All Downloads are FREE. Search and download functionalities are using the official Maven repository.

software.amazon.awssdk.services.sagemaker.model.AutoMLJobConfig Maven / Gradle / Ivy

Go to download

The AWS Java SDK for Amazon SageMaker module holds the client classes that are used for communicating with Amazon SageMaker Service

There is a newer version: 2.29.39
Show newest version
/*
 * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with
 * the License. A copy of the License is located at
 * 
 * http://aws.amazon.com/apache2.0
 * 
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
 * CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */

package software.amazon.awssdk.services.sagemaker.model;

import java.io.Serializable;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import java.util.Objects;
import java.util.Optional;
import java.util.function.BiConsumer;
import java.util.function.Consumer;
import java.util.function.Function;
import software.amazon.awssdk.annotations.Generated;
import software.amazon.awssdk.core.SdkField;
import software.amazon.awssdk.core.SdkPojo;
import software.amazon.awssdk.core.protocol.MarshallLocation;
import software.amazon.awssdk.core.protocol.MarshallingType;
import software.amazon.awssdk.core.traits.LocationTrait;
import software.amazon.awssdk.utils.ToString;
import software.amazon.awssdk.utils.builder.CopyableBuilder;
import software.amazon.awssdk.utils.builder.ToCopyableBuilder;

/**
 * 

* A collection of settings used for an AutoML job. *

*/ @Generated("software.amazon.awssdk:codegen") public final class AutoMLJobConfig implements SdkPojo, Serializable, ToCopyableBuilder { private static final SdkField COMPLETION_CRITERIA_FIELD = SdkField . builder(MarshallingType.SDK_POJO).memberName("CompletionCriteria") .getter(getter(AutoMLJobConfig::completionCriteria)).setter(setter(Builder::completionCriteria)) .constructor(AutoMLJobCompletionCriteria::builder) .traits(LocationTrait.builder().location(MarshallLocation.PAYLOAD).locationName("CompletionCriteria").build()) .build(); private static final SdkField SECURITY_CONFIG_FIELD = SdkField . builder(MarshallingType.SDK_POJO).memberName("SecurityConfig") .getter(getter(AutoMLJobConfig::securityConfig)).setter(setter(Builder::securityConfig)) .constructor(AutoMLSecurityConfig::builder) .traits(LocationTrait.builder().location(MarshallLocation.PAYLOAD).locationName("SecurityConfig").build()).build(); private static final SdkField CANDIDATE_GENERATION_CONFIG_FIELD = SdkField . builder(MarshallingType.SDK_POJO).memberName("CandidateGenerationConfig") .getter(getter(AutoMLJobConfig::candidateGenerationConfig)).setter(setter(Builder::candidateGenerationConfig)) .constructor(AutoMLCandidateGenerationConfig::builder) .traits(LocationTrait.builder().location(MarshallLocation.PAYLOAD).locationName("CandidateGenerationConfig").build()) .build(); private static final SdkField DATA_SPLIT_CONFIG_FIELD = SdkField . builder(MarshallingType.SDK_POJO).memberName("DataSplitConfig") .getter(getter(AutoMLJobConfig::dataSplitConfig)).setter(setter(Builder::dataSplitConfig)) .constructor(AutoMLDataSplitConfig::builder) .traits(LocationTrait.builder().location(MarshallLocation.PAYLOAD).locationName("DataSplitConfig").build()).build(); private static final SdkField MODE_FIELD = SdkField. builder(MarshallingType.STRING).memberName("Mode") .getter(getter(AutoMLJobConfig::modeAsString)).setter(setter(Builder::mode)) .traits(LocationTrait.builder().location(MarshallLocation.PAYLOAD).locationName("Mode").build()).build(); private static final List> SDK_FIELDS = Collections.unmodifiableList(Arrays.asList(COMPLETION_CRITERIA_FIELD, SECURITY_CONFIG_FIELD, CANDIDATE_GENERATION_CONFIG_FIELD, DATA_SPLIT_CONFIG_FIELD, MODE_FIELD)); private static final long serialVersionUID = 1L; private final AutoMLJobCompletionCriteria completionCriteria; private final AutoMLSecurityConfig securityConfig; private final AutoMLCandidateGenerationConfig candidateGenerationConfig; private final AutoMLDataSplitConfig dataSplitConfig; private final String mode; private AutoMLJobConfig(BuilderImpl builder) { this.completionCriteria = builder.completionCriteria; this.securityConfig = builder.securityConfig; this.candidateGenerationConfig = builder.candidateGenerationConfig; this.dataSplitConfig = builder.dataSplitConfig; this.mode = builder.mode; } /** *

* How long an AutoML job is allowed to run, or how many candidates a job is allowed to generate. *

* * @return How long an AutoML job is allowed to run, or how many candidates a job is allowed to generate. */ public final AutoMLJobCompletionCriteria completionCriteria() { return completionCriteria; } /** *

* The security configuration for traffic encryption or Amazon VPC settings. *

* * @return The security configuration for traffic encryption or Amazon VPC settings. */ public final AutoMLSecurityConfig securityConfig() { return securityConfig; } /** *

* The configuration for generating a candidate for an AutoML job (optional). *

* * @return The configuration for generating a candidate for an AutoML job (optional). */ public final AutoMLCandidateGenerationConfig candidateGenerationConfig() { return candidateGenerationConfig; } /** *

* The configuration for splitting the input training dataset. *

*

* Type: AutoMLDataSplitConfig *

* * @return The configuration for splitting the input training dataset.

*

* Type: AutoMLDataSplitConfig */ public final AutoMLDataSplitConfig dataSplitConfig() { return dataSplitConfig; } /** *

* The method that Autopilot uses to train the data. You can either specify the mode manually or let Autopilot * choose for you based on the dataset size by selecting AUTO. In AUTO mode, Autopilot * chooses ENSEMBLING for datasets smaller than 100 MB, and HYPERPARAMETER_TUNING for * larger ones. *

*

* The ENSEMBLING mode uses a multi-stack ensemble model to predict classification and regression tasks * directly from your dataset. This machine learning mode combines several base models to produce an optimal * predictive model. It then uses a stacking ensemble method to combine predictions from contributing members. A * multi-stack ensemble model can provide better performance over a single model by combining the predictive * capabilities of multiple models. See Autopilot algorithm support for a list of algorithms supported by ENSEMBLING mode. *

*

* The HYPERPARAMETER_TUNING (HPO) mode uses the best hyperparameters to train the best version of a * model. HPO automatically selects an algorithm for the type of problem you want to solve. Then HPO finds the best * hyperparameters according to your objective metric. See Autopilot algorithm support for a list of algorithms supported by HYPERPARAMETER_TUNING mode. *

*

* If the service returns an enum value that is not available in the current SDK version, {@link #mode} will return * {@link AutoMLMode#UNKNOWN_TO_SDK_VERSION}. The raw value returned by the service is available from * {@link #modeAsString}. *

* * @return The method that Autopilot uses to train the data. You can either specify the mode manually or let * Autopilot choose for you based on the dataset size by selecting AUTO. In AUTO * mode, Autopilot chooses ENSEMBLING for datasets smaller than 100 MB, and * HYPERPARAMETER_TUNING for larger ones.

*

* The ENSEMBLING mode uses a multi-stack ensemble model to predict classification and * regression tasks directly from your dataset. This machine learning mode combines several base models to * produce an optimal predictive model. It then uses a stacking ensemble method to combine predictions from * contributing members. A multi-stack ensemble model can provide better performance over a single model by * combining the predictive capabilities of multiple models. See Autopilot algorithm support for a list of algorithms supported by ENSEMBLING mode. *

*

* The HYPERPARAMETER_TUNING (HPO) mode uses the best hyperparameters to train the best version * of a model. HPO automatically selects an algorithm for the type of problem you want to solve. Then HPO * finds the best hyperparameters according to your objective metric. See Autopilot algorithm support for a list of algorithms supported by HYPERPARAMETER_TUNING * mode. * @see AutoMLMode */ public final AutoMLMode mode() { return AutoMLMode.fromValue(mode); } /** *

* The method that Autopilot uses to train the data. You can either specify the mode manually or let Autopilot * choose for you based on the dataset size by selecting AUTO. In AUTO mode, Autopilot * chooses ENSEMBLING for datasets smaller than 100 MB, and HYPERPARAMETER_TUNING for * larger ones. *

*

* The ENSEMBLING mode uses a multi-stack ensemble model to predict classification and regression tasks * directly from your dataset. This machine learning mode combines several base models to produce an optimal * predictive model. It then uses a stacking ensemble method to combine predictions from contributing members. A * multi-stack ensemble model can provide better performance over a single model by combining the predictive * capabilities of multiple models. See Autopilot algorithm support for a list of algorithms supported by ENSEMBLING mode. *

*

* The HYPERPARAMETER_TUNING (HPO) mode uses the best hyperparameters to train the best version of a * model. HPO automatically selects an algorithm for the type of problem you want to solve. Then HPO finds the best * hyperparameters according to your objective metric. See Autopilot algorithm support for a list of algorithms supported by HYPERPARAMETER_TUNING mode. *

*

* If the service returns an enum value that is not available in the current SDK version, {@link #mode} will return * {@link AutoMLMode#UNKNOWN_TO_SDK_VERSION}. The raw value returned by the service is available from * {@link #modeAsString}. *

* * @return The method that Autopilot uses to train the data. You can either specify the mode manually or let * Autopilot choose for you based on the dataset size by selecting AUTO. In AUTO * mode, Autopilot chooses ENSEMBLING for datasets smaller than 100 MB, and * HYPERPARAMETER_TUNING for larger ones.

*

* The ENSEMBLING mode uses a multi-stack ensemble model to predict classification and * regression tasks directly from your dataset. This machine learning mode combines several base models to * produce an optimal predictive model. It then uses a stacking ensemble method to combine predictions from * contributing members. A multi-stack ensemble model can provide better performance over a single model by * combining the predictive capabilities of multiple models. See Autopilot algorithm support for a list of algorithms supported by ENSEMBLING mode. *

*

* The HYPERPARAMETER_TUNING (HPO) mode uses the best hyperparameters to train the best version * of a model. HPO automatically selects an algorithm for the type of problem you want to solve. Then HPO * finds the best hyperparameters according to your objective metric. See Autopilot algorithm support for a list of algorithms supported by HYPERPARAMETER_TUNING * mode. * @see AutoMLMode */ public final String modeAsString() { return mode; } @Override public Builder toBuilder() { return new BuilderImpl(this); } public static Builder builder() { return new BuilderImpl(); } public static Class serializableBuilderClass() { return BuilderImpl.class; } @Override public final int hashCode() { int hashCode = 1; hashCode = 31 * hashCode + Objects.hashCode(completionCriteria()); hashCode = 31 * hashCode + Objects.hashCode(securityConfig()); hashCode = 31 * hashCode + Objects.hashCode(candidateGenerationConfig()); hashCode = 31 * hashCode + Objects.hashCode(dataSplitConfig()); hashCode = 31 * hashCode + Objects.hashCode(modeAsString()); return hashCode; } @Override public final boolean equals(Object obj) { return equalsBySdkFields(obj); } @Override public final boolean equalsBySdkFields(Object obj) { if (this == obj) { return true; } if (obj == null) { return false; } if (!(obj instanceof AutoMLJobConfig)) { return false; } AutoMLJobConfig other = (AutoMLJobConfig) obj; return Objects.equals(completionCriteria(), other.completionCriteria()) && Objects.equals(securityConfig(), other.securityConfig()) && Objects.equals(candidateGenerationConfig(), other.candidateGenerationConfig()) && Objects.equals(dataSplitConfig(), other.dataSplitConfig()) && Objects.equals(modeAsString(), other.modeAsString()); } /** * Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be * redacted from this string using a placeholder value. */ @Override public final String toString() { return ToString.builder("AutoMLJobConfig").add("CompletionCriteria", completionCriteria()) .add("SecurityConfig", securityConfig()).add("CandidateGenerationConfig", candidateGenerationConfig()) .add("DataSplitConfig", dataSplitConfig()).add("Mode", modeAsString()).build(); } public final Optional getValueForField(String fieldName, Class clazz) { switch (fieldName) { case "CompletionCriteria": return Optional.ofNullable(clazz.cast(completionCriteria())); case "SecurityConfig": return Optional.ofNullable(clazz.cast(securityConfig())); case "CandidateGenerationConfig": return Optional.ofNullable(clazz.cast(candidateGenerationConfig())); case "DataSplitConfig": return Optional.ofNullable(clazz.cast(dataSplitConfig())); case "Mode": return Optional.ofNullable(clazz.cast(modeAsString())); default: return Optional.empty(); } } @Override public final List> sdkFields() { return SDK_FIELDS; } private static Function getter(Function g) { return obj -> g.apply((AutoMLJobConfig) obj); } private static BiConsumer setter(BiConsumer s) { return (obj, val) -> s.accept((Builder) obj, val); } public interface Builder extends SdkPojo, CopyableBuilder { /** *

* How long an AutoML job is allowed to run, or how many candidates a job is allowed to generate. *

* * @param completionCriteria * How long an AutoML job is allowed to run, or how many candidates a job is allowed to generate. * @return Returns a reference to this object so that method calls can be chained together. */ Builder completionCriteria(AutoMLJobCompletionCriteria completionCriteria); /** *

* How long an AutoML job is allowed to run, or how many candidates a job is allowed to generate. *

* This is a convenience method that creates an instance of the {@link AutoMLJobCompletionCriteria.Builder} * avoiding the need to create one manually via {@link AutoMLJobCompletionCriteria#builder()}. * *

* When the {@link Consumer} completes, {@link AutoMLJobCompletionCriteria.Builder#build()} is called * immediately and its result is passed to {@link #completionCriteria(AutoMLJobCompletionCriteria)}. * * @param completionCriteria * a consumer that will call methods on {@link AutoMLJobCompletionCriteria.Builder} * @return Returns a reference to this object so that method calls can be chained together. * @see #completionCriteria(AutoMLJobCompletionCriteria) */ default Builder completionCriteria(Consumer completionCriteria) { return completionCriteria(AutoMLJobCompletionCriteria.builder().applyMutation(completionCriteria).build()); } /** *

* The security configuration for traffic encryption or Amazon VPC settings. *

* * @param securityConfig * The security configuration for traffic encryption or Amazon VPC settings. * @return Returns a reference to this object so that method calls can be chained together. */ Builder securityConfig(AutoMLSecurityConfig securityConfig); /** *

* The security configuration for traffic encryption or Amazon VPC settings. *

* This is a convenience method that creates an instance of the {@link AutoMLSecurityConfig.Builder} avoiding * the need to create one manually via {@link AutoMLSecurityConfig#builder()}. * *

* When the {@link Consumer} completes, {@link AutoMLSecurityConfig.Builder#build()} is called immediately and * its result is passed to {@link #securityConfig(AutoMLSecurityConfig)}. * * @param securityConfig * a consumer that will call methods on {@link AutoMLSecurityConfig.Builder} * @return Returns a reference to this object so that method calls can be chained together. * @see #securityConfig(AutoMLSecurityConfig) */ default Builder securityConfig(Consumer securityConfig) { return securityConfig(AutoMLSecurityConfig.builder().applyMutation(securityConfig).build()); } /** *

* The configuration for generating a candidate for an AutoML job (optional). *

* * @param candidateGenerationConfig * The configuration for generating a candidate for an AutoML job (optional). * @return Returns a reference to this object so that method calls can be chained together. */ Builder candidateGenerationConfig(AutoMLCandidateGenerationConfig candidateGenerationConfig); /** *

* The configuration for generating a candidate for an AutoML job (optional). *

* This is a convenience method that creates an instance of the {@link AutoMLCandidateGenerationConfig.Builder} * avoiding the need to create one manually via {@link AutoMLCandidateGenerationConfig#builder()}. * *

* When the {@link Consumer} completes, {@link AutoMLCandidateGenerationConfig.Builder#build()} is called * immediately and its result is passed to {@link #candidateGenerationConfig(AutoMLCandidateGenerationConfig)}. * * @param candidateGenerationConfig * a consumer that will call methods on {@link AutoMLCandidateGenerationConfig.Builder} * @return Returns a reference to this object so that method calls can be chained together. * @see #candidateGenerationConfig(AutoMLCandidateGenerationConfig) */ default Builder candidateGenerationConfig(Consumer candidateGenerationConfig) { return candidateGenerationConfig(AutoMLCandidateGenerationConfig.builder().applyMutation(candidateGenerationConfig) .build()); } /** *

* The configuration for splitting the input training dataset. *

*

* Type: AutoMLDataSplitConfig *

* * @param dataSplitConfig * The configuration for splitting the input training dataset.

*

* Type: AutoMLDataSplitConfig * @return Returns a reference to this object so that method calls can be chained together. */ Builder dataSplitConfig(AutoMLDataSplitConfig dataSplitConfig); /** *

* The configuration for splitting the input training dataset. *

*

* Type: AutoMLDataSplitConfig *

* This is a convenience method that creates an instance of the {@link AutoMLDataSplitConfig.Builder} avoiding * the need to create one manually via {@link AutoMLDataSplitConfig#builder()}. * *

* When the {@link Consumer} completes, {@link AutoMLDataSplitConfig.Builder#build()} is called immediately and * its result is passed to {@link #dataSplitConfig(AutoMLDataSplitConfig)}. * * @param dataSplitConfig * a consumer that will call methods on {@link AutoMLDataSplitConfig.Builder} * @return Returns a reference to this object so that method calls can be chained together. * @see #dataSplitConfig(AutoMLDataSplitConfig) */ default Builder dataSplitConfig(Consumer dataSplitConfig) { return dataSplitConfig(AutoMLDataSplitConfig.builder().applyMutation(dataSplitConfig).build()); } /** *

* The method that Autopilot uses to train the data. You can either specify the mode manually or let Autopilot * choose for you based on the dataset size by selecting AUTO. In AUTO mode, Autopilot * chooses ENSEMBLING for datasets smaller than 100 MB, and HYPERPARAMETER_TUNING for * larger ones. *

*

* The ENSEMBLING mode uses a multi-stack ensemble model to predict classification and regression * tasks directly from your dataset. This machine learning mode combines several base models to produce an * optimal predictive model. It then uses a stacking ensemble method to combine predictions from contributing * members. A multi-stack ensemble model can provide better performance over a single model by combining the * predictive capabilities of multiple models. See Autopilot algorithm support for a list of algorithms supported by ENSEMBLING mode. *

*

* The HYPERPARAMETER_TUNING (HPO) mode uses the best hyperparameters to train the best version of * a model. HPO automatically selects an algorithm for the type of problem you want to solve. Then HPO finds the * best hyperparameters according to your objective metric. See Autopilot algorithm support for a list of algorithms supported by HYPERPARAMETER_TUNING * mode. *

* * @param mode * The method that Autopilot uses to train the data. You can either specify the mode manually or let * Autopilot choose for you based on the dataset size by selecting AUTO. In * AUTO mode, Autopilot chooses ENSEMBLING for datasets smaller than 100 MB, * and HYPERPARAMETER_TUNING for larger ones.

*

* The ENSEMBLING mode uses a multi-stack ensemble model to predict classification and * regression tasks directly from your dataset. This machine learning mode combines several base models * to produce an optimal predictive model. It then uses a stacking ensemble method to combine predictions * from contributing members. A multi-stack ensemble model can provide better performance over a single * model by combining the predictive capabilities of multiple models. See Autopilot algorithm support for a list of algorithms supported by ENSEMBLING mode. *

*

* The HYPERPARAMETER_TUNING (HPO) mode uses the best hyperparameters to train the best * version of a model. HPO automatically selects an algorithm for the type of problem you want to solve. * Then HPO finds the best hyperparameters according to your objective metric. See Autopilot algorithm support for a list of algorithms supported by * HYPERPARAMETER_TUNING mode. * @see AutoMLMode * @return Returns a reference to this object so that method calls can be chained together. * @see AutoMLMode */ Builder mode(String mode); /** *

* The method that Autopilot uses to train the data. You can either specify the mode manually or let Autopilot * choose for you based on the dataset size by selecting AUTO. In AUTO mode, Autopilot * chooses ENSEMBLING for datasets smaller than 100 MB, and HYPERPARAMETER_TUNING for * larger ones. *

*

* The ENSEMBLING mode uses a multi-stack ensemble model to predict classification and regression * tasks directly from your dataset. This machine learning mode combines several base models to produce an * optimal predictive model. It then uses a stacking ensemble method to combine predictions from contributing * members. A multi-stack ensemble model can provide better performance over a single model by combining the * predictive capabilities of multiple models. See Autopilot algorithm support for a list of algorithms supported by ENSEMBLING mode. *

*

* The HYPERPARAMETER_TUNING (HPO) mode uses the best hyperparameters to train the best version of * a model. HPO automatically selects an algorithm for the type of problem you want to solve. Then HPO finds the * best hyperparameters according to your objective metric. See Autopilot algorithm support for a list of algorithms supported by HYPERPARAMETER_TUNING * mode. *

* * @param mode * The method that Autopilot uses to train the data. You can either specify the mode manually or let * Autopilot choose for you based on the dataset size by selecting AUTO. In * AUTO mode, Autopilot chooses ENSEMBLING for datasets smaller than 100 MB, * and HYPERPARAMETER_TUNING for larger ones.

*

* The ENSEMBLING mode uses a multi-stack ensemble model to predict classification and * regression tasks directly from your dataset. This machine learning mode combines several base models * to produce an optimal predictive model. It then uses a stacking ensemble method to combine predictions * from contributing members. A multi-stack ensemble model can provide better performance over a single * model by combining the predictive capabilities of multiple models. See Autopilot algorithm support for a list of algorithms supported by ENSEMBLING mode. *

*

* The HYPERPARAMETER_TUNING (HPO) mode uses the best hyperparameters to train the best * version of a model. HPO automatically selects an algorithm for the type of problem you want to solve. * Then HPO finds the best hyperparameters according to your objective metric. See Autopilot algorithm support for a list of algorithms supported by * HYPERPARAMETER_TUNING mode. * @see AutoMLMode * @return Returns a reference to this object so that method calls can be chained together. * @see AutoMLMode */ Builder mode(AutoMLMode mode); } static final class BuilderImpl implements Builder { private AutoMLJobCompletionCriteria completionCriteria; private AutoMLSecurityConfig securityConfig; private AutoMLCandidateGenerationConfig candidateGenerationConfig; private AutoMLDataSplitConfig dataSplitConfig; private String mode; private BuilderImpl() { } private BuilderImpl(AutoMLJobConfig model) { completionCriteria(model.completionCriteria); securityConfig(model.securityConfig); candidateGenerationConfig(model.candidateGenerationConfig); dataSplitConfig(model.dataSplitConfig); mode(model.mode); } public final AutoMLJobCompletionCriteria.Builder getCompletionCriteria() { return completionCriteria != null ? completionCriteria.toBuilder() : null; } public final void setCompletionCriteria(AutoMLJobCompletionCriteria.BuilderImpl completionCriteria) { this.completionCriteria = completionCriteria != null ? completionCriteria.build() : null; } @Override public final Builder completionCriteria(AutoMLJobCompletionCriteria completionCriteria) { this.completionCriteria = completionCriteria; return this; } public final AutoMLSecurityConfig.Builder getSecurityConfig() { return securityConfig != null ? securityConfig.toBuilder() : null; } public final void setSecurityConfig(AutoMLSecurityConfig.BuilderImpl securityConfig) { this.securityConfig = securityConfig != null ? securityConfig.build() : null; } @Override public final Builder securityConfig(AutoMLSecurityConfig securityConfig) { this.securityConfig = securityConfig; return this; } public final AutoMLCandidateGenerationConfig.Builder getCandidateGenerationConfig() { return candidateGenerationConfig != null ? candidateGenerationConfig.toBuilder() : null; } public final void setCandidateGenerationConfig(AutoMLCandidateGenerationConfig.BuilderImpl candidateGenerationConfig) { this.candidateGenerationConfig = candidateGenerationConfig != null ? candidateGenerationConfig.build() : null; } @Override public final Builder candidateGenerationConfig(AutoMLCandidateGenerationConfig candidateGenerationConfig) { this.candidateGenerationConfig = candidateGenerationConfig; return this; } public final AutoMLDataSplitConfig.Builder getDataSplitConfig() { return dataSplitConfig != null ? dataSplitConfig.toBuilder() : null; } public final void setDataSplitConfig(AutoMLDataSplitConfig.BuilderImpl dataSplitConfig) { this.dataSplitConfig = dataSplitConfig != null ? dataSplitConfig.build() : null; } @Override public final Builder dataSplitConfig(AutoMLDataSplitConfig dataSplitConfig) { this.dataSplitConfig = dataSplitConfig; return this; } public final String getMode() { return mode; } public final void setMode(String mode) { this.mode = mode; } @Override public final Builder mode(String mode) { this.mode = mode; return this; } @Override public final Builder mode(AutoMLMode mode) { this.mode(mode == null ? null : mode.toString()); return this; } @Override public AutoMLJobConfig build() { return new AutoMLJobConfig(this); } @Override public List> sdkFields() { return SDK_FIELDS; } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy