All Downloads are FREE. Search and download functionalities are using the official Maven repository.

tec.units.ri.internal.MathUtil Maven / Gradle / Ivy

There is a newer version: 1.0.3
Show newest version
/*
 * Units of Measurement Reference Implementation
 * Copyright (c) 2005-2015, Jean-Marie Dautelle, Werner Keil, V2COM.
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
 *    and the following disclaimer in the documentation and/or other materials provided with the distribution.
 *
 * 3. Neither the name of JSR-363 nor the names of its contributors may be used to endorse or promote products
 *    derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
package tec.units.ri.internal;

/*
 * Ported from the Sun Microsystems FDLIBM C-library.
 * (Freely Distributable Library for Math)
 * ====================================================
 * Portions Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
 *
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */

/**
 * MathUtil for Java ME.
 * This fills the gap in Java ME Math with a port of Sun's public FDLIBM C-library for IEEE-754.
 *
 * @author kmashint
 *
 * @see http://www.netlib.org/fdlibm/readme
 * 		For the Freely Distributable C-library conforming to IEEE-754 floating point math.
 * @see http://web.mit.edu/source/third/gcc/libjava/java/lang/
 *		For the GNU C variant of the same IEEE-754 routines.
 * @see http://www.dclausen.net/projects/microfloat/
 * 		Another take on the IEEE-754 routines.
 * @see http://real-java.sourceforge.net/Real.html
 * 		Yet another take on the IEEE-754 routines.
 * @see http://today.java.net/pub/a/today/2007/11/06/creating-java-me-math-pow-method.html
 * 		For other approximations.
 * @see http://martin.ankerl.com/2007/10/04/optimized-pow-approximation-for-java-and-c-c/
 * 		For fast but rough approximations.
 * @see http://martin.ankerl.com/2007/02/11/optimized-exponential-functions-for-java/
 * 		For more fast but rough approximations.
 */
public abstract class MathUtil {

	/* Common constants. */

	private static final double
		zero	=  0.0,
		one		=  1.0,
		two		=  2.0,
		tiny    =  1.0e-300,
		huge	=  1.0e+300,
		two53	=  9007199254740992.0,	/* 0x43400000, 0x00000000 */
		two54   =  1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
		twom54  =  5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */
		P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
		P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
		P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
		P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
		P5   =  4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */

	private static final double
		pio2_hi =  1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
		pio2_lo =  6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
		pio4_hi =  7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
			/* coefficient for R(x^2) */
		pS0 =  1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
		pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
		pS2 =  2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
		pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
		pS4 =  7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
		pS5 =  3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
		qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
		qS2 =  2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
		qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
		qS4 =  7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */

	private static final double
		pi_o_4  = 7.8539816339744827900E-01, /* 0x3FE921FB, 0x54442D18 */
		pi_o_2  = 1.5707963267948965580E+00, /* 0x3FF921FB, 0x54442D18 */
		pi      = 3.1415926535897931160E+00, /* 0x400921FB, 0x54442D18 */
		pi_lo   = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */

	private static final long
		HI_MASK = 0xffffffff00000000L,
		LO_MASK = 0x00000000ffffffffL;

	private static final int
		HI_SHIFT = 32;


	/**
	 * Return Math.E to the exponent a.
	 * This in turn uses ieee7854_exp(double).
	 */
	public static final double exp(double a) {
		return ieee754_exp(a);
	}

	/**
	 * Return the natural logarithm, ln(a), as it relates to Math.E.
	 * This in turn uses ieee7854_log(double).
	 */
	public static final double log(double a) {
		return ieee754_log(a);
	}

	/**
	 * Return a to the power of b, sometimes written as a ** b
	 * but not to be confused with the bitwise ^ operator.
	 * This in turn uses ieee7854_log(double).
	 */
	public static final double pow(double a, double b) {
		return ieee754_pow(a, b);
	}

	/**
	 * Return the arcsine of a.
	 */
	public static final double asin(double a) {
		return ieee754_asin(a);
	}

	/**
	 * Return the arccosine of a.
	 */
	public static final double acos(double a) {
		return ieee754_acos(a);
	}

	/**
	 * Return the arctangent of a, call it b, where a = tan(b).
	 */
	public static final double atan(double a) {
		return ieee754_atan(a);
	}

	/**
	 * For any real arguments x and y not both equal to zero, atan2(y, x)
	 * is the angle in radians between the positive x-axis of a plane
	 * and the point given by the coordinates (x, y) on it.
	 * The angle is positive for counter-clockwise angles (upper half-plane, y > 0),
	 * and negative for clockwise angles (lower half-plane, y < 0).
	 * This in turn uses ieee7854_arctan2(double).
	 */
	public static final double atan2(double b, double a) {
		return ieee754_atan2(a, b);
	}

	/* __ieee754_exp(x)
	 * Returns the exponential of x.
	 *
	 * Method
	 *   1. Argument reduction:
	 *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
	 *	Given x, find r and integer k such that
	 *
	 *               x = k*ln2 + r,  |r| <= 0.5*ln2.
	 *
	 *      Here r will be represented as r = hi-lo for better
	 *	accuracy.
	 *
	 *   2. Approximation of exp(r) by a special rational function on
	 *	the interval [0,0.34658]:
	 *	Write
	 *	    R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
	 *      We use a special Remes algorithm on [0,0.34658] to generate
	 * 	a polynomial of degree 5 to approximate R. The maximum error
	 *	of this polynomial approximation is bounded by 2**-59. In
	 *	other words,
	 *	    R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
	 *  	(where z=r*r, and the values of P1 to P5 are listed below)
	 *	and
	 *	    |                  5          |     -59
	 *	    | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
	 *	    |                             |
	 *	The computation of exp(r) thus becomes
	 *                             2*r
	 *		exp(r) = 1 + -------
	 *		              R - r
	 *                                 r*R1(r)
	 *		       = 1 + r + ----------- (for better accuracy)
	 *		                  2 - R1(r)
	 *	where
	 *			         2       4             10
	 *		R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
	 *
	 *   3. Scale back to obtain exp(x):
	 *	From step 1, we have
	 *	   exp(x) = 2^k * exp(r)
	 *
	 * Special cases:
	 *	exp(INF) is INF, exp(NaN) is NaN;
	 *	exp(-INF) is 0, and
	 *	for finite argument, only exp(0)=1 is exact.
	 *
	 * Accuracy:
	 *	according to an error analysis, the error is always less than
	 *	1 ulp (unit in the last place).
	 *
	 * Misc. info.
	 *	For IEEE double
	 *	    if x >  7.09782712893383973096e+02 then exp(x) overflow
	 *	    if x < -7.45133219101941108420e+02 then exp(x) underflow
	 *
	 * Constants:
	 * The hexadecimal values are the intended ones for the following
	 * constants. The decimal values may be used, provided that the
	 * compiler will convert from decimal to binary accurately enough
	 * to produce the hexadecimal values shown.
	 */

	private static final double
		twom1000= 9.33263618503218878990e-302,     /* 2**-1000=0x01700000,0*/
		o_threshold=  7.09782712893383973096e+02,  /* 0x40862E42, 0xFEFA39EF */
		u_threshold= -7.45133219101941108420e+02,  /* 0xc0874910, 0xD52D3051 */
		invln2 =  1.44269504088896338700e+00; /* 0x3ff71547, 0x652b82fe */

	private static final double[]
	    halF	= new double[] { 0.5, -0.5 },
	    ln2HI   = new double[] { 6.93147180369123816490e-01,  /* 0x3fe62e42, 0xfee00000 */
			     -6.93147180369123816490e-01 }, /* 0xbfe62e42, 0xfee00000 */
		ln2LO   = new double[] { 1.90821492927058770002e-10,  /* 0x3dea39ef, 0x35793c76 */
		     -1.90821492927058770002e-10 }; /* 0xbdea39ef, 0x35793c76 */

	private static final double ieee754_exp(double x)
	{
		double y,c,t;
		double hi = 0, lo = 0;
		int k = 0 ;
		int xsb, hx, lx;
		long yl;
		long xl = Double.doubleToLongBits(x);

		hx  = (int)((long)xl >>> HI_SHIFT);	/* high word of x */
		xsb = (hx>>31)&1;		/* sign bit of x */
		hx &= 0x7fffffff;		/* high word of |x| */

	    /* filter out non-finite argument */
		if(hx >= 0x40862E42) {			/* if |x|>=709.78... */
	        if(hx>=0x7ff00000) {
	    	lx	= (int)((long)xl & LO_MASK);	/* low word of x */
			if(((hx&0xfffff)|lx)!=0)
			     return x+x; 		/* NaN */
			else return (xsb==0)? x:0.0;	/* exp(+-inf)={inf,0} */
		    }
		    if(x > o_threshold) return huge*huge; /* overflow */
		    if(x < u_threshold) return twom1000*twom1000; /* underflow */
		}

	    /* argument reduction */
		if(hx > 0x3fd62e42) {		/* if  |x| > 0.5 ln2 */
		    if(hx < 0x3FF0A2B2) {	/* and |x| < 1.5 ln2 */
			hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
		    } else {
			k  = (int)(invln2*x+halF[xsb]);
			t  = k;
			hi = x - t*ln2HI[0];	/* t*ln2HI is exact here */
			lo = t*ln2LO[0];
		    }
		    x  = hi - lo;
		}
		else if(hx < 0x3e300000)  {	/* when |x|<2**-28 */
		    if(huge+x>one) return one+x;/* trigger inexact */
		}
		//else k = 0; // handled at declaration

		/* x is now in primary range */
		t  = x*x;
		c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
		if(k==0) 	return one-((x*c)/(c-2.0)-x);
		else 		y = one-((lo-(x*c)/(2.0-c))-hi);
		yl	 = Double.doubleToLongBits(y);
		if(k >= -1021) {
		    yl += ((long)k<<(20+HI_SHIFT));	/* add k to y's exponent */
		    return Double.longBitsToDouble(yl);
		} else {
		    yl += ((long)(k+1000)<<(20+HI_SHIFT));/* add k to y's exponent */
		    return Double.longBitsToDouble(yl)*twom1000;
		}
	}

	/* __ieee754_log(x)
	 * Return the logrithm of x
	 *
	 * Method :
	 *   1. Argument Reduction: find k and f such that
	 *			x = 2^k * (1+f),
	 *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
	 *
	 *   2. Approximation of log(1+f).
	 *	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
	 *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
	 *	     	 = 2s + s*R
	 *      We use a special Reme algorithm on [0,0.1716] to generate
	 * 	a polynomial of degree 14 to approximate R The maximum error
	 *	of this polynomial approximation is bounded by 2**-58.45. In
	 *	other words,
	 *		        2      4      6      8      10      12      14
	 *	    R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
	 *  	(the values of Lg1 to Lg7 are listed in the program)
	 *	and
	 *	    |      2          14          |     -58.45
	 *	    | Lg1*s +...+Lg7*s    -  R(z) | <= 2
	 *	    |                             |
	 *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
	 *	In order to guarantee error in log below 1ulp, we compute log
	 *	by
	 *		log(1+f) = f - s*(f - R)	(if f is not too large)
	 *		log(1+f) = f - (hfsq - s*(hfsq+R)).	(better accuracy)
	 *
	 *	3. Finally,  log(x) = k*ln2 + log(1+f).
	 *			    = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
	 *	   Here ln2 is split into two floating point number:
	 *			ln2_hi + ln2_lo,
	 *	   where n*ln2_hi is always exact for |n| < 2000.
	 *
	 * Special cases:
	 *	log(x) is NaN with signal if x < 0 (including -INF) ;
	 *	log(+INF) is +INF; log(0) is -INF with signal;
	 *	log(NaN) is that NaN with no signal.
	 *
	 * Accuracy:
	 *	according to an error analysis, the error is always less than
	 *	1 ulp (unit in the last place).
	 *
	 * Constants:
	 * The hexadecimal values are the intended ones for the following
	 * constants. The decimal values may be used, provided that the
	 * compiler will convert from decimal to binary accurately enough
	 * to produce the hexadecimal values shown.
	 */

	private static final double
		ln2_hi  =  6.93147180369123816490e-01,	/* 3fe62e42 fee00000 */
		ln2_lo  =  1.90821492927058770002e-10,	/* 3dea39ef 35793c76 */
		Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
		Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
		Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
		Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
		Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
		Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
		Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */

	private static final double ieee754_log(double x)
	{
		double hfsq,f,s,z,R,w,t1,t2,dk;
		int k,hx,lx,i,j;
		long xl = Double.doubleToLongBits(x);

		hx = (int)(xl >> HI_SHIFT);		/* high word of x */
		lx = (int)(xl & LO_MASK);		/* low  word of x */

		k=0;
		if (hx < 0x00100000) {			/* x < 2**-1022  */
		    if (((hx&0x7fffffff)|lx)==0)
			return -two54/zero;		/* log(+-0)=-inf */
		    if (hx<0) return (x-x)/zero;	/* log(-#) = NaN */
		    k -= 54; x *= two54; /* subnormal number, scale up x */
		    hx = (int)(Double.doubleToLongBits(x) >>> HI_SHIFT);		/* high word of x */
		}
		if (hx >= 0x7ff00000) return x+x;
		k += (hx>>20)-1023;
		hx &= 0x000fffff;
		i = (hx+0x95f64)&0x100000;
		//__HI(x) = hx|(i^0x3ff00000);	/* normalize x or x/2 */
		x = Double.longBitsToDouble(((long)(hx|(i^0x3ff00000)) << HI_SHIFT) | (Double.doubleToLongBits(x) & LO_MASK));
		k += (i>>20);
		f = x-1.0;
		if((0x000fffff&(2+hx))<3) {	/* |f| < 2**-20 */
		    if(f==zero) if(k==0) return zero;  else {dk=(double)k;
					 return dk*ln2_hi+dk*ln2_lo;}
		    R = f*f*(0.5-0.33333333333333333*f);
		    if(k==0) return f-R; else {dk=(double)k;
		    	     return dk*ln2_hi-((R-dk*ln2_lo)-f);}
		}
	 	s = f/(2.0+f);
		dk = (double)k;
		z = s*s;
		i = hx-0x6147a;
		w = z*z;
		j = 0x6b851-hx;
		t1= w*(Lg2+w*(Lg4+w*Lg6));
		t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
		i |= j;
		R = t2+t1;
		if(i>0) {
		    hfsq=0.5*f*f;
		    if(k==0) return f-(hfsq-s*(hfsq+R)); else
			     return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
		} else {
		    if(k==0) return f-s*(f-R); else
			     return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
		}
	}

	/* __ieee754_pow(x,y) return x**y
	 *
	 *		      n
	 * Method:  Let x =  2   * (1+f)
	 *	1. Compute and return log2(x) in two pieces:
	 *		log2(x) = w1 + w2,
	 *	   where w1 has 53-24 = 29 bit trailing zeros.
	 *	2. Perform y*log2(x) = n+y' by simulating muti-precision
	 *	   arithmetic, where |y'|<=0.5.
	 *	3. Return x**y = 2**n*exp(y'*log2)
	 *
	 * Special cases:
	 *	1.  (anything) ** 0  is 1
	 *	2.  (anything) ** 1  is itself
	 *	3.  (anything) ** NAN is NAN
	 *	4.  NAN ** (anything except 0) is NAN
	 *	5.  +-(|x| > 1) **  +INF is +INF
	 *	6.  +-(|x| > 1) **  -INF is +0
	 *	7.  +-(|x| < 1) **  +INF is +0
	 *	8.  +-(|x| < 1) **  -INF is +INF
	 *	9.  +-1         ** +-INF is NAN
	 *	10. +0 ** (+anything except 0, NAN)               is +0
	 *	11. -0 ** (+anything except 0, NAN, odd integer)  is +0
	 *	12. +0 ** (-anything except 0, NAN)               is +INF
	 *	13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
	 *	14. -0 ** (odd integer) = -( +0 ** (odd integer) )
	 *	15. +INF ** (+anything except 0,NAN) is +INF
	 *	16. +INF ** (-anything except 0,NAN) is +0
	 *	17. -INF ** (anything)  = -0 ** (-anything)
	 *	18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
	 *	19. (-anything except 0 and inf) ** (non-integer) is NAN
	 *
	 * Accuracy:
	 *	pow(x,y) returns x**y nearly rounded. In particular
	 *			pow(integer,integer)
	 *	always returns the correct integer provided it is
	 *	representable.
	 *
	 * Constants :
	 * The hexadecimal values are the intended ones for the following
	 * constants. The decimal values may be used, provided that the
	 * compiler will convert from decimal to binary accurately enough
	 * to produce the hexadecimal values shown.
	 */

	private static final double
		bp[] = {1.0, 1.5,},
		dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
		dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
			/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
		L1  =  5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
		L2  =  4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
		L3  =  3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
		L4  =  2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
		L5  =  2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
		L6  =  2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
		lg2  =  6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
		lg2_h  =  6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
		lg2_l  = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
		ovt =  8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
		cp    =  9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
		cp_h  =  9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
		cp_l  = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
		ivln2    =  1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
		ivln2_h  =  1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
		ivln2_l  =  1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/

	private static final double ieee754_pow(double x, double y)
	{
		double z,ax,z_h,z_l,p_h,p_l;
		double y1,t1,t2,r,s,t,u,v,w;
		//int i0,i1;
		int i,j,k,yisint,n;
		int hx,hy,ix,iy;
		int lx,ly;

		//i0 = (int)((Double.doubleToLongBits(one)) >>> (29+HI_SHIFT))^1;
		//i1 = 1-i0;
		hx = (int)(Double.doubleToLongBits(x) >>> HI_SHIFT);
		lx = (int)(Double.doubleToLongBits(x) & LO_MASK);
		hy = (int)(Double.doubleToLongBits(y) >>> HI_SHIFT);
		ly = (int)(Double.doubleToLongBits(y) & LO_MASK);
		ix = hx&0x7fffffff;
		iy = hy&0x7fffffff;

	    /* y==zero: x**0 = 1 */
		if((iy|ly)==0) return one;

	    /* +-NaN return x+y */
		if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
		   iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
			return x+y;

	    /* determine if y is an odd int when x < 0
	     * yisint = 0	... y is not an integer
	     * yisint = 1	... y is an odd int
	     * yisint = 2	... y is an even int
	     */
		yisint  = 0;
		if(hx<0) {
		    if(iy>=0x43400000) yisint = 2; /* even integer y */
		    else if(iy>=0x3ff00000) {
			k = (iy>>20)-0x3ff;	   /* exponent */
			if(k>20) {
			    j = ly>>(52-k);
			    if((j<<(52-k))==ly) yisint = 2-(j&1);
			} else if(ly==0) {
			    j = iy>>(20-k);
			    if((j<<(20-k))==iy) yisint = 2-(j&1);
			}
		    }
		}

	    /* special value of y */
		if(ly==0) {
		    if (iy==0x7ff00000) {	/* y is +-inf */
		        if(((ix-0x3ff00000)|lx)==0)
			    return  y - y;	/* inf**+-1 is NaN */
		        else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
			    return (hy>=0)? y: zero;
		        else			/* (|x|<1)**-,+inf = inf,0 */
			    return (hy<0)?-y: zero;
		    }
		    if(iy==0x3ff00000) {	/* y is  +-1 */
			if(hy<0) return one/x; else return x;
		    }
		    if(hy==0x40000000) return x*x; /* y is  2 */
		    if(hy==0x3fe00000) {	/* y is  0.5 */
			if(hx>=0)	/* x >= +0 */
			return Math.sqrt(x);
		    }
		}

		ax   = Math.abs(x);
	    /* special value of x */
		if(lx==0) {
		    if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
			z = ax;			/*x is +-0,+-inf,+-1*/
			if(hy<0) z = one/z;	/* z = (1/|x|) */
			if(hx<0) {
			    if(((ix-0x3ff00000)|yisint)==0) {
				z = (z-z)/(z-z); /* (-1)**non-int is NaN */
			    } else if(yisint==1)
				z = -z;		/* (x<0)**odd = -(|x|**odd) */
			}
			return z;
		    }
		}

		n = (hx>>>31)+1;

	    /* (x<0)**(non-int) is NaN */
		if((n|yisint)==0) return (x-x)/(x-x);

		s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
		if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */

	    /* |y| is huge */
		if(iy>0x41e00000) { /* if |y| > 2**31 */
		    if(iy>0x43f00000){	/* if |y| > 2**64, must o/uflow */
			if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
			if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
		    }
		/* over/underflow if x is not close to one */
		    if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny;
		    if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny;
		/* now |1-x| is tiny <= 2**-20, suffice to compute
		   log(x) by x-x^2/2+x^3/3-x^4/4 */
		    t = x-one;		/* t has 20 trailing zeros */
		    w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
		    u = ivln2_h*t;	/* ivln2_h has 21 sig. bits */
		    v = t*ivln2_l-w*ivln2;
		    t1 = u+v;
		    //__LO(t1) = 0; // keep high word
		    t1 = Double.longBitsToDouble(Double.doubleToLongBits(t1) & HI_MASK);
		    t2 = v-(t1-u);
		} else {
		    double ss,s2,s_h,s_l,t_h,t_l;
		    n = 0;
		/* take care subnormal number */
		    if(ix<0x00100000)
			{ax *= two53; n -= 53; ix = (int)(Double.doubleToLongBits(ax) >>> HI_SHIFT); }
		    n  += ((ix)>>20)-0x3ff;
		    j  = ix&0x000fffff;
		/* determine interval */
		    ix = j|0x3ff00000;		/* normalize ix */
		    if(j<=0x3988E) k=0;		/* |x|>1)|0x20000000)+0x00080000+(k<<18);
		    t_h = Double.longBitsToDouble(((long)((int)((ix>>1)|0x20000000)+0x00080000+(k<<18)) << HI_SHIFT) | (Double.doubleToLongBits(t_h) & LO_MASK));
		    t_l = ax - (t_h-bp[k]);
		    s_l = v*((u-s_h*t_h)-s_h*t_l);
		/* compute log(ax) */
		    s2 = ss*ss;
		    r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
		    r += s_l*(s_h+ss);
		    s2  = s_h*s_h;
		    t_h = 3.0+s2+r;
		    //__LO(t_h) = 0; // keep high word
		    t_h = Double.longBitsToDouble(Double.doubleToLongBits(t_h) & HI_MASK);
		    t_l = r-((t_h-3.0)-s2);
		/* u+v = ss*(1+...) */
		    u = s_h*t_h;
		    v = s_l*t_h+t_l*ss;
		/* 2/(3log2)*(ss+...) */
		    p_h = u+v;
		    //__LO(p_h) = 0; // keep high word
		    p_h = Double.longBitsToDouble(Double.doubleToLongBits(p_h) & HI_MASK);
		    p_l = v-(p_h-u);
		    z_h = cp_h*p_h;		/* cp_h+cp_l = 2/(3*log2) */
		    z_l = cp_l*p_h+p_l*cp+dp_l[k];
		/* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
		    t = (double)n;
		    t1 = (((z_h+z_l)+dp_h[k])+t);
		    //__LO(t1) = 0; // keep high word
		    t1 = Double.longBitsToDouble(Double.doubleToLongBits(t1) & HI_MASK);
		    t2 = z_l-(((t1-t)-dp_h[k])-z_h);
		}

	    /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
		y1  = y;
		//__LO(y1) = 0; // keep high word
		y1 = Double.longBitsToDouble(Double.doubleToLongBits(y1) & HI_MASK);
		p_l = (y-y1)*t1+y*t2;
		p_h = y1*t1;
		z = p_l+p_h;
		j = (int)(Double.doubleToLongBits(z) >>> HI_SHIFT);
		i = (int)(Double.doubleToLongBits(z) & LO_MASK);
		if (j>=0x40900000) {				/* z >= 1024 */
		    if(((j-0x40900000)|i)!=0)			/* if z > 1024 */
			return s*huge*huge;			/* overflow */
		    else {
			if(p_l+ovt>z-p_h) return s*huge*huge;	/* overflow */
		    }
		} else if((j&0x7fffffff)>=0x4090cc00 ) {	/* z <= -1075 */
		    if(((j-0xc090cc00)|i)!=0) 		/* z < -1075 */
			return s*tiny*tiny;		/* underflow */
		    else {
			if(p_l<=z-p_h) return s*tiny*tiny;	/* underflow */
		    }
		}
	    /*
	     * compute 2**(p_h+p_l)
	     */
		i = j&0x7fffffff;
		k = (i>>20)-0x3ff;
		n = 0;
		if(i>0x3fe00000) {		/* if |z| > 0.5, set n = [z+0.5] */
		    n = j+(0x00100000>>(k+1));
		    k = ((n&0x7fffffff)>>20)-0x3ff;	/* new k for n */
		    t = zero;
		    //__HI(t) = (n&~(0x000fffff>>k));
		    t = Double.longBitsToDouble(((long)(n&~(0x000fffff>>k)) << HI_SHIFT) | (Double.doubleToLongBits(t) & LO_MASK));
		    n = ((n&0x000fffff)|0x00100000)>>(20-k);
		    if(j<0) n = -n;
		    p_h -= t;
		}
		t = p_l+p_h;
		//__LO(t) = 0; // keep high word
		t = Double.longBitsToDouble(Double.doubleToLongBits(t) & HI_MASK);
		u = t*lg2_h;
		v = (p_l-(t-p_h))*lg2+t*lg2_l;
		z = u+v;
		w = v-(z-u);
		t  = z*z;
		t1  = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
		r  = (z*t1)/(t1-two)-(w+z*w);
		z  = one-(r-z);
		j  = (int)((long)Double.doubleToLongBits(z) >>> HI_SHIFT);
		j += (n<<20);
		if((j>>20)<=0) z = scalbn(z,n);	/* subnormal output */
		else //__HI(z) = j;
			z = Double.longBitsToDouble(((long)j << HI_SHIFT) | (Double.doubleToLongBits(z) & LO_MASK));
		return s*z;
	}


	/* __ieee754_acos(x)
	 * Method :
	 *	acos(x)  = pi/2 - asin(x)
	 *	acos(-x) = pi/2 + asin(x)
	 * For |x|<=0.5
	 *	acos(x) = pi/2 - (x + x*x^2*R(x^2))	(see asin.c)
	 * For x>0.5
	 * 	acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
	 *		= 2asin(sqrt((1-x)/2))
	 *		= 2s + 2s*z*R(z) 	...z=(1-x)/2, s=sqrt(z)
	 *		= 2f + (2c + 2s*z*R(z))
	 *     where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
	 *     for f so that f+c ~ sqrt(z).
	 * For x<-0.5
	 *	acos(x) = pi - 2asin(sqrt((1-|x|)/2))
	 *		= pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)
	 *
	 * Special cases:
	 *	if x is NaN, return x itself;
	 *	if |x|>1, return NaN with invalid signal.
	 *
	 * Function needed: sqrt
	 */

	private static final double ieee754_acos(double x) {
		double z,p,q,r,w,s,c,df;
		int hx,ix;
		hx = (int)(Double.doubleToLongBits(x) >>> HI_SHIFT);
		ix = hx&0x7fffffff;
		if(ix>=0x3ff00000) {	/* |x| >= 1 */
		    if(((ix-0x3ff00000)|(int)(Double.doubleToLongBits(x) & LO_MASK))==0) {	/* |x|==1 */
			if(hx>0) return 0.0;		/* acos(1) = 0  */
			else return pi+2.0*pio2_lo;	/* acos(-1)= pi */
		    }
		    return (x-x)/(x-x);		/* acos(|x|>1) is NaN */
		}
		if(ix<0x3fe00000) {	/* |x| < 0.5 */
		    if(ix<=0x3c600000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/
		    z = x*x;
		    p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
		    q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
		    r = p/q;
		    return pio2_hi - (x - (pio2_lo-x*r));
		} else  if (hx<0) {		/* x < -0.5 */
		    z = (one+x)*0.5;
		    p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
		    q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
		    s = Math.sqrt(z);
		    r = p/q;
		    w = r*s-pio2_lo;
		    return pi - 2.0*(s+w);
		} else {			/* x > 0.5 */
		    z = (one-x)*0.5;
		    s = Math.sqrt(z);
		    df = s;
		    //__LO(df) = 0; // keep high word
		    df = Double.longBitsToDouble(Double.doubleToLongBits(df) & HI_MASK);
		    c  = (z-df*df)/(s+df);
		    p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
		    q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
		    r = p/q;
		    w = r*s+c;
		    return 2.0*(df+w);
		}
	}


	/* __ieee754_asin(x)
	 * Method :
	 *	Since  asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
	 *	we approximate asin(x) on [0,0.5] by
	 *		asin(x) = x + x*x^2*R(x^2)
	 *	where
	 *		R(x^2) is a rational approximation of (asin(x)-x)/x^3
	 *	and its remez error is bounded by
	 *		|(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
	 *
	 *	For x in [0.5,1]
	 *		asin(x) = pi/2-2*asin(sqrt((1-x)/2))
	 *	Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
	 *	then for x>0.98
	 *		asin(x) = pi/2 - 2*(s+s*z*R(z))
	 *			= pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
	 *	For x<=0.98, let pio4_hi = pio2_hi/2, then
	 *		f = hi part of s;
	 *		c = sqrt(z) - f = (z-f*f)/(s+f) 	...f+c=sqrt(z)
	 *	and
	 *		asin(x) = pi/2 - 2*(s+s*z*R(z))
	 *			= pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
	 *			= pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
	 *
	 * Special cases:
	 *	if x is NaN, return x itself;
	 *	if |x|>1, return NaN with invalid signal.
	 *
	 */

	private static final double ieee754_asin(double x) {
		double t,w,p,q,c,r,s;
		int hx,ix;
		hx = (int)(Double.doubleToLongBits(x) >>> HI_SHIFT);
		ix = hx&0x7fffffff;
		if(ix>= 0x3ff00000) {		/* |x|>= 1 */
		    if(((ix-0x3ff00000)|(int)(Double.doubleToLongBits(x) & LO_MASK))==0)
			    /* asin(1)=+-pi/2 with inexact */
			return x*pio2_hi+x*pio2_lo;
		    return (x-x)/(x-x);		/* asin(|x|>1) is NaN */
		} else if (ix<0x3fe00000) {	/* |x|<0.5 */
		    if(ix<0x3e400000) {		/* if |x| < 2**-27 */
			if(huge+x>one) return x;/* return x with inexact if x!=0*/
		    } else {
			t = x*x;
			p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
			q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
			w = p/q;
			return x+x*w;
		    }
		}
		/* 1> |x|>= 0.5 */
		w = one-Math.abs(x);
		t = w*0.5;
		p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
		q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
		s = Math.sqrt(t);
		if(ix>=0x3FEF3333) { 	/* if |x| > 0.975 */
		    w = p/q;
		    t = pio2_hi-(2.0*(s+s*w)-pio2_lo);
		} else {
		    w  = s;
		    //__LO(w) = 0; // keep the high word
		    w = Double.longBitsToDouble(Double.doubleToLongBits(w) & HI_MASK);
		    c  = (t-w*w)/(s+w);
		    r  = p/q;
		    p  = 2.0*s*r-(pio2_lo-2.0*c);
		    q  = pio4_hi-2.0*w;
		    t  = pio4_hi-(p-q);
		}
		if(hx>0) return t; else return -t;
	}


	/* atan(x)
	 * Method
	 *   1. Reduce x to positive by atan(x) = -atan(-x).
	 *   2. According to the integer k=4t+0.25 chopped, t=x, the argument
	 *      is further reduced to one of the following intervals and the
	 *      arctangent of t is evaluated by the corresponding formula:
	 *
	 *      [0,7/16]      atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
	 *      [7/16,11/16]  atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
	 *      [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
	 *      [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
	 *      [39/16,INF]   atan(x) = atan(INF) + atan( -1/t )
	 *
	 * Constants:
	 * The hexadecimal values are the intended ones for the following
	 * constants. The decimal values may be used, provided that the
	 * compiler will convert from decimal to binary accurately enough
	 * to produce the hexadecimal values shown.
	 */

	private static final double atanhi[] = {
		4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
		7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
		9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
		1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
	};

	private static final double atanlo[] = {
		2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
		3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
		1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
		6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
	};

	private static final double aT[] = {
		3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */
		-1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */
		 1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */
		-1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */
		 9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */
		-7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */
		 6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */
		-5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */
		 4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */
		-3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */
		 1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */
	};


	private static final double ieee754_atan (double x)
	{
		double w,s1,s2,z;
		int ix,hx,id;

		hx = (int)(Double.doubleToLongBits(x) >>> HI_SHIFT);
		ix = hx&0x7fffffff;
		if(ix>=0x44100000) {	/* if |x| >= 2^66 */
		    if(ix>0x7ff00000||
			(ix==0x7ff00000&&((int)(Double.doubleToLongBits(x) & LO_MASK)!=0)))
			return x+x;		/* NaN */
		    if(hx>0) return  atanhi[3]+atanlo[3];
		    else     return -atanhi[3]-atanlo[3];
		} if (ix < 0x3fdc0000) {	/* |x| < 0.4375 */
		    if (ix < 0x3e200000) {	/* |x| < 2^-29 */
			if(huge+x>one) return x;	/* raise inexact */
		    }
		    id = -1;
		} else {
		x = Math.abs(x);
		if (ix < 0x3ff30000) {		/* |x| < 1.1875 */
		    if (ix < 0x3fe60000) {	/* 7/16 <=|x|<11/16 */
			id = 0; x = (2.0*x-one)/(2.0+x);
		    } else {			/* 11/16<=|x|< 19/16 */
			id = 1; x  = (x-one)/(x+one);
		    }
		} else {
		    if (ix < 0x40038000) {	/* |x| < 2.4375 */
			id = 2; x  = (x-1.5)/(one+1.5*x);
		    } else {			/* 2.4375 <= |x| < 2^66 */
			id = 3; x  = -1.0/x;
		    }
		}}
	    /* end of argument reduction */
		z = x*x;
		w = z*z;
	    /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
		s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10])))));
		s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9]))));
		if (id<0) return x - x*(s1+s2);
		else {
		    z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
		    return (hx<0)? -z:z;
		}
	}


	/* __ieee754_atan2(y,x)
	 * Method :
	 *	1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
	 *	2. Reduce x to positive by (if x and y are unexceptional):
	 *		ARG (x+iy) = arctan(y/x)   	   ... if x > 0,
	 *		ARG (x+iy) = pi - arctan[y/(-x)]   ... if x < 0,
	 *
	 * Special cases:
	 *
	 *	ATAN2((anything), NaN ) is NaN;
	 *	ATAN2(NAN , (anything) ) is NaN;
	 *	ATAN2(+-0, +(anything but NaN)) is +-0  ;
	 *	ATAN2(+-0, -(anything but NaN)) is +-pi ;
	 *	ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2;
	 *	ATAN2(+-(anything but INF and NaN), +INF) is +-0 ;
	 *	ATAN2(+-(anything but INF and NaN), -INF) is +-pi;
	 *	ATAN2(+-INF,+INF ) is +-pi/4 ;
	 *	ATAN2(+-INF,-INF ) is +-3pi/4;
	 *	ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2;
	 *
	 * Constants:
	 * The hexadecimal values are the intended ones for the following
	 * constants. The decimal values may be used, provided that the
	 * compiler will convert from decimal to binary accurately enough
	 * to produce the hexadecimal values shown.
	 */

	private static final double ieee754_atan2 (double x, double y)
	{
		double z;
		int k,m;
		int hx,hy,ix,iy;
		int lx,ly;

		//i0 = (int)((Double.doubleToLongBits(one)) >> (29+HI_SHIFT))^1;
		//i1 = 1-i0;
		hx = (int)(Double.doubleToLongBits(x) >>> HI_SHIFT);
		lx = (int)(Double.doubleToLongBits(x) & LO_MASK);
		hy = (int)(Double.doubleToLongBits(y) >>> HI_SHIFT);
		ly = (int)(Double.doubleToLongBits(y) & LO_MASK);
		ix = hx&0x7fffffff;
		iy = hy&0x7fffffff;

		if(((ix|((lx|-lx)>>31))>0x7ff00000)||
		   ((iy|((ly|-ly)>>31))>0x7ff00000))	/* x or y is NaN */
		   return x+y;
		if((hx-0x3ff00000|lx)==0) return ieee754_atan(y);   /* x=1.0 */
		m = ((hy>>31)&1)|((hx>>30)&2);	/* 2*sign(x)+sign(y) */

	    /* when y = 0 */
		if((iy|ly)==0) {
		    switch(m) {
			case 0:
			case 1: return y; 	/* atan(+-0,+anything)=+-0 */
			case 2: return  pi+tiny;/* atan(+0,-anything) = pi */
			case 3: return -pi-tiny;/* atan(-0,-anything) =-pi */
		    }
		}
	    /* when x = 0 */
		if((ix|lx)==0) return (hy<0)?  -pi_o_2-tiny: pi_o_2+tiny;

	    /* when x is INF */
		if(ix==0x7ff00000) {
		    if(iy==0x7ff00000) {
			switch(m) {
			    case 0: return  pi_o_4+tiny;/* atan(+INF,+INF) */
			    case 1: return -pi_o_4-tiny;/* atan(-INF,+INF) */
			    case 2: return  3.0*pi_o_4+tiny;/*atan(+INF,-INF)*/
			    case 3: return -3.0*pi_o_4-tiny;/*atan(-INF,-INF)*/
			}
		    } else {
			switch(m) {
			    case 0: return  zero  ;	/* atan(+...,+INF) */
			    case 1: return -zero  ;	/* atan(-...,+INF) */
			    case 2: return  pi+tiny  ;	/* atan(+...,-INF) */
			    case 3: return -pi-tiny  ;	/* atan(-...,-INF) */
			}
		    }
		}
	    /* when y is INF */
		if(iy==0x7ff00000) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny;

	    /* compute y/x */
		k = (iy-ix)>>20;
		if(k > 60) z=pi_o_2+0.5*pi_lo; 	/* |y/x| >  2**60 */
		else if(hx<0&&k<-60) z=0.0; 	/* |y|/x < -2**60 */
		else z=ieee754_atan(Math.abs(y/x));		/* safe to do y/x */
		switch (m) {
		    case 0: return       z  ;	/* atan(+,+) */
		    case 1: z = Double.longBitsToDouble(Double.doubleToLongBits(z) ^ 0x80000000); // __HI(z) ^= 0x80000000;
			    return       z  ;	/* atan(-,+) */
		    case 2: return  pi-(z-pi_lo);/* atan(+,-) */
		    default: /* case 3 */
		    	    return  (z-pi_lo)-pi;/* atan(-,-) */
		}
	}

	/**
	 * scalbn (double x, int n)
	 * scalbn(x,n) returns x* 2**n  computed by  exponent
	 * manipulation rather than by actually performing an
	 * exponentiation or a multiplication.
	 */
	public static final double scalbn (double x, int n)
	{
		int  k,hx,lx;
		hx = (int)(Double.doubleToLongBits(x) >>> HI_SHIFT);
		lx = (int)(Double.doubleToLongBits(x) & LO_MASK);
	        k = (hx&0x7ff00000)>>20;		/* extract exponent */
	        if (k==0) {				/* 0 or subnormal x */
	            if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */
		    x *= two54;
		    hx = (int)(Double.doubleToLongBits(x) >>> HI_SHIFT);
		    k = ((hx&0x7ff00000)>>20) - 54;
	            if (n< -50000) return tiny*x; 	/*underflow*/
		    }
	        if (k==0x7ff) return x+x;		/* NaN or Inf */
	        k = k+n;
	        if (k >  0x7fe) return huge*copysign(huge,x); /* overflow  */
	        if (k > 0) 				/* normal result */
		    {
	        	//__HI(x) = (hx&0x800fffff)|(k<<20);
	        	x = Double.longBitsToDouble(((long)((int)(hx&0x800fffff)|(k<<20)) << HI_SHIFT) | (Double.doubleToLongBits(x) & LO_MASK));
	        	return x;
		    }
	        if (k <= -54)
	            if (n > 50000) 	/* in case integer overflow in n+k */
	            	return huge*copysign(huge,x);	/*overflow*/
		    else return tiny*copysign(tiny,x); 	/*underflow*/
	        k += 54;				/* subnormal result */
	        //__HI(x) = (hx&0x800fffff)|(k<<20);
	        x = Double.longBitsToDouble(((long)((int)(hx&0x800fffff)|(k<<20)) << HI_SHIFT) | (Double.doubleToLongBits(x) & LO_MASK));
	        return x*twom54;
	}

	/*
	 * copysign(double x, double y)
	 * copysign(x,y) returns a value with the magnitude of x and
	 * with the sign bit of y.
	 */
	public static final double copysign(final double x, final double y)
	{
		//__HI(x) = (__HI(x)&0x7fffffff)|(__HI(y)&0x80000000);
		// The below is actually about 30% faster than doing greater/less comparisons.
        return Double.longBitsToDouble((Double.doubleToLongBits(x) & 0x7fffffffffffffffL)|
        		(Double.doubleToLongBits(y) & 0x8000000000000000L));
	}

	/*
	 * fabs(x) returns the absolute value of x.
	 * This is already handled by Java ME.
	public static final double fabs(double x)
	{
		//__HI(x) &= 0x7fffffff;
		//return Double.longBitsToDouble(Double.doubleToLongBits(x) & 0x7fffffffffffffffL);
	}
	 */
	
	/**
	 * Returns the negation of the argument, throwing an exception if the result
	 * exceeds a {@code double}.
	 *
	 * @param a
	 *            the value to negate
	 * @return the result
	 * @throws ArithmeticException
	 *             if the result overflows a double
	 */
	public static double negateExact(double a) {
		if (a == Double.MAX_VALUE || a == Double.MIN_VALUE) {
			throw new ArithmeticException("double overflow");
		}

		return -a;
	}

	public static double gcd(double a, double b) {
		if (b == 0)
			return a;
		return gcd(b, a % b);
	}
	
	private static final double powSqrt(double x, double y)
	{
		int den = 1024, num = (int)(y*den), iterations = 10;
		double n = Double.MAX_VALUE;
		
		while( n >= Double.MAX_VALUE && iterations > 1)
		{
			n = x;
			
			for( int i=1; i < num; i++ )n*=x;

			if( n >= Double.MAX_VALUE ) 
			{
				iterations--;
				den = (int)(den / 2);
				num = (int)(y*den);
			}
		}	

		for( int i = 0; i = Double.MAX_VALUE )
		{
			den -=1;
			num = (int)(y*den);
			s = (num/den)+1;
			
			z = x; 
			for( int i = 1; i < num; i++ )z *= x;
		}
		
		while( n > 0 )
		{
			double a = n;

			for( int i = 1; i < den; i++ )a *= n;
			
			if( (a-z) < .00001 || (z-a) > .00001 ) return n;

			n *= .9999;                          
		}
		
		return -1.0;
	}
	
	private  static final double powTaylor(double a, double b)
	{
		boolean gt1 = (Math.sqrt((a-1)*(a-1)) <= 1)? false:true; 
		int oc = -1,iter = 30;
		double p = a, x, x2, sumX, sumY;
		
		if( (b-Math.floor(b)) == 0 )
		{
			for( int i = 1; i < b; i++ )p *= a;
			return p;
		}
		
		x = (gt1)?(a /(a-1)):(a-1);
		sumX = (gt1)?(1/x):x;
		
		for( int i = 2; i < iter; i++ )
		{
			p = x;
			for( int j = 1; j < i; j++)p *= x;
			
			double xTemp = (gt1)?(1/(i*p)):(p/i);
			
			sumX = (gt1)?(sumX+xTemp):(sumX+(xTemp*oc));
					
			oc *= -1;
		}
		
		x2 = b * sumX;
		sumY = 1+x2;
				
		for( int i = 2; i <= iter; i++ )
		{
			p = x2;
			for( int j = 1; j < i; j++)p *= x2;
			
			int yTemp = 2;
			for( int j = i; j > 2; j-- )yTemp *= j;
			
			sumY += p/yTemp;
		}
		
		return sumY;
	}
   */
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy