All Downloads are FREE. Search and download functionalities are using the official Maven repository.

manifold.util.concurrent.ConcurrentWeakHashMap Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (c) 2018 - Manifold Systems LLC
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *       http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package manifold.util.concurrent;

/*
 * Written by Doug Lea with assistance from members of JCP JSR-166
 * Expert Group and released to the public domain, as explained at
 * http://creativecommons.org/licenses/publicdomain
 */

import java.io.IOException;
import java.io.Serializable;
import java.lang.ref.ReferenceQueue;
import java.lang.ref.WeakReference;
import java.util.AbstractCollection;
import java.util.AbstractMap;
import java.util.AbstractSet;
import java.util.Collection;
import java.util.ConcurrentModificationException;
import java.util.Enumeration;
import java.util.HashMap;
import java.util.Hashtable;
import java.util.Iterator;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Set;
import java.util.concurrent.locks.ReentrantLock;

/**
 * A hash table with weak keys, full concurrency of retrievals, and
 * adjustable expected concurrency for updates. Similar to
 * {@link java.util.WeakHashMap}, entries of this table are periodically
 * removed once their corresponding keys are no longer referenced outside of
 * this table. In other words, this table will not prevent a key from being
 * discarded by the garbage collector. Once a key has been discarded by the
 * collector, the corresponding entry is no longer visible to this table;
 * however, the entry may occupy space until a future table operation decides to
 * reclaim it. For this reason, summary functions such as size and
 * isEmpty might return a value greater than the observed number of
 * entries. In order to support a high level of concurrency, stale entries are
 * only reclaimed during blocking (usually mutating) operations.
 * 

* While keys in this table are only held using a weak reference, values are * held using a normal strong reference. This provides the guarantee that a * value will always have at least the same life-span as it's key. For this * reason, care should be taken to ensure that a value never refers, either * directly or indirectly, to its key, thereby preventing reclamation. If weak * values are desired, one can simply use a {@link WeakReference} for the value * type. *

* Just like {@link java.util.concurrent.ConcurrentHashMap}, this class obeys the same * functional specification as {@link Hashtable}, and includes * versions of methods corresponding to each method of Hashtable. * However, even though all operations are thread-safe, retrieval operations do * not entail locking, and there is not any support for * locking the entire table in a way that prevents all access. This class is * fully interoperable with Hashtable in programs that rely on its * thread safety but not on its synchronization details. *

*

* Retrieval operations (including get) generally do not block, so * may overlap with update operations (including put and * remove). Retrievals reflect the results of the most recently * completed update operations holding upon their onset. For * aggregate operations such as putAll and clear, * concurrent retrievals may reflect insertion or removal of only some entries. * Similarly, Iterators and Enumerations return elements reflecting the state of * the hash table at some point at or since the creation of the * iterator/enumeration. They do not throw * {@link ConcurrentModificationException}. However, iterators are designed to * be used by only one thread at a time. *

*

* The allowed concurrency among update operations is guided by the optional * concurrencyLevel constructor argument (default 16), * which is used as a hint for internal sizing. The table is internally * partitioned to try to permit the indicated number of concurrent updates * without contention. Because placement in hash tables is essentially random, * the actual concurrency will vary. Ideally, you should choose a value to * accommodate as many threads as will ever concurrently modify the table. Using * a significantly higher value than you need can waste space and time, and a * significantly lower value can lead to thread contention. But overestimates * and underestimates within an order of magnitude do not usually have much * noticeable impact. A value of one is appropriate when it is known that only * one thread will modify and all others will only read. Also, resizing this or * any other kind of hash table is a relatively slow operation, so, when * possible, it is a good idea to provide estimates of expected table sizes in * constructors. *

*

* This class and its views and iterators implement all of the optional * methods of the {@link Map} and {@link Iterator} interfaces. *

*

* Like {@link Hashtable} but unlike {@link HashMap}, this class does * not allow null to be used as a key or value. *

*

* This class is a member of the * Java Collections Framework. * * @param the type of keys maintained by this map * @param the type of mapped values * * @author Doug Lea * @author Jason T. Greene */ public class ConcurrentWeakHashMap extends AbstractMap implements java.util.concurrent.ConcurrentMap, Serializable { private static final long serialVersionUID = 7249069246763182397L; /* * The basic strategy is to subdivide the table among Segments, * each of which itself is a concurrently readable hash table. */ /* ---------------- Constants -------------- */ /** * The default demo capacity for this table, * used when not otherwise specified in a constructor. */ static final int DEFAULT_INITIAL_CAPACITY = 16; /** * The default load factor for this table, used when not * otherwise specified in a constructor. */ static final float DEFAULT_LOAD_FACTOR = 0.75f; /** * The default concurrency level for this table, used when not * otherwise specified in a constructor. */ static final int DEFAULT_CONCURRENCY_LEVEL = 16; /** * The maximum capacity, used if a higher value is implicitly * specified by either of the constructors with arguments. MUST * be a power of two <= 1<<30 to ensure that entries are indexable * using ints. */ static final int MAXIMUM_CAPACITY = 1 << 30; /** * The maximum number of segments to allow; used to bound * constructor arguments. */ static final int MAX_SEGMENTS = 1 << 16; // slightly conservative /** * Number of unsynchronized retries in size and containsValue * methods before resorting to locking. This is used to avoid * unbounded retries if tables undergo continuous modification * which would make it impossible to obtain an accurate result. */ static final int RETRIES_BEFORE_LOCK = 2; /* ---------------- Fields -------------- */ /** * Mask value for indexing into segments. The upper bits of a * key's hash code are used to choose the segment. */ final int segmentMask; /** * Shift value for indexing within segments. */ final int segmentShift; /** * The segments, each of which is a specialized hash table */ final Segment[] segments; transient Set keySet; transient Set> entrySet; transient Collection values; /* ---------------- Small Utilities -------------- */ /** * Applies a supplemental hash function to a given hashCode, which * defends against poor quality hash functions. This is critical * because ConcurrentWeakHashMap uses power-of-two length hash tables, * that otherwise encounter collisions for hashCodes that do not * differ in lower or upper bits. */ private static int hash( int h ) { // Spread bits to regularize both segment and index locations, // using variant of single-word Wang/Jenkins hash. h += (h << 15) ^ 0xffffcd7d; h ^= (h >>> 10); h += (h << 3); h ^= (h >>> 6); h += (h << 2) + (h << 14); return h ^ (h >>> 16); } /** * Returns the segment that should be used for key with given hash * * @param hash the hash code for the key * * @return the segment */ final Segment segmentFor( int hash ) { return segments[(hash >>> segmentShift) & segmentMask]; } /* ---------------- Inner Classes -------------- */ /** * A weak-key reference which stores the key hash needed for reclamation. */ static final class WeakKeyReference extends WeakReference { final int hash; WeakKeyReference( K key, int hash, ReferenceQueue refQueue ) { super( key, refQueue ); this.hash = hash; } } /** * ConcurrentWeakHashMap list entry. Note that this is never exported * out as a user-visible Map.Entry. *

* Because the value field is volatile, not final, it is legal wrt * the Java Memory Model for an unsynchronized reader to see null * instead of demo value when read via a data race. Although a * reordering leading to this is not likely to ever actually * occur, the Segment.readValueUnderLock method is used as a * backup in case a null (pre-initialized) value is ever seen in * an unsynchronized access method. */ static final class HashEntry { final WeakReference keyRef; final int hash; volatile V value; final HashEntry next; HashEntry( K key, int hash, HashEntry next, V value, ReferenceQueue refQueue ) { this.keyRef = new WeakKeyReference( key, hash, refQueue ); this.hash = hash; this.next = next; this.value = value; } @SuppressWarnings("unchecked") static final HashEntry[] newArray( int i ) { return new HashEntry[i]; } } /** * Segments are specialized versions of hash tables. This * subclasses from ReentrantLock opportunistically, just to * simplify some locking and avoid separate construction. */ static final class Segment extends ReentrantLock implements Serializable { /* * Segments maintain a table of entry lists that are ALWAYS * kept in a consistent state, so can be read without locking. * Next fields of nodes are immutable (final). All list * additions are performed at the front of each bin. This * makes it easy to check changes, and also fast to traverse. * When nodes would otherwise be changed, new nodes are * created to replace them. This works well for hash tables * since the bin lists tend to be short. (The average length * is less than two for the default load factor threshold.) * * Read operations can thus proceed without locking, but rely * on selected uses of volatiles to ensure that completed * write operations performed by other threads are * noticed. For most purposes, the "count" field, tracking the * number of elements, serves as that volatile variable * ensuring visibility. This is convenient because this field * needs to be read in many read operations anyway: * * - All (unsynchronized) read operations must first read the * "count" field, and should not look at table entries if * it is 0. * * - All (synchronized) write operations should write to * the "count" field after structurally changing any bin. * The operations must not take any action that could even * momentarily cause a concurrent read operation to see * inconsistent data. This is made easier by the nature of * the read operations in Map. For example, no operation * can reveal that the table has grown but the threshold * has not yet been updated, so there are no atomicity * requirements for this with respect to reads. * * As a guide, all critical volatile reads and writes to the * count field are marked in code comments. */ private static final long serialVersionUID = 2249069246763182397L; /** * The number of elements in this segment's region. */ transient volatile int count; /** * Number of updates that alter the size of the table. This is * used during bulk-read methods to make sure they see a * consistent snapshot: If modCounts change during a traversal * of segments computing size or checking containsValue, then * we might have an inconsistent view of state so (usually) * must retry. */ transient int modCount; /** * The table is rehashed when its size exceeds this threshold. * (The value of this field is always (int)(capacity * * loadFactor).) */ transient int threshold; /** * The per-segment table. */ transient volatile HashEntry[] table; /** * The load factor for the hash table. Even though this value * is same for all segments, it is replicated to avoid needing * links to outer object. * * @serial */ final float loadFactor; /** * The collected weak-key reference queue for this segment. * This should be (re)initialized whenever table is assigned, */ transient volatile ReferenceQueue refQueue; Segment( int initialCapacity, float lf ) { loadFactor = lf; setTable( HashEntry.newArray( initialCapacity ) ); } @SuppressWarnings("unchecked") static final Segment[] newArray( int i ) { return new Segment[i]; } /** * Sets table to new HashEntry array. * Call only while holding lock or in constructor. */ void setTable( HashEntry[] newTable ) { threshold = (int)(newTable.length * loadFactor); table = newTable; refQueue = new ReferenceQueue(); } /** * Returns properly casted first entry of bin for given hash. */ HashEntry getFirst( int hash ) { HashEntry[] tab = table; return tab[hash & (tab.length - 1)]; } /** * Reads value field of an entry under lock. Called if value * field ever appears to be null. This is possible only if a * compiler happens to reorder a HashEntry initialization with * its table assignment, which is legal under memory model * but is not known to ever occur. */ V readValueUnderLock( HashEntry e ) { lock(); try { removeStale(); return e.value; } finally { unlock(); } } /* Specialized implementations of map methods */ V get( Object key, int hash ) { if( count != 0 ) { // read-volatile HashEntry e = getFirst( hash ); while( e != null ) { if( e.hash == hash && key.equals( e.keyRef.get() ) ) { V v = e.value; if( v != null ) { return v; } return readValueUnderLock( e ); // recheck } e = e.next; } } return null; } boolean containsKey( Object key, int hash ) { if( count != 0 ) { // read-volatile HashEntry e = getFirst( hash ); while( e != null ) { if( e.hash == hash && key.equals( e.keyRef.get() ) ) { return true; } e = e.next; } } return false; } boolean containsValue( Object value ) { if( count != 0 ) { // read-volatile HashEntry[] tab = table; int len = tab.length; for( int i = 0; i < len; i++ ) { for( HashEntry e = tab[i]; e != null; e = e.next ) { V v = e.value; if( v == null ) // recheck { v = readValueUnderLock( e ); } if( value.equals( v ) ) { return true; } } } } return false; } boolean replace( K key, int hash, V oldValue, V newValue ) { lock(); try { removeStale(); HashEntry e = getFirst( hash ); while( e != null && (e.hash != hash || !key.equals( e.keyRef.get() )) ) { e = e.next; } boolean replaced = false; if( e != null && oldValue.equals( e.value ) ) { replaced = true; e.value = newValue; } return replaced; } finally { unlock(); } } V replace( K key, int hash, V newValue ) { lock(); try { removeStale(); HashEntry e = getFirst( hash ); while( e != null && (e.hash != hash || !key.equals( e.keyRef.get() )) ) { e = e.next; } V oldValue = null; if( e != null ) { oldValue = e.value; e.value = newValue; } return oldValue; } finally { unlock(); } } V put( K key, int hash, V value, boolean onlyIfAbsent ) { lock(); try { removeStale(); int c = count; if( c++ > threshold ) {// ensure capacity int reduced = rehash(); if( reduced > 0 ) // adjust from possible weak cleanups { count = (c -= reduced) - 1; // write-volatile } } HashEntry[] tab = table; int index = hash & (tab.length - 1); HashEntry first = tab[index]; HashEntry e = first; while( e != null && (e.hash != hash || !key.equals( e.keyRef.get() )) ) { e = e.next; } V oldValue; if( e != null ) { oldValue = e.value; if( !onlyIfAbsent ) { e.value = value; } } else { oldValue = null; ++modCount; tab[index] = new HashEntry( key, hash, first, value, refQueue ); count = c; // write-volatile } return oldValue; } finally { unlock(); } } int rehash() { HashEntry[] oldTable = table; int oldCapacity = oldTable.length; if( oldCapacity >= MAXIMUM_CAPACITY ) { return 0; } /* * Reclassify nodes in each list to new Map. Because we are * using power-of-two expansion, the elements from each bin * must either stay at same index, or move with a power of two * offset. We eliminate unnecessary node creation by catching * cases where old nodes can be reused because their next * fields won't change. Statistically, at the default * threshold, only about one-sixth of them need cloning when * a table doubles. The nodes they replace will be garbage * collectable as soon as they are no longer referenced by any * reader thread that may be in the midst of traversing table * right now. */ HashEntry[] newTable = HashEntry.newArray( oldCapacity << 1 ); threshold = (int)(newTable.length * loadFactor); int sizeMask = newTable.length - 1; int reduce = 0; for( int i = 0; i < oldCapacity; i++ ) { // We need to guarantee that any existing reads of old Map can // proceed. So we cannot yet null out each bin. HashEntry e = oldTable[i]; if( e != null ) { HashEntry next = e.next; int idx = e.hash & sizeMask; // Single node on list if( next == null ) { newTable[idx] = e; } else { // Reuse trailing consecutive sequence at same slot HashEntry lastRun = e; int lastIdx = idx; for( HashEntry last = next; last != null; last = last.next ) { int k = last.hash & sizeMask; if( k != lastIdx ) { lastIdx = k; lastRun = last; } } newTable[lastIdx] = lastRun; // Clone all remaining nodes for( HashEntry p = e; p != lastRun; p = p.next ) { // Skip GC'd weak refs K key = p.keyRef.get(); if( key == null ) { reduce++; continue; } int k = p.hash & sizeMask; HashEntry n = newTable[k]; newTable[k] = new HashEntry( key, p.hash, n, p.value, refQueue ); } } } } table = newTable; return reduce; } /** * Remove; match on key only if value null, else match both. */ V remove( Object key, int hash, Object value, boolean weakRemove ) { lock(); try { if( !weakRemove ) { removeStale(); } int c = count - 1; HashEntry[] tab = table; int index = hash & (tab.length - 1); HashEntry first = tab[index]; HashEntry e = first; // a weak remove operation compares the WeakReference instance while( e != null && (!weakRemove || key != e.keyRef) && (e.hash != hash || !key.equals( e.keyRef.get() )) ) { e = e.next; } V oldValue = null; if( e != null ) { V v = e.value; if( value == null || value.equals( v ) ) { oldValue = v; // All entries following removed node can stay // in list, but all preceding ones need to be // cloned. ++modCount; HashEntry newFirst = e.next; for( HashEntry p = first; p != e; p = p.next ) { K pKey = p.keyRef.get(); if( pKey == null ) { // Skip GC'd keys c--; continue; } newFirst = new HashEntry( pKey, p.hash, newFirst, p.value, refQueue ); } tab[index] = newFirst; count = c; // write-volatile } } return oldValue; } finally { unlock(); } } @SuppressWarnings("unchecked") void removeStale() { WeakKeyReference ref; while( (ref = (WeakKeyReference)refQueue.poll()) != null ) { remove( ref, ref.hash, null, true ); } } void clear() { if( count != 0 ) { lock(); try { HashEntry[] tab = table; for( int i = 0; i < tab.length; i++ ) { tab[i] = null; } ++modCount; // replace the reference queue to avoid unnecessary stale cleanups refQueue = new ReferenceQueue(); count = 0; // write-volatile } finally { unlock(); } } } } /* ---------------- Public operations -------------- */ /** * Creates a new, empty map with the specified demo * capacity, load factor and concurrency level. * * @param initialCapacity the demo capacity. The implementation * performs internal sizing to accommodate this many elements. * @param loadFactor the load factor threshold, used to control resizing. * Resizing may be performed when the average number of elements per * bin exceeds this threshold. * @param concurrencyLevel the estimated number of concurrently * updating threads. The implementation performs internal sizing * to try to accommodate this many threads. * * @throws IllegalArgumentException if the demo capacity is * negative or the load factor or concurrencyLevel are * nonpositive. */ public ConcurrentWeakHashMap( int initialCapacity, float loadFactor, int concurrencyLevel ) { if( !(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0 ) { throw new IllegalArgumentException(); } if( concurrencyLevel > MAX_SEGMENTS ) { concurrencyLevel = MAX_SEGMENTS; } // Find power-of-two sizes best matching arguments int sshift = 0; int ssize = 1; while( ssize < concurrencyLevel ) { ++sshift; ssize <<= 1; } segmentShift = 32 - sshift; segmentMask = ssize - 1; this.segments = Segment.newArray( ssize ); if( initialCapacity > MAXIMUM_CAPACITY ) { initialCapacity = MAXIMUM_CAPACITY; } int c = initialCapacity / ssize; if( c * ssize < initialCapacity ) { ++c; } int cap = 1; while( cap < c ) { cap <<= 1; } for( int i = 0; i < this.segments.length; ++i ) { this.segments[i] = new Segment( cap, loadFactor ); } } /** * Creates a new, empty map with the specified demo capacity * and load factor and with the default concurrencyLevel (16). * * @param initialCapacity The implementation performs internal * sizing to accommodate this many elements. * @param loadFactor the load factor threshold, used to control resizing. * Resizing may be performed when the average number of elements per * bin exceeds this threshold. * * @throws IllegalArgumentException if the demo capacity of * elements is negative or the load factor is nonpositive * @since 1.6 */ public ConcurrentWeakHashMap( int initialCapacity, float loadFactor ) { this( initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL ); } /** * Creates a new, empty map with the specified demo capacity, * and with default load factor (0.75) and concurrencyLevel (16). * * @param initialCapacity the demo capacity. The implementation * performs internal sizing to accommodate this many elements. * * @throws IllegalArgumentException if the demo capacity of * elements is negative. */ public ConcurrentWeakHashMap( int initialCapacity ) { this( initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL ); } /** * Creates a new, empty map with a default demo capacity (16), * load factor (0.75) and concurrencyLevel (16). */ public ConcurrentWeakHashMap() { this( DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL ); } /** * Creates a new map with the same mappings as the given map. * The map is created with a capacity of 1.5 times the number * of mappings in the given map or 16 (whichever is greater), * and a default load factor (0.75) and concurrencyLevel (16). * * @param m the map */ public ConcurrentWeakHashMap( Map m ) { this( Math.max( (int)(m.size() / DEFAULT_LOAD_FACTOR) + 1, DEFAULT_INITIAL_CAPACITY ), DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL ); putAll( m ); } /** * Returns true if this map contains no key-value mappings. * * @return true if this map contains no key-value mappings */ public boolean isEmpty() { final Segment[] segments = this.segments; /* * We keep track of per-segment modCounts to avoid ABA * problems in which an element in one segment was added and * in another removed during traversal, in which case the * table was never actually empty at any point. Note the * similar use of modCounts in the size() and containsValue() * methods, which are the only other methods also susceptible * to ABA problems. */ int[] mc = new int[segments.length]; int mcsum = 0; for( int i = 0; i < segments.length; ++i ) { if( segments[i].count != 0 ) { return false; } else { mcsum += mc[i] = segments[i].modCount; } } // If mcsum happens to be zero, then we know we got a snapshot // before any modifications at all were made. This is // probably common enough to bother tracking. if( mcsum != 0 ) { for( int i = 0; i < segments.length; ++i ) { if( segments[i].count != 0 || mc[i] != segments[i].modCount ) { return false; } } } return true; } /** * Returns the number of key-value mappings in this map. If the * map contains more than Integer.MAX_VALUE elements, returns * Integer.MAX_VALUE. * * @return the number of key-value mappings in this map */ public int size() { final Segment[] segments = this.segments; long sum = 0; long check = 0; int[] mc = new int[segments.length]; // Try a few times to get accurate count. On failure due to // continuous async changes in table, resort to locking. for( int k = 0; k < RETRIES_BEFORE_LOCK; ++k ) { check = 0; sum = 0; int mcsum = 0; for( int i = 0; i < segments.length; ++i ) { sum += segments[i].count; mcsum += mc[i] = segments[i].modCount; } if( mcsum != 0 ) { for( int i = 0; i < segments.length; ++i ) { check += segments[i].count; if( mc[i] != segments[i].modCount ) { check = -1; // force retry break; } } } if( check == sum ) { break; } } if( check != sum ) { // Resort to locking all segments sum = 0; for( int i = 0; i < segments.length; ++i ) { segments[i].lock(); } for( int i = 0; i < segments.length; ++i ) { sum += segments[i].count; } for( int i = 0; i < segments.length; ++i ) { segments[i].unlock(); } } if( sum > Integer.MAX_VALUE ) { return Integer.MAX_VALUE; } else { return (int)sum; } } /** * Returns the value to which the specified key is mapped, * or {@code null} if this map contains no mapping for the key. *

*

More formally, if this map contains a mapping from a key * {@code k} to a value {@code v} such that {@code key.equals(k)}, * then this method returns {@code v}; otherwise it returns * {@code null}. (There can be at most one such mapping.) * * @throws NullPointerException if the specified key is null */ public V get( Object key ) { int hash = hash( key.hashCode() ); return segmentFor( hash ).get( key, hash ); } /** * Tests if the specified object is a key in this table. * * @param key possible key * * @return true if and only if the specified object * is a key in this table, as determined by the * equals method; false otherwise. * * @throws NullPointerException if the specified key is null */ public boolean containsKey( Object key ) { int hash = hash( key.hashCode() ); return segmentFor( hash ).containsKey( key, hash ); } /** * Returns true if this map maps one or more keys to the * specified value. Note: This method requires a full internal * traversal of the hash table, and so is much slower than * method containsKey. * * @param value value whose presence in this map is to be tested * * @return true if this map maps one or more keys to the * specified value * * @throws NullPointerException if the specified value is null */ public boolean containsValue( Object value ) { if( value == null ) { throw new NullPointerException(); } // See explanation of modCount use above final Segment[] segments = this.segments; int[] mc = new int[segments.length]; // Try a few times without locking for( int k = 0; k < RETRIES_BEFORE_LOCK; ++k ) { int sum = 0; int mcsum = 0; for( int i = 0; i < segments.length; ++i ) { int c = segments[i].count; mcsum += mc[i] = segments[i].modCount; if( segments[i].containsValue( value ) ) { return true; } } boolean cleanSweep = true; if( mcsum != 0 ) { for( int i = 0; i < segments.length; ++i ) { int c = segments[i].count; if( mc[i] != segments[i].modCount ) { cleanSweep = false; break; } } } if( cleanSweep ) { return false; } } // Resort to locking all segments for( int i = 0; i < segments.length; ++i ) { segments[i].lock(); } boolean found = false; try { for( int i = 0; i < segments.length; ++i ) { if( segments[i].containsValue( value ) ) { found = true; break; } } } finally { for( int i = 0; i < segments.length; ++i ) { segments[i].unlock(); } } return found; } /** * Legacy method testing if some key maps into the specified value * in this table. This method is identical in functionality to * {@link #containsValue}, and exists solely to ensure * full compatibility with class {@link Hashtable}, * which supported this method prior to introduction of the * Java Collections framework. * * @param value a value to search for * * @return true if and only if some key maps to the * value argument in this table as * determined by the equals method; * false otherwise * * @throws NullPointerException if the specified value is null */ public boolean contains( Object value ) { return containsValue( value ); } /** * Maps the specified key to the specified value in this table. * Neither the key nor the value can be null. *

*

The value can be retrieved by calling the get method * with a key that is equal to the original key. * * @param key key with which the specified value is to be associated * @param value value to be associated with the specified key * * @return the previous value associated with key, or * null if there was no mapping for key * * @throws NullPointerException if the specified key or value is null */ public V put( K key, V value ) { if( value == null ) { throw new NullPointerException(); } int hash = hash( key.hashCode() ); return segmentFor( hash ).put( key, hash, value, false ); } /** * {@inheritDoc} * * @return the previous value associated with the specified key, * or null if there was no mapping for the key * * @throws NullPointerException if the specified key or value is null */ public V putIfAbsent( K key, V value ) { if( value == null ) { throw new NullPointerException(); } int hash = hash( key.hashCode() ); return segmentFor( hash ).put( key, hash, value, true ); } /** * Copies all of the mappings from the specified map to this one. * These mappings replace any mappings that this map had for any of the * keys currently in the specified map. * * @param m mappings to be stored in this map */ public void putAll( Map m ) { for( Entry e : m.entrySet() ) { put( e.getKey(), e.getValue() ); } } /** * Removes the key (and its corresponding value) from this map. * This method does nothing if the key is not in the map. * * @param key the key that needs to be removed * * @return the previous value associated with key, or * null if there was no mapping for key * * @throws NullPointerException if the specified key is null */ public V remove( Object key ) { int hash = hash( key.hashCode() ); return segmentFor( hash ).remove( key, hash, null, false ); } /** * {@inheritDoc} * * @throws NullPointerException if the specified key is null */ public boolean remove( Object key, Object value ) { int hash = hash( key.hashCode() ); if( value == null ) { return false; } return segmentFor( hash ).remove( key, hash, value, false ) != null; } /** * {@inheritDoc} * * @throws NullPointerException if any of the arguments are null */ public boolean replace( K key, V oldValue, V newValue ) { if( oldValue == null || newValue == null ) { throw new NullPointerException(); } int hash = hash( key.hashCode() ); return segmentFor( hash ).replace( key, hash, oldValue, newValue ); } /** * {@inheritDoc} * * @return the previous value associated with the specified key, * or null if there was no mapping for the key * * @throws NullPointerException if the specified key or value is null */ public V replace( K key, V value ) { if( value == null ) { throw new NullPointerException(); } int hash = hash( key.hashCode() ); return segmentFor( hash ).replace( key, hash, value ); } /** * Removes all of the mappings from this map. */ public void clear() { for( int i = 0; i < segments.length; ++i ) { segments[i].clear(); } } /** * Returns a {@link Set} view of the keys contained in this map. * The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. The set supports element * removal, which removes the corresponding mapping from this map, * via the Iterator.remove, Set.remove, * removeAll, retainAll, and clear * operations. It does not support the add or * addAll operations. *

*

The view's iterator is a "weakly consistent" iterator * that will never throw {@link ConcurrentModificationException}, * and guarantees to traverse elements as they existed upon * construction of the iterator, and may (but is not guaranteed to) * reflect any modifications subsequent to construction. */ public Set keySet() { Set ks = keySet; return (ks != null) ? ks : (keySet = new KeySet()); } /** * Returns a {@link Collection} view of the values contained in this map. * The collection is backed by the map, so changes to the map are * reflected in the collection, and vice-versa. The collection * supports element removal, which removes the corresponding * mapping from this map, via the Iterator.remove, * Collection.remove, removeAll, * retainAll, and clear operations. It does not * support the add or addAll operations. *

*

The view's iterator is a "weakly consistent" iterator * that will never throw {@link ConcurrentModificationException}, * and guarantees to traverse elements as they existed upon * construction of the iterator, and may (but is not guaranteed to) * reflect any modifications subsequent to construction. */ public Collection values() { Collection vs = values; return (vs != null) ? vs : (values = new Values()); } /** * Returns a {@link Set} view of the mappings contained in this map. * The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. The set supports element * removal, which removes the corresponding mapping from the map, * via the Iterator.remove, Set.remove, * removeAll, retainAll, and clear * operations. It does not support the add or * addAll operations. *

*

The view's iterator is a "weakly consistent" iterator * that will never throw {@link ConcurrentModificationException}, * and guarantees to traverse elements as they existed upon * construction of the iterator, and may (but is not guaranteed to) * reflect any modifications subsequent to construction. */ public Set> entrySet() { Set> es = entrySet; return (es != null) ? es : (entrySet = new EntrySet()); } /** * Returns an enumeration of the keys in this table. * * @return an enumeration of the keys in this table * * @see #keySet() */ public Enumeration keys() { return new KeyIterator(); } /** * Returns an enumeration of the values in this table. * * @return an enumeration of the values in this table * * @see #values() */ public Enumeration elements() { return new ValueIterator(); } /* ---------------- Iterator Support -------------- */ abstract class HashIterator { int nextSegmentIndex; int nextTableIndex; HashEntry[] currentTable; HashEntry nextEntry; HashEntry lastReturned; K currentKey; // Strong reference to weak key (prevents gc) HashIterator() { nextSegmentIndex = segments.length - 1; nextTableIndex = -1; advance(); } public boolean hasMoreElements() { return hasNext(); } final void advance() { if( nextEntry != null && (nextEntry = nextEntry.next) != null ) { return; } while( nextTableIndex >= 0 ) { if( (nextEntry = currentTable[nextTableIndex--]) != null ) { return; } } while( nextSegmentIndex >= 0 ) { Segment seg = segments[nextSegmentIndex--]; if( seg.count != 0 ) { currentTable = seg.table; for( int j = currentTable.length - 1; j >= 0; --j ) { if( (nextEntry = currentTable[j]) != null ) { nextTableIndex = j - 1; return; } } } } } public boolean hasNext() { while( nextEntry != null ) { if( nextEntry.keyRef.get() != null ) { return true; } advance(); } return false; } HashEntry nextEntry() { do { if( nextEntry == null ) { throw new NoSuchElementException(); } lastReturned = nextEntry; currentKey = lastReturned.keyRef.get(); advance(); } while( currentKey == null ); // Skip GC'd keys return lastReturned; } public void remove() { if( lastReturned == null ) { throw new IllegalStateException(); } ConcurrentWeakHashMap.this.remove( currentKey ); lastReturned = null; } } final class KeyIterator extends HashIterator implements Iterator, Enumeration { public K next() { return super.nextEntry().keyRef.get(); } public K nextElement() { return super.nextEntry().keyRef.get(); } } final class ValueIterator extends HashIterator implements Iterator, Enumeration { public V next() { return super.nextEntry().value; } public V nextElement() { return super.nextEntry().value; } } /* * This class is needed for JDK5 compatibility. */ static class SimpleEntry implements Entry, Serializable { private static final long serialVersionUID = -8499721149061103585L; private final K key; private V value; public SimpleEntry( K key, V value ) { this.key = key; this.value = value; } public SimpleEntry( Entry entry ) { this.key = entry.getKey(); this.value = entry.getValue(); } public K getKey() { return key; } public V getValue() { return value; } public V setValue( V value ) { V oldValue = this.value; this.value = value; return oldValue; } public boolean equals( Object o ) { if( !(o instanceof Map.Entry) ) { return false; } @SuppressWarnings("unchecked") Entry e = (Entry)o; return eq( key, e.getKey() ) && eq( value, e.getValue() ); } public int hashCode() { return (key == null ? 0 : key.hashCode()) ^ (value == null ? 0 : value.hashCode()); } public String toString() { return key + "=" + value; } private static boolean eq( Object o1, Object o2 ) { return o1 == null ? o2 == null : o1.equals( o2 ); } } /** * Custom Entry class used by EntryIterator.next(), that relays setValue * changes to the underlying map. */ final class WriteThroughEntry extends SimpleEntry { private static final long serialVersionUID = -7900634345345313646L; WriteThroughEntry( K k, V v ) { super( k, v ); } /** * Set our entry's value and write through to the map. The * value to return is somewhat arbitrary here. Since a * WriteThroughEntry does not necessarily track asynchronous * changes, the most recent "previous" value could be * different from what we return (or could even have been * removed in which case the put will re-establish). We do not * and cannot guarantee more. */ public V setValue( V value ) { if( value == null ) { throw new NullPointerException(); } V v = super.setValue( value ); ConcurrentWeakHashMap.this.put( getKey(), value ); return v; } } final class EntryIterator extends HashIterator implements Iterator> { public Entry next() { HashEntry e = super.nextEntry(); return new WriteThroughEntry( e.keyRef.get(), e.value ); } } final class KeySet extends AbstractSet { public Iterator iterator() { return new KeyIterator(); } public int size() { return ConcurrentWeakHashMap.this.size(); } public boolean isEmpty() { return ConcurrentWeakHashMap.this.isEmpty(); } public boolean contains( Object o ) { return ConcurrentWeakHashMap.this.containsKey( o ); } public boolean remove( Object o ) { return ConcurrentWeakHashMap.this.remove( o ) != null; } public void clear() { ConcurrentWeakHashMap.this.clear(); } } final class Values extends AbstractCollection { public Iterator iterator() { return new ValueIterator(); } public int size() { return ConcurrentWeakHashMap.this.size(); } public boolean isEmpty() { return ConcurrentWeakHashMap.this.isEmpty(); } public boolean contains( Object o ) { return ConcurrentWeakHashMap.this.containsValue( o ); } public void clear() { ConcurrentWeakHashMap.this.clear(); } } final class EntrySet extends AbstractSet> { public Iterator> iterator() { return new EntryIterator(); } public boolean contains( Object o ) { if( !(o instanceof Map.Entry) ) { return false; } Entry e = (Entry)o; V v = ConcurrentWeakHashMap.this.get( e.getKey() ); return v != null && v.equals( e.getValue() ); } public boolean remove( Object o ) { if( !(o instanceof Map.Entry) ) { return false; } Entry e = (Entry)o; return ConcurrentWeakHashMap.this.remove( e.getKey(), e.getValue() ); } public int size() { return ConcurrentWeakHashMap.this.size(); } public boolean isEmpty() { return ConcurrentWeakHashMap.this.isEmpty(); } public void clear() { ConcurrentWeakHashMap.this.clear(); } } /* ---------------- Serialization Support -------------- */ /** * Save the state of the ConcurrentWeakHashMap instance to a * stream (i.e., serialize it). * * @param s the stream * * @serialData the key (Object) and value (Object) * for each key-value mapping, followed by a null pair. * The key-value mappings are emitted in no particular order. */ private void writeObject( java.io.ObjectOutputStream s ) throws IOException { s.defaultWriteObject(); for( int k = 0; k < segments.length; ++k ) { Segment seg = segments[k]; seg.lock(); try { HashEntry[] tab = seg.table; for( int i = 0; i < tab.length; ++i ) { for( HashEntry e = tab[i]; e != null; e = e.next ) { K key = e.keyRef.get(); if( key == null ) // Skip GC'd keys { continue; } s.writeObject( key ); s.writeObject( e.value ); } } } finally { seg.unlock(); } } s.writeObject( null ); s.writeObject( null ); } /** * Reconstitute the ConcurrentWeakHashMap instance from a * stream (i.e., deserialize it). * * @param s the stream */ @SuppressWarnings("unchecked") private void readObject( java.io.ObjectInputStream s ) throws IOException, ClassNotFoundException { s.defaultReadObject(); // Initialize each segment to be minimally sized, and let grow. for( int i = 0; i < segments.length; ++i ) { segments[i].setTable( new HashEntry[1] ); } // Read the keys and values, and put the mappings in the table for( ; ; ) { K key = (K)s.readObject(); V value = (V)s.readObject(); if( key == null ) { break; } put( key, value ); } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy