 * hashCode + super.hashCode(); hashCode = 31 * hashCode + Objects.hashCode(mlModelId()); hashCode = 31 * hashCode + Objects.hashCode(mlModelName()); hashCode = 31 * hashCode + Objects.hashCode(mlModelTypeAsString()); hashCode = 31 * hashCode + Objects.hashCode(hasParameters() ? parameters() : null); hashCode = 31 * hashCode + Objects.hashCode(trainingDataSourceId()); hashCode = 31 * hashCode + Objects.hashCode(recipe()); hashCode = 31 * hashCode + Objects.hashCode(recipeUri()); return hashCode; } @Override public boolean equals(Object obj) { return super.equals(obj) && equalsBySdkFields(obj); } @Override public boolean equalsBySdkFields(Object obj) { if (this == obj) { return true; } if (obj == null) { return false; } if (!(obj instanceof CreateMlModelRequest)) { return false; } CreateMlModelRequest other = (CreateMlModelRequest) obj; return Objects.equals(mlModelId(), other.mlModelId()) && Objects.equals(mlModelName(), other.mlModelName()) && Objects.equals(mlModelTypeAsString(), other.mlModelTypeAsString()) && hasParameters() == other.hasParameters() && Objects.equals(parameters(), other.parameters()) && Objects.equals(trainingDataSourceId(), other.trainingDataSourceId()) && Objects.equals(recipe(), other.recipe()) && Objects.equals(recipeUri(), other.recipeUri()); } /** * Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be * redacted from this string using a placeholder value. */ @Override public String toString() { return ToString.builder("CreateMlModelRequest").add("MLModelId", mlModelId()).add("MLModelName", mlModelName()) .add("MLModelType", mlModelTypeAsString()).add("Parameters", hasParameters() ? parameters() : null) .add("TrainingDataSourceId", trainingDataSourceId()).add("Recipe", recipe()).add("RecipeUri", recipeUri()) .build(); } public Optional getValueForField(String fieldName, Class clazz) { switch (fieldName) { case "MLModelId": return Optional.ofNullable(clazz.cast(mlModelId())); case "MLModelName": return Optional.ofNullable(clazz.cast(mlModelName())); case "MLModelType": return Optional.ofNullable(clazz.cast(mlModelTypeAsString())); case "Parameters": return Optional.ofNullable(clazz.cast(parameters())); case "TrainingDataSourceId": return Optional.ofNullable(clazz.cast(trainingDataSourceId())); case "Recipe": return Optional.ofNullable(clazz.cast(recipe())); case "RecipeUri": return Optional.ofNullable(clazz.cast(recipeUri())); default: return Optional.empty(); } } @Override public List> sdkFields() { return SDK_FIELDS; } private static Function getter(Function g) { return obj -> g.apply((CreateMlModelRequest) obj); } private static BiConsumer setter(BiConsumer s) { return (obj, val) -> s.accept((Builder) obj, val); } public interface Builder extends MachineLearningRequest.Builder, SdkPojo, CopyableBuilder { /** *

    * A user-supplied ID that uniquely identifies the MLModel. *

    * * @param mlModelId * A user-supplied ID that uniquely identifies the MLModel. * @return Returns a reference to this object so that method calls can be chained together. */ Builder mlModelId(String mlModelId); /** *

    * A user-supplied name or description of the MLModel. *

    * * @param mlModelName * A user-supplied name or description of the MLModel. * @return Returns a reference to this object so that method calls can be chained together. */ Builder mlModelName(String mlModelName); /** *

    * The category of supervised learning that this MLModel will address. Choose from the following * types: *

    *
      *
    • Choose REGRESSION if the MLModel will be used to predict a numeric value.
    • *
    • Choose BINARY if the MLModel result has two possible values.
    • *
    • Choose MULTICLASS if the MLModel result has a limited number of values.
    • *
    *

    * For more information, see the Amazon Machine * Learning Developer Guide. *

    * * @param mlModelType * The category of supervised learning that this MLModel will address. Choose from the * following types:

    *
      *
    • Choose REGRESSION if the MLModel will be used to predict a numeric * value.
    • *
    • Choose BINARY if the MLModel result has two possible values.
    • *
    • Choose MULTICLASS if the MLModel result has a limited number of values.
    • *
    *

    * For more information, see the Amazon * Machine Learning Developer Guide. * @see MLModelType * @return Returns a reference to this object so that method calls can be chained together. * @see MLModelType */ Builder mlModelType(String mlModelType); /** *

    * The category of supervised learning that this MLModel will address. Choose from the following * types: *

    *
      *
    • Choose REGRESSION if the MLModel will be used to predict a numeric value.
    • *
    • Choose BINARY if the MLModel result has two possible values.
    • *
    • Choose MULTICLASS if the MLModel result has a limited number of values.
    • *
    *

    * For more information, see the Amazon Machine * Learning Developer Guide. *

    * * @param mlModelType * The category of supervised learning that this MLModel will address. Choose from the * following types:

    *
      *
    • Choose REGRESSION if the MLModel will be used to predict a numeric * value.
    • *
    • Choose BINARY if the MLModel result has two possible values.
    • *
    • Choose MULTICLASS if the MLModel result has a limited number of values.
    • *
    *

    * For more information, see the Amazon * Machine Learning Developer Guide. * @see MLModelType * @return Returns a reference to this object so that method calls can be chained together. * @see MLModelType */ Builder mlModelType(MLModelType mlModelType); /** *

    * A list of the training parameters in the MLModel. The list is implemented as a map of key-value * pairs. *

    *

    * The following is the current set of training parameters: *

    *
      *
    • *

      * sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending on the input data, * the size of the model might affect its performance. *

      *

      * The value is an integer that ranges from 100000 to 2147483648. The default value is * 33554432. *

      *
    • *
    • *

      * sgd.maxPasses - The number of times that the training process traverses the observations to * build the MLModel. The value is an integer that ranges from 1 to 10000 * . The default value is 10. *

      *
    • *
    • *

      * sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling the data improves a * model's ability to find the optimal solution for a variety of data types. The valid values are * auto and none. The default value is none. We strongly recommend that you shuffle your * data. *

      *
    • *
    • *

      * sgd.l1RegularizationAmount - The coefficient regularization L1 norm. It controls overfitting the * data by penalizing large coefficients. This tends to drive coefficients to zero, resulting in a sparse * feature set. If you use this parameter, start by specifying a small value, such as 1.0E-08. *

      *

      * The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not use * L1 normalization. This parameter can't be used when L2 is specified. Use this parameter * sparingly. *

      *
    • *
    • *

      * sgd.l2RegularizationAmount - The coefficient regularization L2 norm. It controls overfitting the * data by penalizing large coefficients. This tends to drive coefficients to small, nonzero values. If you use * this parameter, start by specifying a small value, such as 1.0E-08. *

      *

      * The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not use * L2 normalization. This parameter can't be used when L1 is specified. Use this parameter * sparingly. *

      *
    • *
    * * @param parameters * A list of the training parameters in the MLModel. The list is implemented as a map of * key-value pairs.

    *

    * The following is the current set of training parameters: *

    *
      *
    • *

      * sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending on the input * data, the size of the model might affect its performance. *

      *

      * The value is an integer that ranges from 100000 to 2147483648. The default * value is 33554432. *

      *
    • *
    • *

      * sgd.maxPasses - The number of times that the training process traverses the observations * to build the MLModel. The value is an integer that ranges from 1 to * 10000. The default value is 10. *

      *
    • *
    • *

      * sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling the data * improves a model's ability to find the optimal solution for a variety of data types. The valid values * are auto and none. The default value is none. We * strongly recommend that you * shuffle your data. *

      *
    • *
    • *

      * sgd.l1RegularizationAmount - The coefficient regularization L1 norm. It controls * overfitting the data by penalizing large coefficients. This tends to drive coefficients to zero, * resulting in a sparse feature set. If you use this parameter, start by specifying a small value, such * as 1.0E-08. *

      *

      * The value is a double that ranges from 0 to MAX_DOUBLE. The default is to * not use L1 normalization. This parameter can't be used when L2 is specified. Use this * parameter sparingly. *

      *
    • *
    • *

      * sgd.l2RegularizationAmount - The coefficient regularization L2 norm. It controls * overfitting the data by penalizing large coefficients. This tends to drive coefficients to small, * nonzero values. If you use this parameter, start by specifying a small value, such as * 1.0E-08. *

      *

      * The value is a double that ranges from 0 to MAX_DOUBLE. The default is to * not use L2 normalization. This parameter can't be used when L1 is specified. Use this * parameter sparingly. *

      *
    • * @return Returns a reference to this object so that method calls can be chained together. */ Builder parameters(Map parameters); /** *

      * The DataSource that points to the training data. *

      * * @param trainingDataSourceId * The DataSource that points to the training data. * @return Returns a reference to this object so that method calls can be chained together. */ Builder trainingDataSourceId(String trainingDataSourceId); /** *

      * The data recipe for creating the MLModel. You must specify either the recipe or its URI. If you * don't specify a recipe or its URI, Amazon ML creates a default. *

      * * @param recipe * The data recipe for creating the MLModel. You must specify either the recipe or its URI. * If you don't specify a recipe or its URI, Amazon ML creates a default. * @return Returns a reference to this object so that method calls can be chained together. */ Builder recipe(String recipe); /** *

      * The Amazon Simple Storage Service (Amazon S3) location and file name that contains the MLModel * recipe. You must specify either the recipe or its URI. If you don't specify a recipe or its URI, Amazon ML * creates a default. *

      * * @param recipeUri * The Amazon Simple Storage Service (Amazon S3) location and file name that contains the * MLModel recipe. You must specify either the recipe or its URI. If you don't specify a * recipe or its URI, Amazon ML creates a default. * @return Returns a reference to this object so that method calls can be chained together. */ Builder recipeUri(String recipeUri); @Override Builder overrideConfiguration(AwsRequestOverrideConfiguration overrideConfiguration); @Override Builder overrideConfiguration(Consumer builderConsumer); } static final class BuilderImpl extends MachineLearningRequest.BuilderImpl implements Builder { private String mlModelId; private String mlModelName; private String mlModelType; private Map parameters = DefaultSdkAutoConstructMap.getInstance(); private String trainingDataSourceId; private String recipe; private String recipeUri; private BuilderImpl() { } private BuilderImpl(CreateMlModelRequest model) { super(model); mlModelId(model.mlModelId); mlModelName(model.mlModelName); mlModelType(model.mlModelType); parameters(model.parameters); trainingDataSourceId(model.trainingDataSourceId); recipe(model.recipe); recipeUri(model.recipeUri); } public final String getMlModelId() { return mlModelId; } @Override public final Builder mlModelId(String mlModelId) { this.mlModelId = mlModelId; return this; } public final void setMlModelId(String mlModelId) { this.mlModelId = mlModelId; } public final String getMlModelName() { return mlModelName; } @Override public final Builder mlModelName(String mlModelName) { this.mlModelName = mlModelName; return this; } public final void setMlModelName(String mlModelName) { this.mlModelName = mlModelName; } public final String getMlModelType() { return mlModelType; } @Override public final Builder mlModelType(String mlModelType) { this.mlModelType = mlModelType; return this; } @Override public final Builder mlModelType(MLModelType mlModelType) { this.mlModelType(mlModelType == null ? null : mlModelType.toString()); return this; } public final void setMlModelType(String mlModelType) { this.mlModelType = mlModelType; } public final Map getParameters() { if (parameters instanceof SdkAutoConstructMap) { return null; } return parameters; } @Override public final Builder parameters(Map parameters) { this.parameters = TrainingParametersCopier.copy(parameters); return this; } public final void setParameters(Map parameters) { this.parameters = TrainingParametersCopier.copy(parameters); } public final String getTrainingDataSourceId() { return trainingDataSourceId; } @Override public final Builder trainingDataSourceId(String trainingDataSourceId) { this.trainingDataSourceId = trainingDataSourceId; return this; } public final void setTrainingDataSourceId(String trainingDataSourceId) { this.trainingDataSourceId = trainingDataSourceId; } public final String getRecipe() { return recipe; } @Override public final Builder recipe(String recipe) { this.recipe = recipe; return this; } public final void setRecipe(String recipe) { this.recipe = recipe; } public final String getRecipeUri() { return recipeUri; } @Override public final Builder recipeUri(String recipeUri) { this.recipeUri = recipeUri; return this; } public final void setRecipeUri(String recipeUri) { this.recipeUri = recipeUri; } @Override public Builder overrideConfiguration(AwsRequestOverrideConfiguration overrideConfiguration) { super.overrideConfiguration(overrideConfiguration); return this; } @Override public Builder overrideConfiguration(Consumer builderConsumer) { super.overrideConfiguration(builderConsumer); return this; } @Override public CreateMlModelRequest build() { return new CreateMlModelRequest(this); } @Override public List> sdkFields() { return SDK_FIELDS; } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy