All Downloads are FREE. Search and download functionalities are using the official Maven repository.

software.amazon.awssdk.services.machinelearning.model.MLModel Maven / Gradle / Ivy

/*
 * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with
 * the License. A copy of the License is located at
 * 
 * http://aws.amazon.com/apache2.0
 * 
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
 * CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */

package software.amazon.awssdk.services.machinelearning.model;

import java.io.Serializable;
import java.time.Instant;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import java.util.Map;
import java.util.Objects;
import java.util.Optional;
import java.util.function.BiConsumer;
import java.util.function.Consumer;
import java.util.function.Function;
import software.amazon.awssdk.annotations.Generated;
import software.amazon.awssdk.core.SdkField;
import software.amazon.awssdk.core.SdkPojo;
import software.amazon.awssdk.core.protocol.MarshallLocation;
import software.amazon.awssdk.core.protocol.MarshallingType;
import software.amazon.awssdk.core.traits.LocationTrait;
import software.amazon.awssdk.core.traits.MapTrait;
import software.amazon.awssdk.core.util.DefaultSdkAutoConstructMap;
import software.amazon.awssdk.core.util.SdkAutoConstructMap;
import software.amazon.awssdk.utils.ToString;
import software.amazon.awssdk.utils.builder.CopyableBuilder;
import software.amazon.awssdk.utils.builder.ToCopyableBuilder;

/**
 * 

* Represents the output of a GetMLModel operation. *

*

* The content consists of the detailed metadata and the current status of the MLModel. *

*/ @Generated("software.amazon.awssdk:codegen") public final class MLModel implements SdkPojo, Serializable, ToCopyableBuilder { private static final SdkField ML_MODEL_ID_FIELD = SdkField. builder(MarshallingType.STRING) .memberName("MLModelId").getter(getter(MLModel::mlModelId)).setter(setter(Builder::mlModelId)) .traits(LocationTrait.builder().location(MarshallLocation.PAYLOAD).locationName("MLModelId").build()).build(); private static final SdkField TRAINING_DATA_SOURCE_ID_FIELD = SdkField. builder(MarshallingType.STRING) .memberName("TrainingDataSourceId").getter(getter(MLModel::trainingDataSourceId)) .setter(setter(Builder::trainingDataSourceId)) .traits(LocationTrait.builder().location(MarshallLocation.PAYLOAD).locationName("TrainingDataSourceId").build()) .build(); private static final SdkField CREATED_BY_IAM_USER_FIELD = SdkField. builder(MarshallingType.STRING) .memberName("CreatedByIamUser").getter(getter(MLModel::createdByIamUser)).setter(setter(Builder::createdByIamUser)) .traits(LocationTrait.builder().location(MarshallLocation.PAYLOAD).locationName("CreatedByIamUser").build()).build(); private static final SdkField CREATED_AT_FIELD = SdkField. builder(MarshallingType.INSTANT) .memberName("CreatedAt").getter(getter(MLModel::createdAt)).setter(setter(Builder::createdAt)) .traits(LocationTrait.builder().location(MarshallLocation.PAYLOAD).locationName("CreatedAt").build()).build(); private static final SdkField LAST_UPDATED_AT_FIELD = SdkField. builder(MarshallingType.INSTANT) .memberName("LastUpdatedAt").getter(getter(MLModel::lastUpdatedAt)).setter(setter(Builder::lastUpdatedAt)) .traits(LocationTrait.builder().location(MarshallLocation.PAYLOAD).locationName("LastUpdatedAt").build()).build(); private static final SdkField NAME_FIELD = SdkField. builder(MarshallingType.STRING).memberName("Name") .getter(getter(MLModel::name)).setter(setter(Builder::name)) .traits(LocationTrait.builder().location(MarshallLocation.PAYLOAD).locationName("Name").build()).build(); private static final SdkField STATUS_FIELD = SdkField. builder(MarshallingType.STRING).memberName("Status") .getter(getter(MLModel::statusAsString)).setter(setter(Builder::status)) .traits(LocationTrait.builder().location(MarshallLocation.PAYLOAD).locationName("Status").build()).build(); private static final SdkField SIZE_IN_BYTES_FIELD = SdkField. builder(MarshallingType.LONG) .memberName("SizeInBytes").getter(getter(MLModel::sizeInBytes)).setter(setter(Builder::sizeInBytes)) .traits(LocationTrait.builder().location(MarshallLocation.PAYLOAD).locationName("SizeInBytes").build()).build(); private static final SdkField ENDPOINT_INFO_FIELD = SdkField . builder(MarshallingType.SDK_POJO).memberName("EndpointInfo") .getter(getter(MLModel::endpointInfo)).setter(setter(Builder::endpointInfo)) .constructor(RealtimeEndpointInfo::builder) .traits(LocationTrait.builder().location(MarshallLocation.PAYLOAD).locationName("EndpointInfo").build()).build(); private static final SdkField> TRAINING_PARAMETERS_FIELD = SdkField .> builder(MarshallingType.MAP) .memberName("TrainingParameters") .getter(getter(MLModel::trainingParameters)) .setter(setter(Builder::trainingParameters)) .traits(LocationTrait.builder().location(MarshallLocation.PAYLOAD).locationName("TrainingParameters").build(), MapTrait.builder() .keyLocationName("key") .valueLocationName("value") .valueFieldInfo( SdkField. builder(MarshallingType.STRING) .traits(LocationTrait.builder().location(MarshallLocation.PAYLOAD) .locationName("value").build()).build()).build()).build(); private static final SdkField INPUT_DATA_LOCATION_S3_FIELD = SdkField. builder(MarshallingType.STRING) .memberName("InputDataLocationS3").getter(getter(MLModel::inputDataLocationS3)) .setter(setter(Builder::inputDataLocationS3)) .traits(LocationTrait.builder().location(MarshallLocation.PAYLOAD).locationName("InputDataLocationS3").build()) .build(); private static final SdkField ALGORITHM_FIELD = SdkField. builder(MarshallingType.STRING) .memberName("Algorithm").getter(getter(MLModel::algorithmAsString)).setter(setter(Builder::algorithm)) .traits(LocationTrait.builder().location(MarshallLocation.PAYLOAD).locationName("Algorithm").build()).build(); private static final SdkField ML_MODEL_TYPE_FIELD = SdkField. builder(MarshallingType.STRING) .memberName("MLModelType").getter(getter(MLModel::mlModelTypeAsString)).setter(setter(Builder::mlModelType)) .traits(LocationTrait.builder().location(MarshallLocation.PAYLOAD).locationName("MLModelType").build()).build(); private static final SdkField SCORE_THRESHOLD_FIELD = SdkField. builder(MarshallingType.FLOAT) .memberName("ScoreThreshold").getter(getter(MLModel::scoreThreshold)).setter(setter(Builder::scoreThreshold)) .traits(LocationTrait.builder().location(MarshallLocation.PAYLOAD).locationName("ScoreThreshold").build()).build(); private static final SdkField SCORE_THRESHOLD_LAST_UPDATED_AT_FIELD = SdkField . builder(MarshallingType.INSTANT) .memberName("ScoreThresholdLastUpdatedAt") .getter(getter(MLModel::scoreThresholdLastUpdatedAt)) .setter(setter(Builder::scoreThresholdLastUpdatedAt)) .traits(LocationTrait.builder().location(MarshallLocation.PAYLOAD).locationName("ScoreThresholdLastUpdatedAt") .build()).build(); private static final SdkField MESSAGE_FIELD = SdkField. builder(MarshallingType.STRING).memberName("Message") .getter(getter(MLModel::message)).setter(setter(Builder::message)) .traits(LocationTrait.builder().location(MarshallLocation.PAYLOAD).locationName("Message").build()).build(); private static final SdkField COMPUTE_TIME_FIELD = SdkField. builder(MarshallingType.LONG) .memberName("ComputeTime").getter(getter(MLModel::computeTime)).setter(setter(Builder::computeTime)) .traits(LocationTrait.builder().location(MarshallLocation.PAYLOAD).locationName("ComputeTime").build()).build(); private static final SdkField FINISHED_AT_FIELD = SdkField. builder(MarshallingType.INSTANT) .memberName("FinishedAt").getter(getter(MLModel::finishedAt)).setter(setter(Builder::finishedAt)) .traits(LocationTrait.builder().location(MarshallLocation.PAYLOAD).locationName("FinishedAt").build()).build(); private static final SdkField STARTED_AT_FIELD = SdkField. builder(MarshallingType.INSTANT) .memberName("StartedAt").getter(getter(MLModel::startedAt)).setter(setter(Builder::startedAt)) .traits(LocationTrait.builder().location(MarshallLocation.PAYLOAD).locationName("StartedAt").build()).build(); private static final List> SDK_FIELDS = Collections.unmodifiableList(Arrays.asList(ML_MODEL_ID_FIELD, TRAINING_DATA_SOURCE_ID_FIELD, CREATED_BY_IAM_USER_FIELD, CREATED_AT_FIELD, LAST_UPDATED_AT_FIELD, NAME_FIELD, STATUS_FIELD, SIZE_IN_BYTES_FIELD, ENDPOINT_INFO_FIELD, TRAINING_PARAMETERS_FIELD, INPUT_DATA_LOCATION_S3_FIELD, ALGORITHM_FIELD, ML_MODEL_TYPE_FIELD, SCORE_THRESHOLD_FIELD, SCORE_THRESHOLD_LAST_UPDATED_AT_FIELD, MESSAGE_FIELD, COMPUTE_TIME_FIELD, FINISHED_AT_FIELD, STARTED_AT_FIELD)); private static final long serialVersionUID = 1L; private final String mlModelId; private final String trainingDataSourceId; private final String createdByIamUser; private final Instant createdAt; private final Instant lastUpdatedAt; private final String name; private final String status; private final Long sizeInBytes; private final RealtimeEndpointInfo endpointInfo; private final Map trainingParameters; private final String inputDataLocationS3; private final String algorithm; private final String mlModelType; private final Float scoreThreshold; private final Instant scoreThresholdLastUpdatedAt; private final String message; private final Long computeTime; private final Instant finishedAt; private final Instant startedAt; private MLModel(BuilderImpl builder) { this.mlModelId = builder.mlModelId; this.trainingDataSourceId = builder.trainingDataSourceId; this.createdByIamUser = builder.createdByIamUser; this.createdAt = builder.createdAt; this.lastUpdatedAt = builder.lastUpdatedAt; this.name = builder.name; this.status = builder.status; this.sizeInBytes = builder.sizeInBytes; this.endpointInfo = builder.endpointInfo; this.trainingParameters = builder.trainingParameters; this.inputDataLocationS3 = builder.inputDataLocationS3; this.algorithm = builder.algorithm; this.mlModelType = builder.mlModelType; this.scoreThreshold = builder.scoreThreshold; this.scoreThresholdLastUpdatedAt = builder.scoreThresholdLastUpdatedAt; this.message = builder.message; this.computeTime = builder.computeTime; this.finishedAt = builder.finishedAt; this.startedAt = builder.startedAt; } /** *

* The ID assigned to the MLModel at creation. *

* * @return The ID assigned to the MLModel at creation. */ public String mlModelId() { return mlModelId; } /** *

* The ID of the training DataSource. The CreateMLModel operation uses the * TrainingDataSourceId. *

* * @return The ID of the training DataSource. The CreateMLModel operation uses the * TrainingDataSourceId. */ public String trainingDataSourceId() { return trainingDataSourceId; } /** *

* The AWS user account from which the MLModel was created. The account type can be either an AWS root * account or an AWS Identity and Access Management (IAM) user account. *

* * @return The AWS user account from which the MLModel was created. The account type can be either an * AWS root account or an AWS Identity and Access Management (IAM) user account. */ public String createdByIamUser() { return createdByIamUser; } /** *

* The time that the MLModel was created. The time is expressed in epoch time. *

* * @return The time that the MLModel was created. The time is expressed in epoch time. */ public Instant createdAt() { return createdAt; } /** *

* The time of the most recent edit to the MLModel. The time is expressed in epoch time. *

* * @return The time of the most recent edit to the MLModel. The time is expressed in epoch time. */ public Instant lastUpdatedAt() { return lastUpdatedAt; } /** *

* A user-supplied name or description of the MLModel. *

* * @return A user-supplied name or description of the MLModel. */ public String name() { return name; } /** *

* The current status of an MLModel. This element can have one of the following values: *

*
    *
  • PENDING - Amazon Machine Learning (Amazon ML) submitted a request to create an * MLModel.
  • *
  • INPROGRESS - The creation process is underway.
  • *
  • FAILED - The request to create an MLModel didn't run to completion. The model isn't * usable.
  • *
  • COMPLETED - The creation process completed successfully.
  • *
  • DELETED - The MLModel is marked as deleted. It isn't usable.
  • *
*

* If the service returns an enum value that is not available in the current SDK version, {@link #status} will * return {@link EntityStatus#UNKNOWN_TO_SDK_VERSION}. The raw value returned by the service is available from * {@link #statusAsString}. *

* * @return The current status of an MLModel. This element can have one of the following values:

*
    *
  • PENDING - Amazon Machine Learning (Amazon ML) submitted a request to create an * MLModel.
  • *
  • INPROGRESS - The creation process is underway.
  • *
  • FAILED - The request to create an MLModel didn't run to completion. The * model isn't usable.
  • *
  • COMPLETED - The creation process completed successfully.
  • *
  • DELETED - The MLModel is marked as deleted. It isn't usable.
  • * @see EntityStatus */ public EntityStatus status() { return EntityStatus.fromValue(status); } /** *

    * The current status of an MLModel. This element can have one of the following values: *

    *
      *
    • PENDING - Amazon Machine Learning (Amazon ML) submitted a request to create an * MLModel.
    • *
    • INPROGRESS - The creation process is underway.
    • *
    • FAILED - The request to create an MLModel didn't run to completion. The model isn't * usable.
    • *
    • COMPLETED - The creation process completed successfully.
    • *
    • DELETED - The MLModel is marked as deleted. It isn't usable.
    • *
    *

    * If the service returns an enum value that is not available in the current SDK version, {@link #status} will * return {@link EntityStatus#UNKNOWN_TO_SDK_VERSION}. The raw value returned by the service is available from * {@link #statusAsString}. *

    * * @return The current status of an MLModel. This element can have one of the following values:

    *
      *
    • PENDING - Amazon Machine Learning (Amazon ML) submitted a request to create an * MLModel.
    • *
    • INPROGRESS - The creation process is underway.
    • *
    • FAILED - The request to create an MLModel didn't run to completion. The * model isn't usable.
    • *
    • COMPLETED - The creation process completed successfully.
    • *
    • DELETED - The MLModel is marked as deleted. It isn't usable.
    • * @see EntityStatus */ public String statusAsString() { return status; } /** * Returns the value of the SizeInBytes property for this object. * * @return The value of the SizeInBytes property for this object. */ public Long sizeInBytes() { return sizeInBytes; } /** *

      * The current endpoint of the MLModel. *

      * * @return The current endpoint of the MLModel. */ public RealtimeEndpointInfo endpointInfo() { return endpointInfo; } /** * Returns true if the TrainingParameters property was specified by the sender (it may be empty), or false if the * sender did not specify the value (it will be empty). For responses returned by the SDK, the sender is the AWS * service. */ public boolean hasTrainingParameters() { return trainingParameters != null && !(trainingParameters instanceof SdkAutoConstructMap); } /** *

      * A list of the training parameters in the MLModel. The list is implemented as a map of key-value * pairs. *

      *

      * The following is the current set of training parameters: *

      *
        *
      • *

        * sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending on the input data, the * size of the model might affect its performance. *

        *

        * The value is an integer that ranges from 100000 to 2147483648. The default value is * 33554432. *

        *
      • *
      • *

        * sgd.maxPasses - The number of times that the training process traverses the observations to build * the MLModel. The value is an integer that ranges from 1 to 10000. The * default value is 10. *

        *
      • *
      • *

        * sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling the data improves a * model's ability to find the optimal solution for a variety of data types. The valid values are auto * and none. The default value is none. *

        *
      • *
      • *

        * sgd.l1RegularizationAmount - The coefficient regularization L1 norm, which controls overfitting the * data by penalizing large coefficients. This parameter tends to drive coefficients to zero, resulting in sparse * feature set. If you use this parameter, start by specifying a small value, such as 1.0E-08. *

        *

        * The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not use L1 * normalization. This parameter can't be used when L2 is specified. Use this parameter sparingly. *

        *
      • *
      • *

        * sgd.l2RegularizationAmount - The coefficient regularization L2 norm, which controls overfitting the * data by penalizing large coefficients. This tends to drive coefficients to small, nonzero values. If you use this * parameter, start by specifying a small value, such as 1.0E-08. *

        *

        * The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not use L2 * normalization. This parameter can't be used when L1 is specified. Use this parameter sparingly. *

        *
      • *
      *

      * Attempts to modify the collection returned by this method will result in an UnsupportedOperationException. *

      *

      * You can use {@link #hasTrainingParameters()} to see if a value was sent in this field. *

      * * @return A list of the training parameters in the MLModel. The list is implemented as a map of * key-value pairs.

      *

      * The following is the current set of training parameters: *

      *
        *
      • *

        * sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending on the input * data, the size of the model might affect its performance. *

        *

        * The value is an integer that ranges from 100000 to 2147483648. The default * value is 33554432. *

        *
      • *
      • *

        * sgd.maxPasses - The number of times that the training process traverses the observations to * build the MLModel. The value is an integer that ranges from 1 to * 10000. The default value is 10. *

        *
      • *
      • *

        * sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling the data improves * a model's ability to find the optimal solution for a variety of data types. The valid values are * auto and none. The default value is none. *

        *
      • *
      • *

        * sgd.l1RegularizationAmount - The coefficient regularization L1 norm, which controls * overfitting the data by penalizing large coefficients. This parameter tends to drive coefficients to * zero, resulting in sparse feature set. If you use this parameter, start by specifying a small value, such * as 1.0E-08. *

        *

        * The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not * use L1 normalization. This parameter can't be used when L2 is specified. Use this parameter * sparingly. *

        *
      • *
      • *

        * sgd.l2RegularizationAmount - The coefficient regularization L2 norm, which controls * overfitting the data by penalizing large coefficients. This tends to drive coefficients to small, nonzero * values. If you use this parameter, start by specifying a small value, such as 1.0E-08. *

        *

        * The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not * use L2 normalization. This parameter can't be used when L1 is specified. Use this parameter * sparingly. *

        *
      • */ public Map trainingParameters() { return trainingParameters; } /** *

        * The location of the data file or directory in Amazon Simple Storage Service (Amazon S3). *

        * * @return The location of the data file or directory in Amazon Simple Storage Service (Amazon S3). */ public String inputDataLocationS3() { return inputDataLocationS3; } /** *

        * The algorithm used to train the MLModel. The following algorithm is supported: *

        *
          *
        • SGD -- Stochastic gradient descent. The goal of SGD is to minimize the gradient of * the loss function.
        • *
        *

        * If the service returns an enum value that is not available in the current SDK version, {@link #algorithm} will * return {@link Algorithm#UNKNOWN_TO_SDK_VERSION}. The raw value returned by the service is available from * {@link #algorithmAsString}. *

        * * @return The algorithm used to train the MLModel. The following algorithm is supported:

        *
          *
        • SGD -- Stochastic gradient descent. The goal of SGD is to minimize the * gradient of the loss function.
        • * @see Algorithm */ public Algorithm algorithm() { return Algorithm.fromValue(algorithm); } /** *

          * The algorithm used to train the MLModel. The following algorithm is supported: *

          *
            *
          • SGD -- Stochastic gradient descent. The goal of SGD is to minimize the gradient of * the loss function.
          • *
          *

          * If the service returns an enum value that is not available in the current SDK version, {@link #algorithm} will * return {@link Algorithm#UNKNOWN_TO_SDK_VERSION}. The raw value returned by the service is available from * {@link #algorithmAsString}. *

          * * @return The algorithm used to train the MLModel. The following algorithm is supported:

          *
            *
          • SGD -- Stochastic gradient descent. The goal of SGD is to minimize the * gradient of the loss function.
          • * @see Algorithm */ public String algorithmAsString() { return algorithm; } /** *

            * Identifies the MLModel category. The following are the available types: *

            *
              *
            • REGRESSION - Produces a numeric result. For example, "What price should a house be listed at?"
            • *
            • BINARY - Produces one of two possible results. For example, * "Is this a child-friendly web site?".
            • *
            • MULTICLASS - Produces one of several possible results. For example, * "Is this a HIGH-, LOW-, or MEDIUM-risk trade?".
            • *
            *

            * If the service returns an enum value that is not available in the current SDK version, {@link #mlModelType} will * return {@link MLModelType#UNKNOWN_TO_SDK_VERSION}. The raw value returned by the service is available from * {@link #mlModelTypeAsString}. *

            * * @return Identifies the MLModel category. The following are the available types:

            *
              *
            • REGRESSION - Produces a numeric result. For example, * "What price should a house be listed at?"
            • *
            • BINARY - Produces one of two possible results. For example, * "Is this a child-friendly web site?".
            • *
            • MULTICLASS - Produces one of several possible results. For example, * "Is this a HIGH-, LOW-, or MEDIUM-risk trade?".
            • * @see MLModelType */ public MLModelType mlModelType() { return MLModelType.fromValue(mlModelType); } /** *

              * Identifies the MLModel category. The following are the available types: *

              *
                *
              • REGRESSION - Produces a numeric result. For example, "What price should a house be listed at?"
              • *
              • BINARY - Produces one of two possible results. For example, * "Is this a child-friendly web site?".
              • *
              • MULTICLASS - Produces one of several possible results. For example, * "Is this a HIGH-, LOW-, or MEDIUM-risk trade?".
              • *
              *

              * If the service returns an enum value that is not available in the current SDK version, {@link #mlModelType} will * return {@link MLModelType#UNKNOWN_TO_SDK_VERSION}. The raw value returned by the service is available from * {@link #mlModelTypeAsString}. *

              * * @return Identifies the MLModel category. The following are the available types:

              *
                *
              • REGRESSION - Produces a numeric result. For example, * "What price should a house be listed at?"
              • *
              • BINARY - Produces one of two possible results. For example, * "Is this a child-friendly web site?".
              • *
              • MULTICLASS - Produces one of several possible results. For example, * "Is this a HIGH-, LOW-, or MEDIUM-risk trade?".
              • * @see MLModelType */ public String mlModelTypeAsString() { return mlModelType; } /** * Returns the value of the ScoreThreshold property for this object. * * @return The value of the ScoreThreshold property for this object. */ public Float scoreThreshold() { return scoreThreshold; } /** *

                * The time of the most recent edit to the ScoreThreshold. The time is expressed in epoch time. *

                * * @return The time of the most recent edit to the ScoreThreshold. The time is expressed in epoch time. */ public Instant scoreThresholdLastUpdatedAt() { return scoreThresholdLastUpdatedAt; } /** *

                * A description of the most recent details about accessing the MLModel. *

                * * @return A description of the most recent details about accessing the MLModel. */ public String message() { return message; } /** * Returns the value of the ComputeTime property for this object. * * @return The value of the ComputeTime property for this object. */ public Long computeTime() { return computeTime; } /** * Returns the value of the FinishedAt property for this object. * * @return The value of the FinishedAt property for this object. */ public Instant finishedAt() { return finishedAt; } /** * Returns the value of the StartedAt property for this object. * * @return The value of the StartedAt property for this object. */ public Instant startedAt() { return startedAt; } @Override public Builder toBuilder() { return new BuilderImpl(this); } public static Builder builder() { return new BuilderImpl(); } public static Class serializableBuilderClass() { return BuilderImpl.class; } @Override public int hashCode() { int hashCode = 1; hashCode = 31 * hashCode + Objects.hashCode(mlModelId()); hashCode = 31 * hashCode + Objects.hashCode(trainingDataSourceId()); hashCode = 31 * hashCode + Objects.hashCode(createdByIamUser()); hashCode = 31 * hashCode + Objects.hashCode(createdAt()); hashCode = 31 * hashCode + Objects.hashCode(lastUpdatedAt()); hashCode = 31 * hashCode + Objects.hashCode(name()); hashCode = 31 * hashCode + Objects.hashCode(statusAsString()); hashCode = 31 * hashCode + Objects.hashCode(sizeInBytes()); hashCode = 31 * hashCode + Objects.hashCode(endpointInfo()); hashCode = 31 * hashCode + Objects.hashCode(hasTrainingParameters() ? trainingParameters() : null); hashCode = 31 * hashCode + Objects.hashCode(inputDataLocationS3()); hashCode = 31 * hashCode + Objects.hashCode(algorithmAsString()); hashCode = 31 * hashCode + Objects.hashCode(mlModelTypeAsString()); hashCode = 31 * hashCode + Objects.hashCode(scoreThreshold()); hashCode = 31 * hashCode + Objects.hashCode(scoreThresholdLastUpdatedAt()); hashCode = 31 * hashCode + Objects.hashCode(message()); hashCode = 31 * hashCode + Objects.hashCode(computeTime()); hashCode = 31 * hashCode + Objects.hashCode(finishedAt()); hashCode = 31 * hashCode + Objects.hashCode(startedAt()); return hashCode; } @Override public boolean equals(Object obj) { return equalsBySdkFields(obj); } @Override public boolean equalsBySdkFields(Object obj) { if (this == obj) { return true; } if (obj == null) { return false; } if (!(obj instanceof MLModel)) { return false; } MLModel other = (MLModel) obj; return Objects.equals(mlModelId(), other.mlModelId()) && Objects.equals(trainingDataSourceId(), other.trainingDataSourceId()) && Objects.equals(createdByIamUser(), other.createdByIamUser()) && Objects.equals(createdAt(), other.createdAt()) && Objects.equals(lastUpdatedAt(), other.lastUpdatedAt()) && Objects.equals(name(), other.name()) && Objects.equals(statusAsString(), other.statusAsString()) && Objects.equals(sizeInBytes(), other.sizeInBytes()) && Objects.equals(endpointInfo(), other.endpointInfo()) && hasTrainingParameters() == other.hasTrainingParameters() && Objects.equals(trainingParameters(), other.trainingParameters()) && Objects.equals(inputDataLocationS3(), other.inputDataLocationS3()) && Objects.equals(algorithmAsString(), other.algorithmAsString()) && Objects.equals(mlModelTypeAsString(), other.mlModelTypeAsString()) && Objects.equals(scoreThreshold(), other.scoreThreshold()) && Objects.equals(scoreThresholdLastUpdatedAt(), other.scoreThresholdLastUpdatedAt()) && Objects.equals(message(), other.message()) && Objects.equals(computeTime(), other.computeTime()) && Objects.equals(finishedAt(), other.finishedAt()) && Objects.equals(startedAt(), other.startedAt()); } /** * Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be * redacted from this string using a placeholder value. */ @Override public String toString() { return ToString.builder("MLModel").add("MLModelId", mlModelId()).add("TrainingDataSourceId", trainingDataSourceId()) .add("CreatedByIamUser", createdByIamUser()).add("CreatedAt", createdAt()).add("LastUpdatedAt", lastUpdatedAt()) .add("Name", name()).add("Status", statusAsString()).add("SizeInBytes", sizeInBytes()) .add("EndpointInfo", endpointInfo()) .add("TrainingParameters", hasTrainingParameters() ? trainingParameters() : null) .add("InputDataLocationS3", inputDataLocationS3()).add("Algorithm", algorithmAsString()) .add("MLModelType", mlModelTypeAsString()).add("ScoreThreshold", scoreThreshold()) .add("ScoreThresholdLastUpdatedAt", scoreThresholdLastUpdatedAt()).add("Message", message()) .add("ComputeTime", computeTime()).add("FinishedAt", finishedAt()).add("StartedAt", startedAt()).build(); } public Optional getValueForField(String fieldName, Class clazz) { switch (fieldName) { case "MLModelId": return Optional.ofNullable(clazz.cast(mlModelId())); case "TrainingDataSourceId": return Optional.ofNullable(clazz.cast(trainingDataSourceId())); case "CreatedByIamUser": return Optional.ofNullable(clazz.cast(createdByIamUser())); case "CreatedAt": return Optional.ofNullable(clazz.cast(createdAt())); case "LastUpdatedAt": return Optional.ofNullable(clazz.cast(lastUpdatedAt())); case "Name": return Optional.ofNullable(clazz.cast(name())); case "Status": return Optional.ofNullable(clazz.cast(statusAsString())); case "SizeInBytes": return Optional.ofNullable(clazz.cast(sizeInBytes())); case "EndpointInfo": return Optional.ofNullable(clazz.cast(endpointInfo())); case "TrainingParameters": return Optional.ofNullable(clazz.cast(trainingParameters())); case "InputDataLocationS3": return Optional.ofNullable(clazz.cast(inputDataLocationS3())); case "Algorithm": return Optional.ofNullable(clazz.cast(algorithmAsString())); case "MLModelType": return Optional.ofNullable(clazz.cast(mlModelTypeAsString())); case "ScoreThreshold": return Optional.ofNullable(clazz.cast(scoreThreshold())); case "ScoreThresholdLastUpdatedAt": return Optional.ofNullable(clazz.cast(scoreThresholdLastUpdatedAt())); case "Message": return Optional.ofNullable(clazz.cast(message())); case "ComputeTime": return Optional.ofNullable(clazz.cast(computeTime())); case "FinishedAt": return Optional.ofNullable(clazz.cast(finishedAt())); case "StartedAt": return Optional.ofNullable(clazz.cast(startedAt())); default: return Optional.empty(); } } @Override public List> sdkFields() { return SDK_FIELDS; } private static Function getter(Function g) { return obj -> g.apply((MLModel) obj); } private static BiConsumer setter(BiConsumer s) { return (obj, val) -> s.accept((Builder) obj, val); } public interface Builder extends SdkPojo, CopyableBuilder { /** *

                * The ID assigned to the MLModel at creation. *

                * * @param mlModelId * The ID assigned to the MLModel at creation. * @return Returns a reference to this object so that method calls can be chained together. */ Builder mlModelId(String mlModelId); /** *

                * The ID of the training DataSource. The CreateMLModel operation uses the * TrainingDataSourceId. *

                * * @param trainingDataSourceId * The ID of the training DataSource. The CreateMLModel operation uses the * TrainingDataSourceId. * @return Returns a reference to this object so that method calls can be chained together. */ Builder trainingDataSourceId(String trainingDataSourceId); /** *

                * The AWS user account from which the MLModel was created. The account type can be either an AWS * root account or an AWS Identity and Access Management (IAM) user account. *

                * * @param createdByIamUser * The AWS user account from which the MLModel was created. The account type can be either * an AWS root account or an AWS Identity and Access Management (IAM) user account. * @return Returns a reference to this object so that method calls can be chained together. */ Builder createdByIamUser(String createdByIamUser); /** *

                * The time that the MLModel was created. The time is expressed in epoch time. *

                * * @param createdAt * The time that the MLModel was created. The time is expressed in epoch time. * @return Returns a reference to this object so that method calls can be chained together. */ Builder createdAt(Instant createdAt); /** *

                * The time of the most recent edit to the MLModel. The time is expressed in epoch time. *

                * * @param lastUpdatedAt * The time of the most recent edit to the MLModel. The time is expressed in epoch time. * @return Returns a reference to this object so that method calls can be chained together. */ Builder lastUpdatedAt(Instant lastUpdatedAt); /** *

                * A user-supplied name or description of the MLModel. *

                * * @param name * A user-supplied name or description of the MLModel. * @return Returns a reference to this object so that method calls can be chained together. */ Builder name(String name); /** *

                * The current status of an MLModel. This element can have one of the following values: *

                *
                  *
                • PENDING - Amazon Machine Learning (Amazon ML) submitted a request to create an * MLModel.
                • *
                • INPROGRESS - The creation process is underway.
                • *
                • FAILED - The request to create an MLModel didn't run to completion. The model * isn't usable.
                • *
                • COMPLETED - The creation process completed successfully.
                • *
                • DELETED - The MLModel is marked as deleted. It isn't usable.
                • *
                * * @param status * The current status of an MLModel. This element can have one of the following values:

                *
                  *
                • PENDING - Amazon Machine Learning (Amazon ML) submitted a request to create an * MLModel.
                • *
                • INPROGRESS - The creation process is underway.
                • *
                • FAILED - The request to create an MLModel didn't run to completion. The * model isn't usable.
                • *
                • COMPLETED - The creation process completed successfully.
                • *
                • DELETED - The MLModel is marked as deleted. It isn't usable.
                • * @see EntityStatus * @return Returns a reference to this object so that method calls can be chained together. * @see EntityStatus */ Builder status(String status); /** *

                  * The current status of an MLModel. This element can have one of the following values: *

                  *
                    *
                  • PENDING - Amazon Machine Learning (Amazon ML) submitted a request to create an * MLModel.
                  • *
                  • INPROGRESS - The creation process is underway.
                  • *
                  • FAILED - The request to create an MLModel didn't run to completion. The model * isn't usable.
                  • *
                  • COMPLETED - The creation process completed successfully.
                  • *
                  • DELETED - The MLModel is marked as deleted. It isn't usable.
                  • *
                  * * @param status * The current status of an MLModel. This element can have one of the following values:

                  *
                    *
                  • PENDING - Amazon Machine Learning (Amazon ML) submitted a request to create an * MLModel.
                  • *
                  • INPROGRESS - The creation process is underway.
                  • *
                  • FAILED - The request to create an MLModel didn't run to completion. The * model isn't usable.
                  • *
                  • COMPLETED - The creation process completed successfully.
                  • *
                  • DELETED - The MLModel is marked as deleted. It isn't usable.
                  • * @see EntityStatus * @return Returns a reference to this object so that method calls can be chained together. * @see EntityStatus */ Builder status(EntityStatus status); /** * Sets the value of the SizeInBytes property for this object. * * @param sizeInBytes * The new value for the SizeInBytes property for this object. * @return Returns a reference to this object so that method calls can be chained together. */ Builder sizeInBytes(Long sizeInBytes); /** *

                    * The current endpoint of the MLModel. *

                    * * @param endpointInfo * The current endpoint of the MLModel. * @return Returns a reference to this object so that method calls can be chained together. */ Builder endpointInfo(RealtimeEndpointInfo endpointInfo); /** *

                    * The current endpoint of the MLModel. *

                    * This is a convenience that creates an instance of the {@link RealtimeEndpointInfo.Builder} avoiding the need * to create one manually via {@link RealtimeEndpointInfo#builder()}. * * When the {@link Consumer} completes, {@link RealtimeEndpointInfo.Builder#build()} is called immediately and * its result is passed to {@link #endpointInfo(RealtimeEndpointInfo)}. * * @param endpointInfo * a consumer that will call methods on {@link RealtimeEndpointInfo.Builder} * @return Returns a reference to this object so that method calls can be chained together. * @see #endpointInfo(RealtimeEndpointInfo) */ default Builder endpointInfo(Consumer endpointInfo) { return endpointInfo(RealtimeEndpointInfo.builder().applyMutation(endpointInfo).build()); } /** *

                    * A list of the training parameters in the MLModel. The list is implemented as a map of key-value * pairs. *

                    *

                    * The following is the current set of training parameters: *

                    *
                      *
                    • *

                      * sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending on the input data, * the size of the model might affect its performance. *

                      *

                      * The value is an integer that ranges from 100000 to 2147483648. The default value is * 33554432. *

                      *
                    • *
                    • *

                      * sgd.maxPasses - The number of times that the training process traverses the observations to * build the MLModel. The value is an integer that ranges from 1 to 10000 * . The default value is 10. *

                      *
                    • *
                    • *

                      * sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling the data improves a * model's ability to find the optimal solution for a variety of data types. The valid values are * auto and none. The default value is none. *

                      *
                    • *
                    • *

                      * sgd.l1RegularizationAmount - The coefficient regularization L1 norm, which controls overfitting * the data by penalizing large coefficients. This parameter tends to drive coefficients to zero, resulting in * sparse feature set. If you use this parameter, start by specifying a small value, such as * 1.0E-08. *

                      *

                      * The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not use * L1 normalization. This parameter can't be used when L2 is specified. Use this parameter * sparingly. *

                      *
                    • *
                    • *

                      * sgd.l2RegularizationAmount - The coefficient regularization L2 norm, which controls overfitting * the data by penalizing large coefficients. This tends to drive coefficients to small, nonzero values. If you * use this parameter, start by specifying a small value, such as 1.0E-08. *

                      *

                      * The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not use * L2 normalization. This parameter can't be used when L1 is specified. Use this parameter * sparingly. *

                      *
                    • *
                    * * @param trainingParameters * A list of the training parameters in the MLModel. The list is implemented as a map of * key-value pairs.

                    *

                    * The following is the current set of training parameters: *

                    *
                      *
                    • *

                      * sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending on the input * data, the size of the model might affect its performance. *

                      *

                      * The value is an integer that ranges from 100000 to 2147483648. The default * value is 33554432. *

                      *
                    • *
                    • *

                      * sgd.maxPasses - The number of times that the training process traverses the observations * to build the MLModel. The value is an integer that ranges from 1 to * 10000. The default value is 10. *

                      *
                    • *
                    • *

                      * sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling the data * improves a model's ability to find the optimal solution for a variety of data types. The valid values * are auto and none. The default value is none. *

                      *
                    • *
                    • *

                      * sgd.l1RegularizationAmount - The coefficient regularization L1 norm, which controls * overfitting the data by penalizing large coefficients. This parameter tends to drive coefficients to * zero, resulting in sparse feature set. If you use this parameter, start by specifying a small value, * such as 1.0E-08. *

                      *

                      * The value is a double that ranges from 0 to MAX_DOUBLE. The default is to * not use L1 normalization. This parameter can't be used when L2 is specified. Use this * parameter sparingly. *

                      *
                    • *
                    • *

                      * sgd.l2RegularizationAmount - The coefficient regularization L2 norm, which controls * overfitting the data by penalizing large coefficients. This tends to drive coefficients to small, * nonzero values. If you use this parameter, start by specifying a small value, such as * 1.0E-08. *

                      *

                      * The value is a double that ranges from 0 to MAX_DOUBLE. The default is to * not use L2 normalization. This parameter can't be used when L1 is specified. Use this * parameter sparingly. *

                      *
                    • * @return Returns a reference to this object so that method calls can be chained together. */ Builder trainingParameters(Map trainingParameters); /** *

                      * The location of the data file or directory in Amazon Simple Storage Service (Amazon S3). *

                      * * @param inputDataLocationS3 * The location of the data file or directory in Amazon Simple Storage Service (Amazon S3). * @return Returns a reference to this object so that method calls can be chained together. */ Builder inputDataLocationS3(String inputDataLocationS3); /** *

                      * The algorithm used to train the MLModel. The following algorithm is supported: *

                      *
                        *
                      • SGD -- Stochastic gradient descent. The goal of SGD is to minimize the gradient * of the loss function.
                      • *
                      * * @param algorithm * The algorithm used to train the MLModel. The following algorithm is supported:

                      *
                        *
                      • SGD -- Stochastic gradient descent. The goal of SGD is to minimize the * gradient of the loss function.
                      • * @see Algorithm * @return Returns a reference to this object so that method calls can be chained together. * @see Algorithm */ Builder algorithm(String algorithm); /** *

                        * The algorithm used to train the MLModel. The following algorithm is supported: *

                        *
                          *
                        • SGD -- Stochastic gradient descent. The goal of SGD is to minimize the gradient * of the loss function.
                        • *
                        * * @param algorithm * The algorithm used to train the MLModel. The following algorithm is supported:

                        *
                          *
                        • SGD -- Stochastic gradient descent. The goal of SGD is to minimize the * gradient of the loss function.
                        • * @see Algorithm * @return Returns a reference to this object so that method calls can be chained together. * @see Algorithm */ Builder algorithm(Algorithm algorithm); /** *

                          * Identifies the MLModel category. The following are the available types: *

                          *
                            *
                          • REGRESSION - Produces a numeric result. For example, * "What price should a house be listed at?"
                          • *
                          • BINARY - Produces one of two possible results. For example, * "Is this a child-friendly web site?".
                          • *
                          • MULTICLASS - Produces one of several possible results. For example, * "Is this a HIGH-, LOW-, or MEDIUM-risk trade?".
                          • *
                          * * @param mlModelType * Identifies the MLModel category. The following are the available types:

                          *
                            *
                          • REGRESSION - Produces a numeric result. For example, * "What price should a house be listed at?"
                          • *
                          • BINARY - Produces one of two possible results. For example, * "Is this a child-friendly web site?".
                          • *
                          • MULTICLASS - Produces one of several possible results. For example, * "Is this a HIGH-, LOW-, or MEDIUM-risk trade?". *
                          • * @see MLModelType * @return Returns a reference to this object so that method calls can be chained together. * @see MLModelType */ Builder mlModelType(String mlModelType); /** *

                            * Identifies the MLModel category. The following are the available types: *

                            *
                              *
                            • REGRESSION - Produces a numeric result. For example, * "What price should a house be listed at?"
                            • *
                            • BINARY - Produces one of two possible results. For example, * "Is this a child-friendly web site?".
                            • *
                            • MULTICLASS - Produces one of several possible results. For example, * "Is this a HIGH-, LOW-, or MEDIUM-risk trade?".
                            • *
                            * * @param mlModelType * Identifies the MLModel category. The following are the available types:

                            *
                              *
                            • REGRESSION - Produces a numeric result. For example, * "What price should a house be listed at?"
                            • *
                            • BINARY - Produces one of two possible results. For example, * "Is this a child-friendly web site?".
                            • *
                            • MULTICLASS - Produces one of several possible results. For example, * "Is this a HIGH-, LOW-, or MEDIUM-risk trade?". *
                            • * @see MLModelType * @return Returns a reference to this object so that method calls can be chained together. * @see MLModelType */ Builder mlModelType(MLModelType mlModelType); /** * Sets the value of the ScoreThreshold property for this object. * * @param scoreThreshold * The new value for the ScoreThreshold property for this object. * @return Returns a reference to this object so that method calls can be chained together. */ Builder scoreThreshold(Float scoreThreshold); /** *

                              * The time of the most recent edit to the ScoreThreshold. The time is expressed in epoch time. *

                              * * @param scoreThresholdLastUpdatedAt * The time of the most recent edit to the ScoreThreshold. The time is expressed in epoch * time. * @return Returns a reference to this object so that method calls can be chained together. */ Builder scoreThresholdLastUpdatedAt(Instant scoreThresholdLastUpdatedAt); /** *

                              * A description of the most recent details about accessing the MLModel. *

                              * * @param message * A description of the most recent details about accessing the MLModel. * @return Returns a reference to this object so that method calls can be chained together. */ Builder message(String message); /** * Sets the value of the ComputeTime property for this object. * * @param computeTime * The new value for the ComputeTime property for this object. * @return Returns a reference to this object so that method calls can be chained together. */ Builder computeTime(Long computeTime); /** * Sets the value of the FinishedAt property for this object. * * @param finishedAt * The new value for the FinishedAt property for this object. * @return Returns a reference to this object so that method calls can be chained together. */ Builder finishedAt(Instant finishedAt); /** * Sets the value of the StartedAt property for this object. * * @param startedAt * The new value for the StartedAt property for this object. * @return Returns a reference to this object so that method calls can be chained together. */ Builder startedAt(Instant startedAt); } static final class BuilderImpl implements Builder { private String mlModelId; private String trainingDataSourceId; private String createdByIamUser; private Instant createdAt; private Instant lastUpdatedAt; private String name; private String status; private Long sizeInBytes; private RealtimeEndpointInfo endpointInfo; private Map trainingParameters = DefaultSdkAutoConstructMap.getInstance(); private String inputDataLocationS3; private String algorithm; private String mlModelType; private Float scoreThreshold; private Instant scoreThresholdLastUpdatedAt; private String message; private Long computeTime; private Instant finishedAt; private Instant startedAt; private BuilderImpl() { } private BuilderImpl(MLModel model) { mlModelId(model.mlModelId); trainingDataSourceId(model.trainingDataSourceId); createdByIamUser(model.createdByIamUser); createdAt(model.createdAt); lastUpdatedAt(model.lastUpdatedAt); name(model.name); status(model.status); sizeInBytes(model.sizeInBytes); endpointInfo(model.endpointInfo); trainingParameters(model.trainingParameters); inputDataLocationS3(model.inputDataLocationS3); algorithm(model.algorithm); mlModelType(model.mlModelType); scoreThreshold(model.scoreThreshold); scoreThresholdLastUpdatedAt(model.scoreThresholdLastUpdatedAt); message(model.message); computeTime(model.computeTime); finishedAt(model.finishedAt); startedAt(model.startedAt); } public final String getMlModelId() { return mlModelId; } @Override public final Builder mlModelId(String mlModelId) { this.mlModelId = mlModelId; return this; } public final void setMlModelId(String mlModelId) { this.mlModelId = mlModelId; } public final String getTrainingDataSourceId() { return trainingDataSourceId; } @Override public final Builder trainingDataSourceId(String trainingDataSourceId) { this.trainingDataSourceId = trainingDataSourceId; return this; } public final void setTrainingDataSourceId(String trainingDataSourceId) { this.trainingDataSourceId = trainingDataSourceId; } public final String getCreatedByIamUser() { return createdByIamUser; } @Override public final Builder createdByIamUser(String createdByIamUser) { this.createdByIamUser = createdByIamUser; return this; } public final void setCreatedByIamUser(String createdByIamUser) { this.createdByIamUser = createdByIamUser; } public final Instant getCreatedAt() { return createdAt; } @Override public final Builder createdAt(Instant createdAt) { this.createdAt = createdAt; return this; } public final void setCreatedAt(Instant createdAt) { this.createdAt = createdAt; } public final Instant getLastUpdatedAt() { return lastUpdatedAt; } @Override public final Builder lastUpdatedAt(Instant lastUpdatedAt) { this.lastUpdatedAt = lastUpdatedAt; return this; } public final void setLastUpdatedAt(Instant lastUpdatedAt) { this.lastUpdatedAt = lastUpdatedAt; } public final String getName() { return name; } @Override public final Builder name(String name) { this.name = name; return this; } public final void setName(String name) { this.name = name; } public final String getStatus() { return status; } @Override public final Builder status(String status) { this.status = status; return this; } @Override public final Builder status(EntityStatus status) { this.status(status == null ? null : status.toString()); return this; } public final void setStatus(String status) { this.status = status; } public final Long getSizeInBytes() { return sizeInBytes; } @Override public final Builder sizeInBytes(Long sizeInBytes) { this.sizeInBytes = sizeInBytes; return this; } public final void setSizeInBytes(Long sizeInBytes) { this.sizeInBytes = sizeInBytes; } public final RealtimeEndpointInfo.Builder getEndpointInfo() { return endpointInfo != null ? endpointInfo.toBuilder() : null; } @Override public final Builder endpointInfo(RealtimeEndpointInfo endpointInfo) { this.endpointInfo = endpointInfo; return this; } public final void setEndpointInfo(RealtimeEndpointInfo.BuilderImpl endpointInfo) { this.endpointInfo = endpointInfo != null ? endpointInfo.build() : null; } public final Map getTrainingParameters() { if (trainingParameters instanceof SdkAutoConstructMap) { return null; } return trainingParameters; } @Override public final Builder trainingParameters(Map trainingParameters) { this.trainingParameters = TrainingParametersCopier.copy(trainingParameters); return this; } public final void setTrainingParameters(Map trainingParameters) { this.trainingParameters = TrainingParametersCopier.copy(trainingParameters); } public final String getInputDataLocationS3() { return inputDataLocationS3; } @Override public final Builder inputDataLocationS3(String inputDataLocationS3) { this.inputDataLocationS3 = inputDataLocationS3; return this; } public final void setInputDataLocationS3(String inputDataLocationS3) { this.inputDataLocationS3 = inputDataLocationS3; } public final String getAlgorithm() { return algorithm; } @Override public final Builder algorithm(String algorithm) { this.algorithm = algorithm; return this; } @Override public final Builder algorithm(Algorithm algorithm) { this.algorithm(algorithm == null ? null : algorithm.toString()); return this; } public final void setAlgorithm(String algorithm) { this.algorithm = algorithm; } public final String getMlModelType() { return mlModelType; } @Override public final Builder mlModelType(String mlModelType) { this.mlModelType = mlModelType; return this; } @Override public final Builder mlModelType(MLModelType mlModelType) { this.mlModelType(mlModelType == null ? null : mlModelType.toString()); return this; } public final void setMlModelType(String mlModelType) { this.mlModelType = mlModelType; } public final Float getScoreThreshold() { return scoreThreshold; } @Override public final Builder scoreThreshold(Float scoreThreshold) { this.scoreThreshold = scoreThreshold; return this; } public final void setScoreThreshold(Float scoreThreshold) { this.scoreThreshold = scoreThreshold; } public final Instant getScoreThresholdLastUpdatedAt() { return scoreThresholdLastUpdatedAt; } @Override public final Builder scoreThresholdLastUpdatedAt(Instant scoreThresholdLastUpdatedAt) { this.scoreThresholdLastUpdatedAt = scoreThresholdLastUpdatedAt; return this; } public final void setScoreThresholdLastUpdatedAt(Instant scoreThresholdLastUpdatedAt) { this.scoreThresholdLastUpdatedAt = scoreThresholdLastUpdatedAt; } public final String getMessage() { return message; } @Override public final Builder message(String message) { this.message = message; return this; } public final void setMessage(String message) { this.message = message; } public final Long getComputeTime() { return computeTime; } @Override public final Builder computeTime(Long computeTime) { this.computeTime = computeTime; return this; } public final void setComputeTime(Long computeTime) { this.computeTime = computeTime; } public final Instant getFinishedAt() { return finishedAt; } @Override public final Builder finishedAt(Instant finishedAt) { this.finishedAt = finishedAt; return this; } public final void setFinishedAt(Instant finishedAt) { this.finishedAt = finishedAt; } public final Instant getStartedAt() { return startedAt; } @Override public final Builder startedAt(Instant startedAt) { this.startedAt = startedAt; return this; } public final void setStartedAt(Instant startedAt) { this.startedAt = startedAt; } @Override public MLModel build() { return new MLModel(this); } @Override public List> sdkFields() { return SDK_FIELDS; } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy