All Downloads are FREE. Search and download functionalities are using the official Maven repository.

tec.units.ri.internal.MathUtil Maven / Gradle / Ivy

There is a newer version: 1.0.3
Show newest version
/*
 * Units of Measurement Reference Implementation
 * Copyright (c) 2005-2016, Jean-Marie Dautelle, Werner Keil, V2COM.
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
 *    and the following disclaimer in the documentation and/or other materials provided with the distribution.
 *
 * 3. Neither the name of JSR-363 nor the names of its contributors may be used to endorse or promote products
 *    derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
package tec.units.ri.internal;

/*
 * Ported from the Sun Microsystems FDLIBM C-library.
 * (Freely Distributable Library for Math)
 * ====================================================
 * Portions Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
 *
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */

/**
 * MathUtil for Java ME. This fills the gap in Java ME Math with a port of Sun's public FDLIBM C-library for IEEE-754.
 *
 * @author kmashint
 *
 * @see http://www.netlib.org/fdlibm/readme For the Freely Distributable C-library conforming to IEEE-754 floating point math.
 * @see http://web.mit.edu/source/third/gcc/libjava/java/lang/ For the GNU C variant of the same IEEE-754 routines.
 * @see http://www.dclausen.net/projects/microfloat/ Another take on the IEEE-754 routines.
 * @see http://real-java.sourceforge.net/Real.html Yet another take on the IEEE-754 routines.
 * @see http ://today.java.net/pub/a/today/2007/11/06/creating-java-me-math-pow-method .html For other approximations.
 * @see http ://martin.ankerl.com/2007/10/04/optimized-pow-approximation-for-java- and-c-c/ For fast but rough approximations.
 * @see http ://martin.ankerl.com/2007/02/11/optimized-exponential-functions-for-java / For more fast but rough approximations.
 */
public abstract class MathUtil {

  /* Common constants. */

  private static final double zero = 0.0, one = 1.0, two = 2.0, tiny = 1.0e-300, huge = 1.0e+300, two53 = 9007199254740992.0, /*
                                                                                                                              * 0x43400000                                                                                                                              */
  two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
  twom54 = 5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */
  P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
  P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
  P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
  P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
  P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */

  // private static final double pio2_hi = 1.57079632679489655800e+00;
  /*
                                                                    * 0x3FF921FB,
                                                                    * 0x54442D18
                                                                    */
  // pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
  // pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
  /* coefficient for R(x^2) */
  // pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
  // pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
  // pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
  // pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
  // pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
  // pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
  // qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
  // qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
  // qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
  // qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */

  private static final double pi_o_4 = 7.8539816339744827900E-01, /*
                                                                  * 0x3FE921FB,
                                                                  * 0x54442D18
                                                                  */
  pi_o_2 = 1.5707963267948965580E+00, /* 0x3FF921FB, 0x54442D18 */
  pi = 3.1415926535897931160E+00, /* 0x400921FB, 0x54442D18 */
  pi_lo = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */

  private static final long HI_MASK = 0xffffffff00000000L, LO_MASK = 0x00000000ffffffffL;

  private static final int HI_SHIFT = 32;

  /**
   * Return Math.E to the exponent a. This in turn uses ieee7854_exp(double).
   */
  public static final double exp(double a) {
    return ieee754_exp(a);
  }

  /**
   * Return the natural logarithm, ln(a), as it relates to Math.E. This in turn uses ieee7854_log(double).
   */
  public static final double log(double a) {
    return ieee754_log(a);
  }

  /**
   * Return a to the power of b, sometimes written as a ** b but not to be confused with the bitwise ^ operator. This in turn uses
   * ieee7854_log(double).
   */
  public static final double pow(double a, double b) {
    return ieee754_pow(a, b);
  }

  /**
   * Return the arcsine of a.
   */
  /*  public static final double asin(double a) {
      return ieee754_asin(a);
    }
  */
  /**
   * Return the arccosine of a.
   */
  /*private static final double acos(double a) {
    return ieee754_acos(a);
  }*/

  /**
   * Return the arctangent of a, call it b, where a = tan(b).
   */
  public static final double atan(double a) {
    return ieee754_atan(a);
  }

  /**
   * For any real arguments x and y not both equal to zero, atan2(y, x) is the angle in radians between the positive x-axis of a plane and the point
   * given by the coordinates (x, y) on it. The angle is positive for counter-clockwise angles (upper half-plane, y > 0), and negative for clockwise
   * angles (lower half-plane, y < 0). This in turn uses ieee7854_arctan2(double).
   */
  public static final double atan2(double b, double a) {
    return ieee754_atan2(a, b);
  }

  /*
   * __ieee754_exp(x) Returns the exponential of x.
   * 
   * Method 1. Argument reduction: Reduce x to an r so that |r| <= 0.5*ln2 ~
   * 0.34658. Given x, find r and integer k such that
   * 
   * x = k*ln2 + r, |r| <= 0.5*ln2.
   * 
   * Here r will be represented as r = hi-lo for better accuracy.
   * 
   * 2. Approximation of exp(r) by a special rational function on the interval
   * [0,0.34658]: Write R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 -
   * r**4/360 + ... We use a special Remes algorithm on [0,0.34658] to
   * generate a polynomial of degree 5 to approximate R. The maximum error of
   * this polynomial approximation is bounded by 2**-59. In other words, R(z)
   * ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 (where z=r*r, and
   * the values of P1 to P5 are listed below) and | 5 | -59 |
   * 2.0+P1*z+...+P5*z - R(z) | <= 2 | | The computation of exp(r) thus
   * becomes 2*r exp(r) = 1 + ------- R - r r*R1(r) = 1 + r + ----------- (for
   * better accuracy) 2 - R1(r) where 2 4 10 R1(r) = r - (P1*r + P2*r + ... +
   * P5*r ).
   * 
   * 3. Scale back to obtain exp(x): From step 1, we have exp(x) = 2^k *
   * exp(r)
   * 
   * Special cases: exp(INF) is INF, exp(NaN) is NaN; exp(-INF) is 0, and for
   * finite argument, only exp(0)=1 is exact.
   * 
   * Accuracy: according to an error analysis, the error is always less than 1
   * ulp (unit in the last place).
   * 
   * Misc. info. For IEEE double if x > 7.09782712893383973096e+02 then exp(x)
   * overflow if x < -7.45133219101941108420e+02 then exp(x) underflow
   * 
   * Constants: The hexadecimal values are the intended ones for the following
   * constants. The decimal values may be used, provided that the compiler
   * will convert from decimal to binary accurately enough to produce the
   * hexadecimal values shown.
   */

  private static final double twom1000 = 9.33263618503218878990e-302, /*
                                                                      * 2**-1000
                                                                      * =
                                                                      * 0x01700000
                                                                      * ,0
                                                                      */
  o_threshold = 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
  u_threshold = -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */
  invln2 = 1.44269504088896338700e+00; /* 0x3ff71547, 0x652b82fe */

  private static final double[] halF = new double[] { 0.5, -0.5 }, ln2HI = new double[] { 6.93147180369123816490e-01, /*
                                                                                                                      * 0x3fe62e42,
                                                                                                                      * 0xfee00000
                                                                                                                      */
  -6.93147180369123816490e-01 }, /* 0xbfe62e42, 0xfee00000 */
  ln2LO = new double[] { 1.90821492927058770002e-10, /*
                                                     * 0x3dea39ef,
                                                     * 0x35793c76
                                                     */
  -1.90821492927058770002e-10 }; /* 0xbdea39ef, 0x35793c76 */

  private static final double ieee754_exp(double x) {
    double y, c, t;
    double hi = 0, lo = 0;
    int k = 0;
    int xsb, hx, lx;
    long yl;
    long xl = Double.doubleToLongBits(x);

    hx = (int) ((long) xl >>> HI_SHIFT); /* high word of x */
    xsb = (hx >> 31) & 1; /* sign bit of x */
    hx &= 0x7fffffff; /* high word of |x| */

    /* filter out non-finite argument */
    if (hx >= 0x40862E42) { /* if |x|>=709.78... */
      if (hx >= 0x7ff00000) {
        lx = (int) ((long) xl & LO_MASK); /* low word of x */
        if (((hx & 0xfffff) | lx) != 0)
          return x + x; /* NaN */
        else
          return (xsb == 0) ? x : 0.0; /* exp(+-inf)={inf,0} */
      }
      if (x > o_threshold)
        return huge * huge; /* overflow */
      if (x < u_threshold)
        return twom1000 * twom1000; /* underflow */
    }

    /* argument reduction */
    if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
      if (hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
        hi = x - ln2HI[xsb];
        lo = ln2LO[xsb];
        k = 1 - xsb - xsb;
      } else {
        k = (int) (invln2 * x + halF[xsb]);
        t = k;
        hi = x - t * ln2HI[0]; /* t*ln2HI is exact here */
        lo = t * ln2LO[0];
      }
      x = hi - lo;
    } else if (hx < 0x3e300000) { /* when |x|<2**-28 */
      if (huge + x > one)
        return one + x;/* trigger inexact */
    }
    // else k = 0; // handled at declaration

    /* x is now in primary range */
    t = x * x;
    c = x - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
    if (k == 0)
      return one - ((x * c) / (c - 2.0) - x);
    else
      y = one - ((lo - (x * c) / (2.0 - c)) - hi);
    yl = Double.doubleToLongBits(y);
    if (k >= -1021) {
      yl += ((long) k << (20 + HI_SHIFT)); /* add k to y's exponent */
      return Double.longBitsToDouble(yl);
    } else {
      yl += ((long) (k + 1000) << (20 + HI_SHIFT));/* add k to y's exponent */
      return Double.longBitsToDouble(yl) * twom1000;
    }
  }

  /*
   * __ieee754_log(x) Return the logrithm of x
   * 
   * Method : 1. Argument Reduction: find k and f such that x = 2^k * (1+f),
   * where sqrt(2)/2 < 1+f < sqrt(2) .
   * 
   * 2. Approximation of log(1+f). Let s = f/(2+f) ; based on log(1+f) =
   * log(1+s) - log(1-s) = 2s + 2/3 s**3 + 2/5 s**5 + ....., = 2s + s*R We use
   * a special Reme algorithm on [0,0.1716] to generate a polynomial of degree
   * 14 to approximate R The maximum error of this polynomial approximation is
   * bounded by 2**-58.45. In other words, 2 4 6 8 10 12 14 R(z) ~ Lg1*s
   * +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s (the values of Lg1 to Lg7 are
   * listed in the program) and | 2 14 | -58.45 | Lg1*s +...+Lg7*s - R(z) | <=
   * 2 | | Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. In
   * order to guarantee error in log below 1ulp, we compute log by log(1+f) =
   * f - s*(f - R) (if f is not too large) log(1+f) = f - (hfsq - s*(hfsq+R)).
   * (better accuracy)
   * 
   * 3. Finally, log(x) = k*ln2 + log(1+f). =
   * k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) Here ln2 is split into two
   * floating point number: ln2_hi + ln2_lo, where n*ln2_hi is always exact
   * for |n| < 2000.
   * 
   * Special cases: log(x) is NaN with signal if x < 0 (including -INF) ;
   * log(+INF) is +INF; log(0) is -INF with signal; log(NaN) is that NaN with
   * no signal.
   * 
   * Accuracy: according to an error analysis, the error is always less than 1
   * ulp (unit in the last place).
   * 
   * Constants: The hexadecimal values are the intended ones for the following
   * constants. The decimal values may be used, provided that the compiler
   * will convert from decimal to binary accurately enough to produce the
   * hexadecimal values shown.
   */

  private static final double ln2_hi = 6.93147180369123816490e-01, /*
                                                                   * 3fe62e42
                                                                   * fee00000
                                                                   */
  ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
  Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
  Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
  Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
  Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
  Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
  Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
  Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */

  private static final double ieee754_log(double x) {
    double hfsq, f, s, z, R, w, t1, t2, dk;
    int k, hx, lx, i, j;
    long xl = Double.doubleToLongBits(x);

    hx = (int) (xl >> HI_SHIFT); /* high word of x */
    lx = (int) (xl & LO_MASK); /* low word of x */

    k = 0;
    if (hx < 0x00100000) { /* x < 2**-1022 */
      if (((hx & 0x7fffffff) | lx) == 0)
        return -two54 / zero; /* log(+-0)=-inf */
      if (hx < 0)
        return (x - x) / zero; /* log(-#) = NaN */
      k -= 54;
      x *= two54; /* subnormal number, scale up x */
      hx = (int) (Double.doubleToLongBits(x) >>> HI_SHIFT); /*
                                                            * high word of
                                                            * x
                                                            */
    }
    if (hx >= 0x7ff00000)
      return x + x;
    k += (hx >> 20) - 1023;
    hx &= 0x000fffff;
    i = (hx + 0x95f64) & 0x100000;
    // __HI(x) = hx|(i^0x3ff00000); /* normalize x or x/2 */
    x = Double.longBitsToDouble(((long) (hx | (i ^ 0x3ff00000)) << HI_SHIFT) | (Double.doubleToLongBits(x) & LO_MASK));
    k += (i >> 20);
    f = x - 1.0;
    if ((0x000fffff & (2 + hx)) < 3) { /* |f| < 2**-20 */
      if (f == zero)
        if (k == 0)
          return zero;
        else {
          dk = (double) k;
          return dk * ln2_hi + dk * ln2_lo;
        }
      R = f * f * (0.5 - 0.33333333333333333 * f);
      if (k == 0)
        return f - R;
      else {
        dk = (double) k;
        return dk * ln2_hi - ((R - dk * ln2_lo) - f);
      }
    }
    s = f / (2.0 + f);
    dk = (double) k;
    z = s * s;
    i = hx - 0x6147a;
    w = z * z;
    j = 0x6b851 - hx;
    t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
    t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
    i |= j;
    R = t2 + t1;
    if (i > 0) {
      hfsq = 0.5 * f * f;
      if (k == 0)
        return f - (hfsq - s * (hfsq + R));
      else
        return dk * ln2_hi - ((hfsq - (s * (hfsq + R) + dk * ln2_lo)) - f);
    } else {
      if (k == 0)
        return f - s * (f - R);
      else
        return dk * ln2_hi - ((s * (f - R) - dk * ln2_lo) - f);
    }
  }

  /*
   * __ieee754_pow(x,y) return x**y
   * 
   * n Method: Let x = 2 * (1+f) 1. Compute and return log2(x) in two pieces:
   * log2(x) = w1 + w2, where w1 has 53-24 = 29 bit trailing zeros. 2. Perform
   * y*log2(x) = n+y' by simulating muti-precision arithmetic, where
   * |y'|<=0.5. 3. Return x**y = 2**n*exp(y'*log2)
   * 
   * Special cases: 1. (anything) ** 0 is 1 2. (anything) ** 1 is itself 3.
   * (anything) ** NAN is NAN 4. NAN ** (anything except 0) is NAN 5. +-(|x| >
   * 1) ** +INF is +INF 6. +-(|x| > 1) ** -INF is +0 7. +-(|x| < 1) ** +INF is
   * +0 8. +-(|x| < 1) ** -INF is +INF 9. +-1 ** +-INF is NAN 10. +0 **
   * (+anything except 0, NAN) is +0 11. -0 ** (+anything except 0, NAN, odd
   * integer) is +0 12. +0 ** (-anything except 0, NAN) is +INF 13. -0 **
   * (-anything except 0, NAN, odd integer) is +INF 14. -0 ** (odd integer) =
   * -( +0 ** (odd integer) ) 15. +INF ** (+anything except 0,NAN) is +INF 16.
   * +INF ** (-anything except 0,NAN) is +0 17. -INF ** (anything) = -0 **
   * (-anything) 18. (-anything) ** (integer) is
   * (-1)**(integer)*(+anything**integer) 19. (-anything except 0 and inf) **
   * (non-integer) is NAN
   * 
   * Accuracy: pow(x,y) returns x**y nearly rounded. In particular
   * pow(integer,integer) always returns the correct integer provided it is
   * representable.
   * 
   * Constants : The hexadecimal values are the intended ones for the
   * following constants. The decimal values may be used, provided that the
   * compiler will convert from decimal to binary accurately enough to produce
   * the hexadecimal values shown.
   */

  private static final double bp[] = { 1.0, 1.5, }, dp_h[] = { 0.0, 5.84962487220764160156e-01, }, /* 0x3FE2B803, 0x40000000 */
  dp_l[] = { 0.0, 1.35003920212974897128e-08, }, /* 0x3E4CFDEB, 0x43CFD006 */
  /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
  L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
  L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
  L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
  L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
  L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
  L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
  lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
  lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
  lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
  ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
  cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
  cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
  cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h */
  ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
  ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2 */
  ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail */

  private static final double ieee754_pow(double x, double y) {
    double z, ax, z_h, z_l, p_h, p_l;
    double y1, t1, t2, r, s, t, u, v, w;
    // int i0,i1;
    int i, j, k, yisint, n;
    int hx, hy, ix, iy;
    int lx, ly;

    // i0 = (int)((Double.doubleToLongBits(one)) >>> (29+HI_SHIFT))^1;
    // i1 = 1-i0;
    hx = (int) (Double.doubleToLongBits(x) >>> HI_SHIFT);
    lx = (int) (Double.doubleToLongBits(x) & LO_MASK);
    hy = (int) (Double.doubleToLongBits(y) >>> HI_SHIFT);
    ly = (int) (Double.doubleToLongBits(y) & LO_MASK);
    ix = hx & 0x7fffffff;
    iy = hy & 0x7fffffff;

    /* y==zero: x**0 = 1 */
    if ((iy | ly) == 0)
      return one;

    /* +-NaN return x+y */
    if (ix > 0x7ff00000 || ((ix == 0x7ff00000) && (lx != 0)) || iy > 0x7ff00000 || ((iy == 0x7ff00000) && (ly != 0)))
      return x + y;

    /*
     * determine if y is an odd int when x < 0 yisint = 0 ... y is not an
     * integer yisint = 1 ... y is an odd int yisint = 2 ... y is an even
     * int
     */
    yisint = 0;
    if (hx < 0) {
      if (iy >= 0x43400000)
        yisint = 2; /* even integer y */
      else if (iy >= 0x3ff00000) {
        k = (iy >> 20) - 0x3ff; /* exponent */
        if (k > 20) {
          j = ly >> (52 - k);
          if ((j << (52 - k)) == ly)
            yisint = 2 - (j & 1);
        } else if (ly == 0) {
          j = iy >> (20 - k);
          if ((j << (20 - k)) == iy)
            yisint = 2 - (j & 1);
        }
      }
    }

    /* special value of y */
    if (ly == 0) {
      if (iy == 0x7ff00000) { /* y is +-inf */
        if (((ix - 0x3ff00000) | lx) == 0)
          return y - y; /* inf**+-1 is NaN */
        else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
          return (hy >= 0) ? y : zero;
        else
          /* (|x|<1)**-,+inf = inf,0 */
          return (hy < 0) ? -y : zero;
      }
      if (iy == 0x3ff00000) { /* y is +-1 */
        if (hy < 0)
          return one / x;
        else
          return x;
      }
      if (hy == 0x40000000)
        return x * x; /* y is 2 */
      if (hy == 0x3fe00000) { /* y is 0.5 */
        if (hx >= 0) /* x >= +0 */
          return Math.sqrt(x);
      }
    }

    ax = Math.abs(x);
    /* special value of x */
    if (lx == 0) {
      if (ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000) {
        z = ax; /* x is +-0,+-inf,+-1 */
        if (hy < 0)
          z = one / z; /* z = (1/|x|) */
        if (hx < 0) {
          if (((ix - 0x3ff00000) | yisint) == 0) {
            z = (z - z) / (z - z); /* (-1)**non-int is NaN */
          } else if (yisint == 1)
            z = -z; /* (x<0)**odd = -(|x|**odd) */
        }
        return z;
      }
    }

    n = (hx >>> 31) + 1;

    /* (x<0)**(non-int) is NaN */
    if ((n | yisint) == 0)
      return (x - x) / (x - x);

    s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
    if ((n | (yisint - 1)) == 0)
      s = -one;/* (-ve)**(odd int) */

    /* |y| is huge */
    if (iy > 0x41e00000) { /* if |y| > 2**31 */
      if (iy > 0x43f00000) { /* if |y| > 2**64, must o/uflow */
        if (ix <= 0x3fefffff)
          return (hy < 0) ? huge * huge : tiny * tiny;
        if (ix >= 0x3ff00000)
          return (hy > 0) ? huge * huge : tiny * tiny;
      }
      /* over/underflow if x is not close to one */
      if (ix < 0x3fefffff)
        return (hy < 0) ? s * huge * huge : s * tiny * tiny;
      if (ix > 0x3ff00000)
        return (hy > 0) ? s * huge * huge : s * tiny * tiny;
      /*
       * now |1-x| is tiny <= 2**-20, suffice to compute log(x) by
       * x-x^2/2+x^3/3-x^4/4
       */
      t = x - one; /* t has 20 trailing zeros */
      w = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25));
      u = ivln2_h * t; /* ivln2_h has 21 sig. bits */
      v = t * ivln2_l - w * ivln2;
      t1 = u + v;
      // __LO(t1) = 0; // keep high word
      t1 = Double.longBitsToDouble(Double.doubleToLongBits(t1) & HI_MASK);
      t2 = v - (t1 - u);
    } else {
      double ss, s2, s_h, s_l, t_h, t_l;
      n = 0;
      /* take care subnormal number */
      if (ix < 0x00100000) {
        ax *= two53;
        n -= 53;
        ix = (int) (Double.doubleToLongBits(ax) >>> HI_SHIFT);
      }
      n += ((ix) >> 20) - 0x3ff;
      j = ix & 0x000fffff;
      /* determine interval */
      ix = j | 0x3ff00000; /* normalize ix */
      if (j <= 0x3988E)
        k = 0; /* |x|>1)|0x20000000)+0x00080000+(k<<18);
      t_h = Double.longBitsToDouble(((long) ((int) ((ix >> 1) | 0x20000000) + 0x00080000 + (k << 18)) << HI_SHIFT)
          | (Double.doubleToLongBits(t_h) & LO_MASK));
      t_l = ax - (t_h - bp[k]);
      s_l = v * ((u - s_h * t_h) - s_h * t_l);
      /* compute log(ax) */
      s2 = ss * ss;
      r = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
      r += s_l * (s_h + ss);
      s2 = s_h * s_h;
      t_h = 3.0 + s2 + r;
      // __LO(t_h) = 0; // keep high word
      t_h = Double.longBitsToDouble(Double.doubleToLongBits(t_h) & HI_MASK);
      t_l = r - ((t_h - 3.0) - s2);
      /* u+v = ss*(1+...) */
      u = s_h * t_h;
      v = s_l * t_h + t_l * ss;
      /* 2/(3log2)*(ss+...) */
      p_h = u + v;
      // __LO(p_h) = 0; // keep high word
      p_h = Double.longBitsToDouble(Double.doubleToLongBits(p_h) & HI_MASK);
      p_l = v - (p_h - u);
      z_h = cp_h * p_h; /* cp_h+cp_l = 2/(3*log2) */
      z_l = cp_l * p_h + p_l * cp + dp_l[k];
      /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
      t = (double) n;
      t1 = (((z_h + z_l) + dp_h[k]) + t);
      // __LO(t1) = 0; // keep high word
      t1 = Double.longBitsToDouble(Double.doubleToLongBits(t1) & HI_MASK);
      t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
    }

    /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
    y1 = y;
    // __LO(y1) = 0; // keep high word
    y1 = Double.longBitsToDouble(Double.doubleToLongBits(y1) & HI_MASK);
    p_l = (y - y1) * t1 + y * t2;
    p_h = y1 * t1;
    z = p_l + p_h;
    j = (int) (Double.doubleToLongBits(z) >>> HI_SHIFT);
    i = (int) (Double.doubleToLongBits(z) & LO_MASK);
    if (j >= 0x40900000) { /* z >= 1024 */
      if (((j - 0x40900000) | i) != 0) /* if z > 1024 */
        return s * huge * huge; /* overflow */
      else {
        if (p_l + ovt > z - p_h)
          return s * huge * huge; /* overflow */
      }
    } else if ((j & 0x7fffffff) >= 0x4090cc00) { /* z <= -1075 */
      if (((j - 0xc090cc00) | i) != 0) /* z < -1075 */
        return s * tiny * tiny; /* underflow */
      else {
        if (p_l <= z - p_h)
          return s * tiny * tiny; /* underflow */
      }
    }
    /*
     * compute 2**(p_h+p_l)
     */
    i = j & 0x7fffffff;
    k = (i >> 20) - 0x3ff;
    n = 0;
    if (i > 0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
      n = j + (0x00100000 >> (k + 1));
      k = ((n & 0x7fffffff) >> 20) - 0x3ff; /* new k for n */
      t = zero;
      // __HI(t) = (n&~(0x000fffff>>k));
      t = Double.longBitsToDouble(((long) (n & ~(0x000fffff >> k)) << HI_SHIFT) | (Double.doubleToLongBits(t) & LO_MASK));
      n = ((n & 0x000fffff) | 0x00100000) >> (20 - k);
      if (j < 0)
        n = -n;
      p_h -= t;
    }
    t = p_l + p_h;
    // __LO(t) = 0; // keep high word
    t = Double.longBitsToDouble(Double.doubleToLongBits(t) & HI_MASK);
    u = t * lg2_h;
    v = (p_l - (t - p_h)) * lg2 + t * lg2_l;
    z = u + v;
    w = v - (z - u);
    t = z * z;
    t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
    r = (z * t1) / (t1 - two) - (w + z * w);
    z = one - (r - z);
    j = (int) ((long) Double.doubleToLongBits(z) >>> HI_SHIFT);
    j += (n << 20);
    if ((j >> 20) <= 0)
      z = scalbn(z, n); /* subnormal output */
    else
      // __HI(z) = j;
      z = Double.longBitsToDouble(((long) j << HI_SHIFT) | (Double.doubleToLongBits(z) & LO_MASK));
    return s * z;
  }

  /*
   * __ieee754_acos(x) Method : acos(x) = pi/2 - asin(x) acos(-x) = pi/2 +
   * asin(x) For |x|<=0.5 acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c) For
   * x>0.5 acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2))) =
   * 2asin(sqrt((1-x)/2)) = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z) = 2f + (2c
   * + 2s*z*R(z)) where f=hi part of s, and c = (z-f*f)/(s+f) is the
   * correction term for f so that f+c ~ sqrt(z). For x<-0.5 acos(x) = pi -
   * 2asin(sqrt((1-|x|)/2)) = pi - 0.5*(s+s*z*R(z)), where
   * z=(1-|x|)/2,s=sqrt(z)
   * 
   * Special cases: if x is NaN, return x itself; if |x|>1, return NaN with
   * invalid signal.
   * 
   * Function needed: sqrt
   */

  // private static final double ieee754_acos(double x) {
  // double z, p, q, r, w, s, c, df;
  // int hx, ix;
  // hx = (int) (Double.doubleToLongBits(x) >>> HI_SHIFT);
  // ix = hx & 0x7fffffff;
  // if (ix >= 0x3ff00000) { /* |x| >= 1 */
  // if (((ix - 0x3ff00000) | (int) (Double.doubleToLongBits(x) & LO_MASK)) == 0) { /*
  // * |
  // * x
  // * |=
  // * =
  // * 1
  // */
  // if (hx > 0)
  // return 0.0; /* acos(1) = 0 */
  // else
  // return pi + 2.0 * pio2_lo; /* acos(-1)= pi */
  // }
  // return (x - x) / (x - x); /* acos(|x|>1) is NaN */
  // }
  // if (ix < 0x3fe00000) { /* |x| < 0.5 */
  // if (ix <= 0x3c600000)
  // return pio2_hi + pio2_lo;/* if|x|<2**-57 */
  // z = x * x;
  // p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5)))));
  // q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4)));
  // r = p / q;
  // return pio2_hi - (x - (pio2_lo - x * r));
  // } else if (hx < 0) { /* x < -0.5 */
  // z = (one + x) * 0.5;
  // p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5)))));
  // q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4)));
  // s = Math.sqrt(z);
  // r = p / q;
  // w = r * s - pio2_lo;
  // return pi - 2.0 * (s + w);
  // } else { /* x > 0.5 */
  // z = (one - x) * 0.5;
  // s = Math.sqrt(z);
  // df = s;
  // // __LO(df) = 0; // keep high word
  // df = Double.longBitsToDouble(Double.doubleToLongBits(df) & HI_MASK);
  // c = (z - df * df) / (s + df);
  // p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5)))));
  // q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4)));
  // r = p / q;
  // w = r * s + c;
  // return 2.0 * (df + w);
  // }
  // }

  /*
   * __ieee754_asin(x) Method : Since asin(x) = x + x^3/6 + x^5*3/40 +
   * x^7*15/336 + ... we approximate asin(x) on [0,0.5] by asin(x) = x +
   * x*x^2*R(x^2) where R(x^2) is a rational approximation of (asin(x)-x)/x^3
   * and its remez error is bounded by |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
   * 
   * For x in [0.5,1] asin(x) = pi/2-2*asin(sqrt((1-x)/2)) Let y = (1-x), z =
   * y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2; then for x>0.98 asin(x) =
   * pi/2 - 2*(s+s*z*R(z)) = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo) For x<=0.98,
   * let pio4_hi = pio2_hi/2, then f = hi part of s; c = sqrt(z) - f =
   * (z-f*f)/(s+f) ...f+c=sqrt(z) and asin(x) = pi/2 - 2*(s+s*z*R(z)) =
   * pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo) =
   * pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
   * 
   * Special cases: if x is NaN, return x itself; if |x|>1, return NaN with
   * invalid signal.
   */

  // private static final double ieee754_asin(double x) {
  // double t, w, p, q, c, r, s;
  // int hx, ix;
  // hx = (int) (Double.doubleToLongBits(x) >>> HI_SHIFT);
  // ix = hx & 0x7fffffff;
  // if (ix >= 0x3ff00000) { /* |x|>= 1 */
  // if (((ix - 0x3ff00000) | (int) (Double.doubleToLongBits(x) & LO_MASK)) == 0)
  // /* asin(1)=+-pi/2 with inexact */
  // return x * pio2_hi + x * pio2_lo;
  // return (x - x) / (x - x); /* asin(|x|>1) is NaN */
  // } else if (ix < 0x3fe00000) { /* |x|<0.5 */
  // if (ix < 0x3e400000) { /* if |x| < 2**-27 */
  // if (huge + x > one)
  // return x;/* return x with inexact if x!=0 */
  // } else {
  // t = x * x;
  // p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5)))));
  // q = one + t * (qS1 + t * (qS2 + t * (qS3 + t * qS4)));
  // w = p / q;
  // return x + x * w;
  // }
  // }
  // /* 1> |x|>= 0.5 */
  // w = one - Math.abs(x);
  // t = w * 0.5;
  // p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5)))));
  // q = one + t * (qS1 + t * (qS2 + t * (qS3 + t * qS4)));
  // s = Math.sqrt(t);
  // if (ix >= 0x3FEF3333) { /* if |x| > 0.975 */
  // w = p / q;
  // t = pio2_hi - (2.0 * (s + s * w) - pio2_lo);
  // } else {
  // w = s;
  // // __LO(w) = 0; // keep the high word
  // w = Double.longBitsToDouble(Double.doubleToLongBits(w) & HI_MASK);
  // c = (t - w * w) / (s + w);
  // r = p / q;
  // p = 2.0 * s * r - (pio2_lo - 2.0 * c);
  // q = pio4_hi - 2.0 * w;
  // t = pio4_hi - (p - q);
  // }
  // if (hx > 0)
  // return t;
  // else
  // return -t;
  // }

  /*
   * atan(x) Method 1. Reduce x to positive by atan(x) = -atan(-x). 2.
   * According to the integer k=4t+0.25 chopped, t=x, the argument is further
   * reduced to one of the following intervals and the arctangent of t is
   * evaluated by the corresponding formula:
   * 
   * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...) [7/16,11/16]
   * atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) ) [11/16.19/16] atan(x) =
   * atan( 1 ) + atan( (t-1)/(1+t) ) [19/16,39/16] atan(x) = atan(3/2) + atan(
   * (t-1.5)/(1+1.5t) ) [39/16,INF] atan(x) = atan(INF) + atan( -1/t )
   * 
   * Constants: The hexadecimal values are the intended ones for the following
   * constants. The decimal values may be used, provided that the compiler
   * will convert from decimal to binary accurately enough to produce the
   * hexadecimal values shown.
   */

  private static final double atanhi[] = { 4.63647609000806093515e-01, /*
                                                                       * atan(0.5
                                                                       * )hi
                                                                       * 0x3FDDAC67
                                                                       * ,
                                                                       * 0x0561BB4F
                                                                       */
  7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
  9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
  1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
  };

  private static final double atanlo[] = { 2.26987774529616870924e-17, /*
                                                                       * atan(0.5
                                                                       * )lo
                                                                       * 0x3C7A2B7F
                                                                       * ,
                                                                       * 0x222F65E2
                                                                       */
  3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
  1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
  6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
  };

  private static final double aT[] = { 3.33333333333329318027e-01, /*
                                                                   * 0x3FD55555,
                                                                   * 0x5555550D
                                                                   */
  -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */
  1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */
  -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */
  9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */
  -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */
  6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */
  -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */
  4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */
  -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */
  1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */
  };

  private static final double ieee754_atan(double x) {
    double w, s1, s2, z;
    int ix, hx, id;

    hx = (int) (Double.doubleToLongBits(x) >>> HI_SHIFT);
    ix = hx & 0x7fffffff;
    if (ix >= 0x44100000) { /* if |x| >= 2^66 */
      if (ix > 0x7ff00000 || (ix == 0x7ff00000 && ((int) (Double.doubleToLongBits(x) & LO_MASK) != 0)))
        return x + x; /* NaN */
      if (hx > 0)
        return atanhi[3] + atanlo[3];
      else
        return -atanhi[3] - atanlo[3];
    }
    if (ix < 0x3fdc0000) { /* |x| < 0.4375 */
      if (ix < 0x3e200000) { /* |x| < 2^-29 */
        if (huge + x > one)
          return x; /* raise inexact */
      }
      id = -1;
    } else {
      x = Math.abs(x);
      if (ix < 0x3ff30000) { /* |x| < 1.1875 */
        if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */
          id = 0;
          x = (2.0 * x - one) / (2.0 + x);
        } else { /* 11/16<=|x|< 19/16 */
          id = 1;
          x = (x - one) / (x + one);
        }
      } else {
        if (ix < 0x40038000) { /* |x| < 2.4375 */
          id = 2;
          x = (x - 1.5) / (one + 1.5 * x);
        } else { /* 2.4375 <= |x| < 2^66 */
          id = 3;
          x = -1.0 / x;
        }
      }
    }
    /* end of argument reduction */
    z = x * x;
    w = z * z;
    /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
    s1 = z * (aT[0] + w * (aT[2] + w * (aT[4] + w * (aT[6] + w * (aT[8] + w * aT[10])))));
    s2 = w * (aT[1] + w * (aT[3] + w * (aT[5] + w * (aT[7] + w * aT[9]))));
    if (id < 0)
      return x - x * (s1 + s2);
    else {
      z = atanhi[id] - ((x * (s1 + s2) - atanlo[id]) - x);
      return (hx < 0) ? -z : z;
    }
  }

  /*
   * __ieee754_atan2(y,x) Method : 1. Reduce y to positive by
   * atan2(y,x)=-atan2(-y,x). 2. Reduce x to positive by (if x and y are
   * unexceptional): ARG (x+iy) = arctan(y/x) ... if x > 0, ARG (x+iy) = pi -
   * arctan[y/(-x)] ... if x < 0,
   * 
   * Special cases:
   * 
   * ATAN2((anything), NaN ) is NaN; ATAN2(NAN , (anything) ) is NaN;
   * ATAN2(+-0, +(anything but NaN)) is +-0 ; ATAN2(+-0, -(anything but NaN))
   * is +-pi ; ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2;
   * ATAN2(+-(anything but INF and NaN), +INF) is +-0 ; ATAN2(+-(anything but
   * INF and NaN), -INF) is +-pi; ATAN2(+-INF,+INF ) is +-pi/4 ;
   * ATAN2(+-INF,-INF ) is +-3pi/4; ATAN2(+-INF, (anything but,0,NaN, and
   * INF)) is +-pi/2;
   * 
   * Constants: The hexadecimal values are the intended ones for the following
   * constants. The decimal values may be used, provided that the compiler
   * will convert from decimal to binary accurately enough to produce the
   * hexadecimal values shown.
   */

  private static final double ieee754_atan2(double x, double y) {
    double z;
    int k, m;
    int hx, hy, ix, iy;
    int lx, ly;

    // i0 = (int)((Double.doubleToLongBits(one)) >> (29+HI_SHIFT))^1;
    // i1 = 1-i0;
    hx = (int) (Double.doubleToLongBits(x) >>> HI_SHIFT);
    lx = (int) (Double.doubleToLongBits(x) & LO_MASK);
    hy = (int) (Double.doubleToLongBits(y) >>> HI_SHIFT);
    ly = (int) (Double.doubleToLongBits(y) & LO_MASK);
    ix = hx & 0x7fffffff;
    iy = hy & 0x7fffffff;

    if (((ix | ((lx | -lx) >> 31)) > 0x7ff00000) || ((iy | ((ly | -ly) >> 31)) > 0x7ff00000)) /* x or y is NaN */
      return x + y;
    if ((hx - 0x3ff00000 | lx) == 0)
      return ieee754_atan(y); /* x=1.0 */
    m = ((hy >> 31) & 1) | ((hx >> 30) & 2); /* 2*sign(x)+sign(y) */

    /* when y = 0 */
    if ((iy | ly) == 0) {
      switch (m) {
        case 0:
        case 1:
          return y; /* atan(+-0,+anything)=+-0 */
        case 2:
          return pi + tiny;/* atan(+0,-anything) = pi */
        case 3:
          return -pi - tiny;/* atan(-0,-anything) =-pi */
      }
    }
    /* when x = 0 */
    if ((ix | lx) == 0)
      return (hy < 0) ? -pi_o_2 - tiny : pi_o_2 + tiny;

    /* when x is INF */
    if (ix == 0x7ff00000) {
      if (iy == 0x7ff00000) {
        switch (m) {
          case 0:
            return pi_o_4 + tiny;/* atan(+INF,+INF) */
          case 1:
            return -pi_o_4 - tiny;/* atan(-INF,+INF) */
          case 2:
            return 3.0 * pi_o_4 + tiny;/* atan(+INF,-INF) */
          case 3:
            return -3.0 * pi_o_4 - tiny;/* atan(-INF,-INF) */
        }
      } else {
        switch (m) {
          case 0:
            return zero; /* atan(+...,+INF) */
          case 1:
            return -zero; /* atan(-...,+INF) */
          case 2:
            return pi + tiny; /* atan(+...,-INF) */
          case 3:
            return -pi - tiny; /* atan(-...,-INF) */
        }
      }
    }
    /* when y is INF */
    if (iy == 0x7ff00000)
      return (hy < 0) ? -pi_o_2 - tiny : pi_o_2 + tiny;

    /* compute y/x */
    k = (iy - ix) >> 20;
    if (k > 60)
      z = pi_o_2 + 0.5 * pi_lo; /* |y/x| > 2**60 */
    else if (hx < 0 && k < -60)
      z = 0.0; /* |y|/x < -2**60 */
    else
      z = ieee754_atan(Math.abs(y / x)); /* safe to do y/x */
    switch (m) {
      case 0:
        return z; /* atan(+,+) */
      case 1:
        z = Double.longBitsToDouble(Double.doubleToLongBits(z) ^ 0x80000000); // __HI(z)
        // ^=
        // 0x80000000;
        return z; /* atan(-,+) */
      case 2:
        return pi - (z - pi_lo);/* atan(+,-) */
      default: /* case 3 */
        return (z - pi_lo) - pi;/* atan(-,-) */
    }
  }

  /**
   * scalbn (double x, int n) scalbn(x,n) returns x* 2**n computed by exponent manipulation rather than by actually performing an exponentiation or a
   * multiplication.
   */
  public static final double scalbn(double x, int n) {
    int k, hx, lx;
    hx = (int) (Double.doubleToLongBits(x) >>> HI_SHIFT);
    lx = (int) (Double.doubleToLongBits(x) & LO_MASK);
    k = (hx & 0x7ff00000) >> 20; /* extract exponent */
    if (k == 0) { /* 0 or subnormal x */
      if ((lx | (hx & 0x7fffffff)) == 0)
        return x; /* +-0 */
      x *= two54;
      hx = (int) (Double.doubleToLongBits(x) >>> HI_SHIFT);
      k = ((hx & 0x7ff00000) >> 20) - 54;
      if (n < -50000)
        return tiny * x; /* underflow */
    }
    if (k == 0x7ff)
      return x + x; /* NaN or Inf */
    k = k + n;
    if (k > 0x7fe)
      return huge * copysign(huge, x); /* overflow */
    if (k > 0) /* normal result */
    {
      // __HI(x) = (hx&0x800fffff)|(k<<20);
      x = Double.longBitsToDouble(((long) ((int) (hx & 0x800fffff) | (k << 20)) << HI_SHIFT) | (Double.doubleToLongBits(x) & LO_MASK));
      return x;
    }
    if (k <= -54)
      if (n > 50000) /* in case integer overflow in n+k */
        return huge * copysign(huge, x); /* overflow */
      else
        return tiny * copysign(tiny, x); /* underflow */
    k += 54; /* subnormal result */
    // __HI(x) = (hx&0x800fffff)|(k<<20);
    x = Double.longBitsToDouble(((long) ((int) (hx & 0x800fffff) | (k << 20)) << HI_SHIFT) | (Double.doubleToLongBits(x) & LO_MASK));
    return x * twom54;
  }

  /*
   * copysign(double x, double y) copysign(x,y) returns a value with the
   * magnitude of x and with the sign bit of y.
   */
  public static final double copysign(final double x, final double y) {
    // __HI(x) = (__HI(x)&0x7fffffff)|(__HI(y)&0x80000000);
    // The below is actually about 30% faster than doing greater/less
    // comparisons.
    return Double.longBitsToDouble((Double.doubleToLongBits(x) & 0x7fffffffffffffffL) | (Double.doubleToLongBits(y) & 0x8000000000000000L));
  }

  /*
   * fabs(x) returns the absolute value of x. This is already handled by Java
   * ME. public static final double fabs(double x) { //__HI(x) &= 0x7fffffff;
   * //return Double.longBitsToDouble(Double.doubleToLongBits(x) &
   * 0x7fffffffffffffffL); }
   */

  /**
   * Returns the negation of the argument, throwing an exception if the result exceeds a {@code double}.
   *
   * @param a
   *          the value to negate
   * @return the result
   * @throws ArithmeticException
   *           if the result overflows a double
   */
  public static double negateExact(double a) {
    if (a == Double.MAX_VALUE || a == Double.MIN_VALUE) {
      throw new ArithmeticException("double overflow");
    }

    return -a;
  }

  public static double gcd(double a, double b) {
    if (b == 0)
      return a;
    return gcd(b, a % b);
  }
  /*
    private static final double powSqrt(double x, double y) {
      int den = 1024, num = (int) (y * den), iterations = 10;
      double n = Double.MAX_VALUE;

      while (n >= Double.MAX_VALUE && iterations > 1) {
        n = x;

        for (int i = 1; i < num; i++)
          n *= x;

        if (n >= Double.MAX_VALUE) {
          iterations--;
          den = (int) (den / 2);
          num = (int) (y * den);
        }
      }

      for (int i = 0; i < iterations; i++)
        n = Math.sqrt(n);

      return n;
    }
  */

  /*
   * 
   * private static final double powDecay(double x, double y) { int num, den =
   * 1001, s = 0; double n = x, z = Double.MAX_VALUE;
   * 
   * for( int i = 1; i < s; i++)n *= x;
   * 
   * while( z >= Double.MAX_VALUE ) { den -=1; num = (int)(y*den); s =
   * (num/den)+1;
   * 
   * z = x; for( int i = 1; i < num; i++ )z *= x; }
   * 
   * while( n > 0 ) { double a = n;
   * 
   * for( int i = 1; i < den; i++ )a *= n;
   * 
   * if( (a-z) < .00001 || (z-a) > .00001 ) return n;
   * 
   * n *= .9999; }
   * 
   * return -1.0; }
   * 
   * private static final double powTaylor(double a, double b) { boolean gt1 =
   * (Math.sqrt((a-1)*(a-1)) <= 1)? false:true; int oc = -1,iter = 30; double
   * p = a, x, x2, sumX, sumY;
   * 
   * if( (b-Math.floor(b)) == 0 ) { for( int i = 1; i < b; i++ )p *= a; return
   * p; }
   * 
   * x = (gt1)?(a /(a-1)):(a-1); sumX = (gt1)?(1/x):x;
   * 
   * for( int i = 2; i < iter; i++ ) { p = x; for( int j = 1; j < i; j++)p *=
   * x;
   * 
   * double xTemp = (gt1)?(1/(i*p)):(p/i);
   * 
   * sumX = (gt1)?(sumX+xTemp):(sumX+(xTemp*oc));
   * 
   * oc *= -1; }
   * 
   * x2 = b * sumX; sumY = 1+x2;
   * 
   * for( int i = 2; i <= iter; i++ ) { p = x2; for( int j = 1; j < i; j++)p
   * *= x2;
   * 
   * int yTemp = 2; for( int j = i; j > 2; j-- )yTemp *= j;
   * 
   * sumY += p/yTemp; }
   * 
   * return sumY; }
   */
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy