All Downloads are FREE. Search and download functionalities are using the official Maven repository.

software.amazon.awssdk.services.sagemaker.model.InputConfig Maven / Gradle / Ivy

/*
 * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with
 * the License. A copy of the License is located at
 * 
 * http://aws.amazon.com/apache2.0
 * 
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
 * CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */

package software.amazon.awssdk.services.sagemaker.model;

import java.io.Serializable;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import java.util.Objects;
import java.util.Optional;
import java.util.function.BiConsumer;
import java.util.function.Function;
import software.amazon.awssdk.annotations.Generated;
import software.amazon.awssdk.core.SdkField;
import software.amazon.awssdk.core.SdkPojo;
import software.amazon.awssdk.core.protocol.MarshallLocation;
import software.amazon.awssdk.core.protocol.MarshallingType;
import software.amazon.awssdk.core.traits.LocationTrait;
import software.amazon.awssdk.utils.ToString;
import software.amazon.awssdk.utils.builder.CopyableBuilder;
import software.amazon.awssdk.utils.builder.ToCopyableBuilder;

/**
 * 

* Contains information about the location of input model artifacts, the name and shape of the expected data inputs, and * the framework in which the model was trained. *

*/ @Generated("software.amazon.awssdk:codegen") public final class InputConfig implements SdkPojo, Serializable, ToCopyableBuilder { private static final SdkField S3_URI_FIELD = SdkField. builder(MarshallingType.STRING).memberName("S3Uri") .getter(getter(InputConfig::s3Uri)).setter(setter(Builder::s3Uri)) .traits(LocationTrait.builder().location(MarshallLocation.PAYLOAD).locationName("S3Uri").build()).build(); private static final SdkField DATA_INPUT_CONFIG_FIELD = SdkField. builder(MarshallingType.STRING) .memberName("DataInputConfig").getter(getter(InputConfig::dataInputConfig)).setter(setter(Builder::dataInputConfig)) .traits(LocationTrait.builder().location(MarshallLocation.PAYLOAD).locationName("DataInputConfig").build()).build(); private static final SdkField FRAMEWORK_FIELD = SdkField. builder(MarshallingType.STRING) .memberName("Framework").getter(getter(InputConfig::frameworkAsString)).setter(setter(Builder::framework)) .traits(LocationTrait.builder().location(MarshallLocation.PAYLOAD).locationName("Framework").build()).build(); private static final SdkField FRAMEWORK_VERSION_FIELD = SdkField. builder(MarshallingType.STRING) .memberName("FrameworkVersion").getter(getter(InputConfig::frameworkVersion)) .setter(setter(Builder::frameworkVersion)) .traits(LocationTrait.builder().location(MarshallLocation.PAYLOAD).locationName("FrameworkVersion").build()).build(); private static final List> SDK_FIELDS = Collections.unmodifiableList(Arrays.asList(S3_URI_FIELD, DATA_INPUT_CONFIG_FIELD, FRAMEWORK_FIELD, FRAMEWORK_VERSION_FIELD)); private static final long serialVersionUID = 1L; private final String s3Uri; private final String dataInputConfig; private final String framework; private final String frameworkVersion; private InputConfig(BuilderImpl builder) { this.s3Uri = builder.s3Uri; this.dataInputConfig = builder.dataInputConfig; this.framework = builder.framework; this.frameworkVersion = builder.frameworkVersion; } /** *

* The S3 path where the model artifacts, which result from model training, are stored. This path must point to a * single gzip compressed tar archive (.tar.gz suffix). *

* * @return The S3 path where the model artifacts, which result from model training, are stored. This path must point * to a single gzip compressed tar archive (.tar.gz suffix). */ public final String s3Uri() { return s3Uri; } /** *

* Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The * data inputs are InputConfig$Framework specific. *

*
    *
  • *

    * TensorFlow: You must specify the name and shape (NHWC format) of the expected data inputs using a * dictionary format for your trained model. The dictionary formats required for the console and CLI are different. *

    *
      *
    • *

      * Examples for one input: *

      *
        *
      • *

        * If using the console, {"input":[1,1024,1024,3]} *

        *
      • *
      • *

        * If using the CLI, {\"input\":[1,1024,1024,3]} *

        *
      • *
      *
    • *
    • *

      * Examples for two inputs: *

      *
        *
      • *

        * If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]} *

        *
      • *
      • *

        * If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]} *

        *
      • *
      *
    • *
    *
  • *
  • *

    * KERAS: You must specify the name and shape (NCHW format) of expected data inputs using a dictionary * format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC (channel-last) * format, DataInputConfig should be specified in NCHW (channel-first) format. The dictionary formats * required for the console and CLI are different. *

    *
      *
    • *

      * Examples for one input: *

      *
        *
      • *

        * If using the console, {"input_1":[1,3,224,224]} *

        *
      • *
      • *

        * If using the CLI, {\"input_1\":[1,3,224,224]} *

        *
      • *
      *
    • *
    • *

      * Examples for two inputs: *

      *
        *
      • *

        * If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]} *

        *
      • *
      • *

        * If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]} *

        *
      • *
      *
    • *
    *
  • *
  • *

    * MXNET/ONNX/DARKNET: You must specify the name and shape (NCHW format) of the expected data inputs in * order using a dictionary format for your trained model. The dictionary formats required for the console and CLI * are different. *

    *
      *
    • *

      * Examples for one input: *

      *
        *
      • *

        * If using the console, {"data":[1,3,1024,1024]} *

        *
      • *
      • *

        * If using the CLI, {\"data\":[1,3,1024,1024]} *

        *
      • *
      *
    • *
    • *

      * Examples for two inputs: *

      *
        *
      • *

        * If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]} *

        *
      • *
      • *

        * If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]} *

        *
      • *
      *
    • *
    *
  • *
  • *

    * PyTorch: You can either specify the name and shape (NCHW format) of expected data inputs in order * using a dictionary format for your trained model or you can specify the shape only using a list format. The * dictionary formats required for the console and CLI are different. The list formats for the console and CLI are * the same. *

    *
      *
    • *

      * Examples for one input in dictionary format: *

      *
        *
      • *

        * If using the console, {"input0":[1,3,224,224]} *

        *
      • *
      • *

        * If using the CLI, {\"input0\":[1,3,224,224]} *

        *
      • *
      *
    • *
    • *

      * Example for one input in list format: [[1,3,224,224]] *

      *
    • *
    • *

      * Examples for two inputs in dictionary format: *

      *
        *
      • *

        * If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]} *

        *
      • *
      • *

        * If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]} *

        *
      • *
      *
    • *
    • *

      * Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]] *

      *
    • *
    *
  • *
  • *

    * XGBOOST: input data name and shape are not needed. *

    *
  • *
*

* DataInputConfig supports the following parameters for CoreML * OutputConfig$TargetDevice (ML Model format): *

*
    *
  • *

    * shape: Input shape, for example {"input_1": {"shape": [1,224,224,3]}}. In addition to * static input shapes, CoreML converter supports Flexible input shapes: *

    *
      *
    • *

      * Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some specific * interval in that dimension, for example: {"input_1": {"shape": ["1..10", 224, 224, 3]}} *

      *
    • *
    • *

      * Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can enumerate * all supported input shapes, for example: * {"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}} *

      *
    • *
    *
  • *
  • *

    * default_shape: Default input shape. You can set a default shape during conversion for both Range * Dimension and Enumerated Shapes. For example * {"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}} *

    *
  • *
  • *

    * type: Input type. Allowed values: Image and Tensor. By default, the * converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be Image. * Image input type requires additional input parameters such as bias and scale. *

    *
  • *
  • *

    * bias: If the input type is an Image, you need to provide the bias vector. *

    *
  • *
  • *

    * scale: If the input type is an Image, you need to provide a scale factor. *

    *
  • *
*

* CoreML ClassifierConfig parameters can be specified using OutputConfig$CompilerOptions. * CoreML converter supports Tensorflow and PyTorch models. CoreML conversion examples: *

*
    *
  • *

    * Tensor type input: *

    *
      *
    • *

      * "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}} *

      *
    • *
    *
  • *
  • *

    * Tensor type input without input name (PyTorch): *

    *
      *
    • *

      * "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}] *

      *
    • *
    *
  • *
  • *

    * Image type input: *

    *
      *
    • *

      * "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}} *

      *
    • *
    • *

      * "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"} *

      *
    • *
    *
  • *
  • *

    * Image type input without input name (PyTorch): *

    *
      *
    • *

      * "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}] *

      *
    • *
    • *

      * "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"} *

      *
    • *
    *
  • *
*

* Depending on the model format, DataInputConfig requires the following parameters for * ml_eia2 OutputConfig:TargetDevice. *

*
    *
  • *

    * For TensorFlow models saved in the SavedModel format, specify the input names from signature_def_key * and the input model shapes for DataInputConfig. Specify the signature_def_key in OutputConfig:CompilerOptions if the model does not use TensorFlow's default signature def * key. For example: *

    *
      *
    • *

      * "DataInputConfig": {"inputs": [1, 224, 224, 3]} *

      *
    • *
    • *

      * "CompilerOptions": {"signature_def_key": "serving_custom"} *

      *
    • *
    *
  • *
  • *

    * For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in * DataInputConfig and the output tensor names for output_names in OutputConfig:CompilerOptions . For example: *

    *
      *
    • *

      * "DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]} *

      *
    • *
    • *

      * "CompilerOptions": {"output_names": ["output_tensor:0"]} *

      *
    • *
    *
  • *
* * @return Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary * form. The data inputs are InputConfig$Framework specific.

*
    *
  • *

    * TensorFlow: You must specify the name and shape (NHWC format) of the expected data inputs * using a dictionary format for your trained model. The dictionary formats required for the console and CLI * are different. *

    *
      *
    • *

      * Examples for one input: *

      *
        *
      • *

        * If using the console, {"input":[1,1024,1024,3]} *

        *
      • *
      • *

        * If using the CLI, {\"input\":[1,1024,1024,3]} *

        *
      • *
      *
    • *
    • *

      * Examples for two inputs: *

      *
        *
      • *

        * If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]} *

        *
      • *
      • *

        * If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]} *

        *
      • *
      *
    • *
    *
  • *
  • *

    * KERAS: You must specify the name and shape (NCHW format) of expected data inputs using a * dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in * NHWC (channel-last) format, DataInputConfig should be specified in NCHW (channel-first) * format. The dictionary formats required for the console and CLI are different. *

    *
      *
    • *

      * Examples for one input: *

      *
        *
      • *

        * If using the console, {"input_1":[1,3,224,224]} *

        *
      • *
      • *

        * If using the CLI, {\"input_1\":[1,3,224,224]} *

        *
      • *
      *
    • *
    • *

      * Examples for two inputs: *

      *
        *
      • *

        * If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]} *

        *
      • *
      • *

        * If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]} *

        *
      • *
      *
    • *
    *
  • *
  • *

    * MXNET/ONNX/DARKNET: You must specify the name and shape (NCHW format) of the expected data * inputs in order using a dictionary format for your trained model. The dictionary formats required for the * console and CLI are different. *

    *
      *
    • *

      * Examples for one input: *

      *
        *
      • *

        * If using the console, {"data":[1,3,1024,1024]} *

        *
      • *
      • *

        * If using the CLI, {\"data\":[1,3,1024,1024]} *

        *
      • *
      *
    • *
    • *

      * Examples for two inputs: *

      *
        *
      • *

        * If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]} *

        *
      • *
      • *

        * If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]} *

        *
      • *
      *
    • *
    *
  • *
  • *

    * PyTorch: You can either specify the name and shape (NCHW format) of expected data inputs in * order using a dictionary format for your trained model or you can specify the shape only using a list * format. The dictionary formats required for the console and CLI are different. The list formats for the * console and CLI are the same. *

    *
      *
    • *

      * Examples for one input in dictionary format: *

      *
        *
      • *

        * If using the console, {"input0":[1,3,224,224]} *

        *
      • *
      • *

        * If using the CLI, {\"input0\":[1,3,224,224]} *

        *
      • *
      *
    • *
    • *

      * Example for one input in list format: [[1,3,224,224]] *

      *
    • *
    • *

      * Examples for two inputs in dictionary format: *

      *
        *
      • *

        * If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]} *

        *
      • *
      • *

        * If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]} *

        *
      • *
      *
    • *
    • *

      * Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]] *

      *
    • *
    *
  • *
  • *

    * XGBOOST: input data name and shape are not needed. *

    *
  • *
*

* DataInputConfig supports the following parameters for CoreML * OutputConfig$TargetDevice (ML Model format): *

*
    *
  • *

    * shape: Input shape, for example {"input_1": {"shape": [1,224,224,3]}}. In * addition to static input shapes, CoreML converter supports Flexible input shapes: *

    *
      *
    • *

      * Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some * specific interval in that dimension, for example: * {"input_1": {"shape": ["1..10", 224, 224, 3]}} *

      *
    • *
    • *

      * Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can * enumerate all supported input shapes, for example: * {"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}} *

      *
    • *
    *
  • *
  • *

    * default_shape: Default input shape. You can set a default shape during conversion for both * Range Dimension and Enumerated Shapes. For example * {"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}} *

    *
  • *
  • *

    * type: Input type. Allowed values: Image and Tensor. By default, * the converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to * be Image. Image input type requires additional input parameters such as bias and * scale. *

    *
  • *
  • *

    * bias: If the input type is an Image, you need to provide the bias vector. *

    *
  • *
  • *

    * scale: If the input type is an Image, you need to provide a scale factor. *

    *
  • *
*

* CoreML ClassifierConfig parameters can be specified using * OutputConfig$CompilerOptions. CoreML converter supports Tensorflow and PyTorch models. CoreML * conversion examples: *

*
    *
  • *

    * Tensor type input: *

    *
      *
    • *

      * "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}} *

      *
    • *
    *
  • *
  • *

    * Tensor type input without input name (PyTorch): *

    *
      *
    • *

      * "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}] *

      *
    • *
    *
  • *
  • *

    * Image type input: *

    *
      *
    • *

      * "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}} *

      *
    • *
    • *

      * "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"} *

      *
    • *
    *
  • *
  • *

    * Image type input without input name (PyTorch): *

    *
      *
    • *

      * "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}] *

      *
    • *
    • *

      * "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"} *

      *
    • *
    *
  • *
*

* Depending on the model format, DataInputConfig requires the following parameters for * ml_eia2 OutputConfig:TargetDevice. *

*
    *
  • *

    * For TensorFlow models saved in the SavedModel format, specify the input names from * signature_def_key and the input model shapes for DataInputConfig. Specify the * signature_def_key in OutputConfig:CompilerOptions if the model does not use TensorFlow's default signature * def key. For example: *

    *
      *
    • *

      * "DataInputConfig": {"inputs": [1, 224, 224, 3]} *

      *
    • *
    • *

      * "CompilerOptions": {"signature_def_key": "serving_custom"} *

      *
    • *
    *
  • *
  • *

    * For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in * DataInputConfig and the output tensor names for output_names in OutputConfig:CompilerOptions . For example: *

    *
      *
    • *

      * "DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]} *

      *
    • *
    • *

      * "CompilerOptions": {"output_names": ["output_tensor:0"]} *

      *
    • *
    *
  • */ public final String dataInputConfig() { return dataInputConfig; } /** *

    * Identifies the framework in which the model was trained. For example: TENSORFLOW. *

    *

    * If the service returns an enum value that is not available in the current SDK version, {@link #framework} will * return {@link Framework#UNKNOWN_TO_SDK_VERSION}. The raw value returned by the service is available from * {@link #frameworkAsString}. *

    * * @return Identifies the framework in which the model was trained. For example: TENSORFLOW. * @see Framework */ public final Framework framework() { return Framework.fromValue(framework); } /** *

    * Identifies the framework in which the model was trained. For example: TENSORFLOW. *

    *

    * If the service returns an enum value that is not available in the current SDK version, {@link #framework} will * return {@link Framework#UNKNOWN_TO_SDK_VERSION}. The raw value returned by the service is available from * {@link #frameworkAsString}. *

    * * @return Identifies the framework in which the model was trained. For example: TENSORFLOW. * @see Framework */ public final String frameworkAsString() { return framework; } /** *

    * Specifies the framework version to use. *

    *

    * This API field is only supported for PyTorch framework versions 1.4, 1.5, and * 1.6 for cloud instance target devices: ml_c4, ml_c5, ml_m4, * ml_m5, ml_p2, ml_p3, and ml_g4dn. *

    * * @return Specifies the framework version to use.

    *

    * This API field is only supported for PyTorch framework versions 1.4, 1.5, and * 1.6 for cloud instance target devices: ml_c4, ml_c5, * ml_m4, ml_m5, ml_p2, ml_p3, and ml_g4dn. */ public final String frameworkVersion() { return frameworkVersion; } @Override public Builder toBuilder() { return new BuilderImpl(this); } public static Builder builder() { return new BuilderImpl(); } public static Class serializableBuilderClass() { return BuilderImpl.class; } @Override public final int hashCode() { int hashCode = 1; hashCode = 31 * hashCode + Objects.hashCode(s3Uri()); hashCode = 31 * hashCode + Objects.hashCode(dataInputConfig()); hashCode = 31 * hashCode + Objects.hashCode(frameworkAsString()); hashCode = 31 * hashCode + Objects.hashCode(frameworkVersion()); return hashCode; } @Override public final boolean equals(Object obj) { return equalsBySdkFields(obj); } @Override public final boolean equalsBySdkFields(Object obj) { if (this == obj) { return true; } if (obj == null) { return false; } if (!(obj instanceof InputConfig)) { return false; } InputConfig other = (InputConfig) obj; return Objects.equals(s3Uri(), other.s3Uri()) && Objects.equals(dataInputConfig(), other.dataInputConfig()) && Objects.equals(frameworkAsString(), other.frameworkAsString()) && Objects.equals(frameworkVersion(), other.frameworkVersion()); } /** * Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be * redacted from this string using a placeholder value. */ @Override public final String toString() { return ToString.builder("InputConfig").add("S3Uri", s3Uri()).add("DataInputConfig", dataInputConfig()) .add("Framework", frameworkAsString()).add("FrameworkVersion", frameworkVersion()).build(); } public final Optional getValueForField(String fieldName, Class clazz) { switch (fieldName) { case "S3Uri": return Optional.ofNullable(clazz.cast(s3Uri())); case "DataInputConfig": return Optional.ofNullable(clazz.cast(dataInputConfig())); case "Framework": return Optional.ofNullable(clazz.cast(frameworkAsString())); case "FrameworkVersion": return Optional.ofNullable(clazz.cast(frameworkVersion())); default: return Optional.empty(); } } @Override public final List> sdkFields() { return SDK_FIELDS; } private static Function getter(Function g) { return obj -> g.apply((InputConfig) obj); } private static BiConsumer setter(BiConsumer s) { return (obj, val) -> s.accept((Builder) obj, val); } public interface Builder extends SdkPojo, CopyableBuilder { /** *

    * The S3 path where the model artifacts, which result from model training, are stored. This path must point to * a single gzip compressed tar archive (.tar.gz suffix). *

    * * @param s3Uri * The S3 path where the model artifacts, which result from model training, are stored. This path must * point to a single gzip compressed tar archive (.tar.gz suffix). * @return Returns a reference to this object so that method calls can be chained together. */ Builder s3Uri(String s3Uri); /** *

    * Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. * The data inputs are InputConfig$Framework specific. *

    *
      *
    • *

      * TensorFlow: You must specify the name and shape (NHWC format) of the expected data inputs using * a dictionary format for your trained model. The dictionary formats required for the console and CLI are * different. *

      *
        *
      • *

        * Examples for one input: *

        *
          *
        • *

          * If using the console, {"input":[1,1024,1024,3]} *

          *
        • *
        • *

          * If using the CLI, {\"input\":[1,1024,1024,3]} *

          *
        • *
        *
      • *
      • *

        * Examples for two inputs: *

        *
          *
        • *

          * If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]} *

          *
        • *
        • *

          * If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]} *

          *
        • *
        *
      • *
      *
    • *
    • *

      * KERAS: You must specify the name and shape (NCHW format) of expected data inputs using a * dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC * (channel-last) format, DataInputConfig should be specified in NCHW (channel-first) format. The * dictionary formats required for the console and CLI are different. *

      *
        *
      • *

        * Examples for one input: *

        *
          *
        • *

          * If using the console, {"input_1":[1,3,224,224]} *

          *
        • *
        • *

          * If using the CLI, {\"input_1\":[1,3,224,224]} *

          *
        • *
        *
      • *
      • *

        * Examples for two inputs: *

        *
          *
        • *

          * If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]} *

          *
        • *
        • *

          * If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]} *

          *
        • *
        *
      • *
      *
    • *
    • *

      * MXNET/ONNX/DARKNET: You must specify the name and shape (NCHW format) of the expected data * inputs in order using a dictionary format for your trained model. The dictionary formats required for the * console and CLI are different. *

      *
        *
      • *

        * Examples for one input: *

        *
          *
        • *

          * If using the console, {"data":[1,3,1024,1024]} *

          *
        • *
        • *

          * If using the CLI, {\"data\":[1,3,1024,1024]} *

          *
        • *
        *
      • *
      • *

        * Examples for two inputs: *

        *
          *
        • *

          * If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]} *

          *
        • *
        • *

          * If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]} *

          *
        • *
        *
      • *
      *
    • *
    • *

      * PyTorch: You can either specify the name and shape (NCHW format) of expected data inputs in * order using a dictionary format for your trained model or you can specify the shape only using a list format. * The dictionary formats required for the console and CLI are different. The list formats for the console and * CLI are the same. *

      *
        *
      • *

        * Examples for one input in dictionary format: *

        *
          *
        • *

          * If using the console, {"input0":[1,3,224,224]} *

          *
        • *
        • *

          * If using the CLI, {\"input0\":[1,3,224,224]} *

          *
        • *
        *
      • *
      • *

        * Example for one input in list format: [[1,3,224,224]] *

        *
      • *
      • *

        * Examples for two inputs in dictionary format: *

        *
          *
        • *

          * If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]} *

          *
        • *
        • *

          * If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]} *

          *
        • *
        *
      • *
      • *

        * Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]] *

        *
      • *
      *
    • *
    • *

      * XGBOOST: input data name and shape are not needed. *

      *
    • *
    *

    * DataInputConfig supports the following parameters for CoreML * OutputConfig$TargetDevice (ML Model format): *

    *
      *
    • *

      * shape: Input shape, for example {"input_1": {"shape": [1,224,224,3]}}. In addition * to static input shapes, CoreML converter supports Flexible input shapes: *

      *
        *
      • *

        * Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some * specific interval in that dimension, for example: {"input_1": {"shape": ["1..10", 224, 224, 3]}} *

        *
      • *
      • *

        * Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can * enumerate all supported input shapes, for example: * {"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}} *

        *
      • *
      *
    • *
    • *

      * default_shape: Default input shape. You can set a default shape during conversion for both Range * Dimension and Enumerated Shapes. For example * {"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}} *

      *
    • *
    • *

      * type: Input type. Allowed values: Image and Tensor. By default, the * converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be Image. * Image input type requires additional input parameters such as bias and scale. *

      *
    • *
    • *

      * bias: If the input type is an Image, you need to provide the bias vector. *

      *
    • *
    • *

      * scale: If the input type is an Image, you need to provide a scale factor. *

      *
    • *
    *

    * CoreML ClassifierConfig parameters can be specified using OutputConfig$CompilerOptions. * CoreML converter supports Tensorflow and PyTorch models. CoreML conversion examples: *

    *
      *
    • *

      * Tensor type input: *

      *
        *
      • *

        * "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}} *

        *
      • *
      *
    • *
    • *

      * Tensor type input without input name (PyTorch): *

      *
        *
      • *

        * "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}] *

        *
      • *
      *
    • *
    • *

      * Image type input: *

      *
        *
      • *

        * "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}} *

        *
      • *
      • *

        * "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"} *

        *
      • *
      *
    • *
    • *

      * Image type input without input name (PyTorch): *

      *
        *
      • *

        * "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}] *

        *
      • *
      • *

        * "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"} *

        *
      • *
      *
    • *
    *

    * Depending on the model format, DataInputConfig requires the following parameters for * ml_eia2 OutputConfig:TargetDevice. *

    *
      *
    • *

      * For TensorFlow models saved in the SavedModel format, specify the input names from * signature_def_key and the input model shapes for DataInputConfig. Specify the * signature_def_key in OutputConfig:CompilerOptions if the model does not use TensorFlow's default signature def * key. For example: *

      *
        *
      • *

        * "DataInputConfig": {"inputs": [1, 224, 224, 3]} *

        *
      • *
      • *

        * "CompilerOptions": {"signature_def_key": "serving_custom"} *

        *
      • *
      *
    • *
    • *

      * For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in * DataInputConfig and the output tensor names for output_names in OutputConfig:CompilerOptions . For example: *

      *
        *
      • *

        * "DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]} *

        *
      • *
      • *

        * "CompilerOptions": {"output_names": ["output_tensor:0"]} *

        *
      • *
      *
    • *
    * * @param dataInputConfig * Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary * form. The data inputs are InputConfig$Framework specific.

    *
      *
    • *

      * TensorFlow: You must specify the name and shape (NHWC format) of the expected data inputs * using a dictionary format for your trained model. The dictionary formats required for the console and * CLI are different. *

      *
        *
      • *

        * Examples for one input: *

        *
          *
        • *

          * If using the console, {"input":[1,1024,1024,3]} *

          *
        • *
        • *

          * If using the CLI, {\"input\":[1,1024,1024,3]} *

          *
        • *
        *
      • *
      • *

        * Examples for two inputs: *

        *
          *
        • *

          * If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]} *

          *
        • *
        • *

          * If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]} *

          *
        • *
        *
      • *
      *
    • *
    • *

      * KERAS: You must specify the name and shape (NCHW format) of expected data inputs using a * dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in * NHWC (channel-last) format, DataInputConfig should be specified in NCHW (channel-first) * format. The dictionary formats required for the console and CLI are different. *

      *
        *
      • *

        * Examples for one input: *

        *
          *
        • *

          * If using the console, {"input_1":[1,3,224,224]} *

          *
        • *
        • *

          * If using the CLI, {\"input_1\":[1,3,224,224]} *

          *
        • *
        *
      • *
      • *

        * Examples for two inputs: *

        *
          *
        • *

          * If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]} *

          *
        • *
        • *

          * If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]} *

          *
        • *
        *
      • *
      *
    • *
    • *

      * MXNET/ONNX/DARKNET: You must specify the name and shape (NCHW format) of the expected * data inputs in order using a dictionary format for your trained model. The dictionary formats required * for the console and CLI are different. *

      *
        *
      • *

        * Examples for one input: *

        *
          *
        • *

          * If using the console, {"data":[1,3,1024,1024]} *

          *
        • *
        • *

          * If using the CLI, {\"data\":[1,3,1024,1024]} *

          *
        • *
        *
      • *
      • *

        * Examples for two inputs: *

        *
          *
        • *

          * If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]} *

          *
        • *
        • *

          * If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]} *

          *
        • *
        *
      • *
      *
    • *
    • *

      * PyTorch: You can either specify the name and shape (NCHW format) of expected data inputs * in order using a dictionary format for your trained model or you can specify the shape only using a * list format. The dictionary formats required for the console and CLI are different. The list formats * for the console and CLI are the same. *

      *
        *
      • *

        * Examples for one input in dictionary format: *

        *
          *
        • *

          * If using the console, {"input0":[1,3,224,224]} *

          *
        • *
        • *

          * If using the CLI, {\"input0\":[1,3,224,224]} *

          *
        • *
        *
      • *
      • *

        * Example for one input in list format: [[1,3,224,224]] *

        *
      • *
      • *

        * Examples for two inputs in dictionary format: *

        *
          *
        • *

          * If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]} *

          *
        • *
        • *

          * If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]} *

          *
        • *
        *
      • *
      • *

        * Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]] *

        *
      • *
      *
    • *
    • *

      * XGBOOST: input data name and shape are not needed. *

      *
    • *
    *

    * DataInputConfig supports the following parameters for CoreML * OutputConfig$TargetDevice (ML Model format): *

    *
      *
    • *

      * shape: Input shape, for example {"input_1": {"shape": [1,224,224,3]}}. In * addition to static input shapes, CoreML converter supports Flexible input shapes: *

      *
        *
      • *

        * Range Dimension. You can use the Range Dimension feature if you know the input shape will be within * some specific interval in that dimension, for example: * {"input_1": {"shape": ["1..10", 224, 224, 3]}} *

        *
      • *
      • *

        * Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can * enumerate all supported input shapes, for example: * {"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}} *

        *
      • *
      *
    • *
    • *

      * default_shape: Default input shape. You can set a default shape during conversion for * both Range Dimension and Enumerated Shapes. For example * {"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}} *

      *
    • *
    • *

      * type: Input type. Allowed values: Image and Tensor. By default, * the converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type * to be Image. Image input type requires additional input parameters such as bias and * scale. *

      *
    • *
    • *

      * bias: If the input type is an Image, you need to provide the bias vector. *

      *
    • *
    • *

      * scale: If the input type is an Image, you need to provide a scale factor. *

      *
    • *
    *

    * CoreML ClassifierConfig parameters can be specified using * OutputConfig$CompilerOptions. CoreML converter supports Tensorflow and PyTorch models. CoreML * conversion examples: *

    *
      *
    • *

      * Tensor type input: *

      *
        *
      • *

        * "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}} *

        *
      • *
      *
    • *
    • *

      * Tensor type input without input name (PyTorch): *

      *
        *
      • *

        * "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}] *

        *
      • *
      *
    • *
    • *

      * Image type input: *

      *
        *
      • *

        * "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}} *

        *
      • *
      • *

        * "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"} *

        *
      • *
      *
    • *
    • *

      * Image type input without input name (PyTorch): *

      *
        *
      • *

        * "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}] *

        *
      • *
      • *

        * "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"} *

        *
      • *
      *
    • *
    *

    * Depending on the model format, DataInputConfig requires the following parameters for * ml_eia2 OutputConfig:TargetDevice. *

    *
      *
    • *

      * For TensorFlow models saved in the SavedModel format, specify the input names from * signature_def_key and the input model shapes for DataInputConfig. Specify * the signature_def_key in OutputConfig:CompilerOptions if the model does not use TensorFlow's default * signature def key. For example: *

      *
        *
      • *

        * "DataInputConfig": {"inputs": [1, 224, 224, 3]} *

        *
      • *
      • *

        * "CompilerOptions": {"signature_def_key": "serving_custom"} *

        *
      • *
      *
    • *
    • *

      * For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in * DataInputConfig and the output tensor names for output_names in OutputConfig:CompilerOptions . For example: *

      *
        *
      • *

        * "DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]} *

        *
      • *
      • *

        * "CompilerOptions": {"output_names": ["output_tensor:0"]} *

        *
      • *
      *
    • * @return Returns a reference to this object so that method calls can be chained together. */ Builder dataInputConfig(String dataInputConfig); /** *

      * Identifies the framework in which the model was trained. For example: TENSORFLOW. *

      * * @param framework * Identifies the framework in which the model was trained. For example: TENSORFLOW. * @see Framework * @return Returns a reference to this object so that method calls can be chained together. * @see Framework */ Builder framework(String framework); /** *

      * Identifies the framework in which the model was trained. For example: TENSORFLOW. *

      * * @param framework * Identifies the framework in which the model was trained. For example: TENSORFLOW. * @see Framework * @return Returns a reference to this object so that method calls can be chained together. * @see Framework */ Builder framework(Framework framework); /** *

      * Specifies the framework version to use. *

      *

      * This API field is only supported for PyTorch framework versions 1.4, 1.5, and * 1.6 for cloud instance target devices: ml_c4, ml_c5, * ml_m4, ml_m5, ml_p2, ml_p3, and ml_g4dn. *

      * * @param frameworkVersion * Specifies the framework version to use.

      *

      * This API field is only supported for PyTorch framework versions 1.4, 1.5, * and 1.6 for cloud instance target devices: ml_c4, ml_c5, * ml_m4, ml_m5, ml_p2, ml_p3, and * ml_g4dn. * @return Returns a reference to this object so that method calls can be chained together. */ Builder frameworkVersion(String frameworkVersion); } static final class BuilderImpl implements Builder { private String s3Uri; private String dataInputConfig; private String framework; private String frameworkVersion; private BuilderImpl() { } private BuilderImpl(InputConfig model) { s3Uri(model.s3Uri); dataInputConfig(model.dataInputConfig); framework(model.framework); frameworkVersion(model.frameworkVersion); } public final String getS3Uri() { return s3Uri; } @Override public final Builder s3Uri(String s3Uri) { this.s3Uri = s3Uri; return this; } public final void setS3Uri(String s3Uri) { this.s3Uri = s3Uri; } public final String getDataInputConfig() { return dataInputConfig; } @Override public final Builder dataInputConfig(String dataInputConfig) { this.dataInputConfig = dataInputConfig; return this; } public final void setDataInputConfig(String dataInputConfig) { this.dataInputConfig = dataInputConfig; } public final String getFramework() { return framework; } @Override public final Builder framework(String framework) { this.framework = framework; return this; } @Override public final Builder framework(Framework framework) { this.framework(framework == null ? null : framework.toString()); return this; } public final void setFramework(String framework) { this.framework = framework; } public final String getFrameworkVersion() { return frameworkVersion; } @Override public final Builder frameworkVersion(String frameworkVersion) { this.frameworkVersion = frameworkVersion; return this; } public final void setFrameworkVersion(String frameworkVersion) { this.frameworkVersion = frameworkVersion; } @Override public InputConfig build() { return new InputConfig(this); } @Override public List> sdkFields() { return SDK_FIELDS; } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy