tech.mlsql.common.BitUtil Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of delta-plus_2.11 Show documentation
Show all versions of delta-plus_2.11 Show documentation
A library based on delta for Spark and [MLSQL](http://www.mlsql.tech).
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package tech.mlsql.common;
/** A variety of high efficiency bit twiddling routines.
* @lucene.internal
*/
public final class BitUtil {
// magic numbers for bit interleaving
private static final long MAGIC[] = {
0x5555555555555555L, 0x3333333333333333L,
0x0F0F0F0F0F0F0F0FL, 0x00FF00FF00FF00FFL,
0x0000FFFF0000FFFFL, 0x00000000FFFFFFFFL,
0xAAAAAAAAAAAAAAAAL
};
// shift values for bit interleaving
private static final short SHIFT[] = {1, 2, 4, 8, 16};
private BitUtil() {} // no instance
// The pop methods used to rely on bit-manipulation tricks for speed but it
// turns out that it is faster to use the Long.bitCount method (which is an
// intrinsic since Java 6u18) in a naive loop, see LUCENE-2221
/** Returns the number of set bits in an array of longs. */
public static long pop_array(long[] arr, int wordOffset, int numWords) {
long popCount = 0;
for (int i = wordOffset, end = wordOffset + numWords; i < end; ++i) {
popCount += Long.bitCount(arr[i]);
}
return popCount;
}
/** Returns the popcount or cardinality of the two sets after an intersection.
* Neither array is modified. */
public static long pop_intersect(long[] arr1, long[] arr2, int wordOffset, int numWords) {
long popCount = 0;
for (int i = wordOffset, end = wordOffset + numWords; i < end; ++i) {
popCount += Long.bitCount(arr1[i] & arr2[i]);
}
return popCount;
}
/** Returns the popcount or cardinality of the union of two sets.
* Neither array is modified. */
public static long pop_union(long[] arr1, long[] arr2, int wordOffset, int numWords) {
long popCount = 0;
for (int i = wordOffset, end = wordOffset + numWords; i < end; ++i) {
popCount += Long.bitCount(arr1[i] | arr2[i]);
}
return popCount;
}
/** Returns the popcount or cardinality of {@code A & ~B}.
* Neither array is modified. */
public static long pop_andnot(long[] arr1, long[] arr2, int wordOffset, int numWords) {
long popCount = 0;
for (int i = wordOffset, end = wordOffset + numWords; i < end; ++i) {
popCount += Long.bitCount(arr1[i] & ~arr2[i]);
}
return popCount;
}
/** Returns the popcount or cardinality of A ^ B
* Neither array is modified. */
public static long pop_xor(long[] arr1, long[] arr2, int wordOffset, int numWords) {
long popCount = 0;
for (int i = wordOffset, end = wordOffset + numWords; i < end; ++i) {
popCount += Long.bitCount(arr1[i] ^ arr2[i]);
}
return popCount;
}
/** returns the next highest power of two, or the current value if it's already a power of two or zero*/
public static int nextHighestPowerOfTwo(int v) {
v--;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v++;
return v;
}
/** returns the next highest power of two, or the current value if it's already a power of two or zero*/
public static long nextHighestPowerOfTwo(long v) {
v--;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v |= v >> 32;
v++;
return v;
}
/**
* Interleaves the first 32 bits of each long value
*
* Adapted from: http://graphics.stanford.edu/~seander/bithacks.html#InterleaveBMN
*/
public static long interleave(int even, int odd) {
long v1 = 0x00000000FFFFFFFFL & even;
long v2 = 0x00000000FFFFFFFFL & odd;
v1 = (v1 | (v1 << SHIFT[4])) & MAGIC[4];
v1 = (v1 | (v1 << SHIFT[3])) & MAGIC[3];
v1 = (v1 | (v1 << SHIFT[2])) & MAGIC[2];
v1 = (v1 | (v1 << SHIFT[1])) & MAGIC[1];
v1 = (v1 | (v1 << SHIFT[0])) & MAGIC[0];
v2 = (v2 | (v2 << SHIFT[4])) & MAGIC[4];
v2 = (v2 | (v2 << SHIFT[3])) & MAGIC[3];
v2 = (v2 | (v2 << SHIFT[2])) & MAGIC[2];
v2 = (v2 | (v2 << SHIFT[1])) & MAGIC[1];
v2 = (v2 | (v2 << SHIFT[0])) & MAGIC[0];
return (v2<<1) | v1;
}
/**
* Extract just the even-bits value as a long from the bit-interleaved value
*/
public static long deinterleave(long b) {
b &= MAGIC[0];
b = (b ^ (b >>> SHIFT[0])) & MAGIC[1];
b = (b ^ (b >>> SHIFT[1])) & MAGIC[2];
b = (b ^ (b >>> SHIFT[2])) & MAGIC[3];
b = (b ^ (b >>> SHIFT[3])) & MAGIC[4];
b = (b ^ (b >>> SHIFT[4])) & MAGIC[5];
return b;
}
/**
* flip flops odd with even bits
*/
public static final long flipFlop(final long b) {
return ((b & MAGIC[6]) >>> 1) | ((b & MAGIC[0]) << 1 );
}
/** Same as {@link #zigZagEncode(long)} but on integers. */
public static int zigZagEncode(int i) {
return (i >> 31) ^ (i << 1);
}
/**
* Zig-zag
* encode the provided long. Assuming the input is a signed long whose
* absolute value can be stored on n bits, the returned value will
* be an unsigned long that can be stored on n+1 bits.
*/
public static long zigZagEncode(long l) {
return (l >> 63) ^ (l << 1);
}
/** Decode an int previously encoded with {@link #zigZagEncode(int)}. */
public static int zigZagDecode(int i) {
return ((i >>> 1) ^ -(i & 1));
}
/** Decode a long previously encoded with {@link #zigZagEncode(long)}. */
public static long zigZagDecode(long l) {
return ((l >>> 1) ^ -(l & 1));
}
/**
* Returns whether the bit at given zero-based index is set.
*
Example: bitIndex 66 means the third bit on the right of the second long.
*
* @param bits The bits stored in an array of long for efficiency.
* @param numLongs The number of longs in {@code bits} to consider.
* @param bitIndex The bit zero-based index. It must be greater than or equal to 0,
* and strictly less than {@code numLongs * Long.SIZE}.
*/
public static boolean isBitSet(long[] bits, int numLongs, int bitIndex) {
assert numLongs >= 0 && numLongs <= bits.length && bitIndex >= 0 && bitIndex < numLongs * Long.SIZE
: "bitIndex=" + bitIndex + " numLongs=" + numLongs + " bits.length=" + bits.length;
return (bits[bitIndex / Long.SIZE] & (1L << bitIndex)) != 0; // Shifts are mod 64.
}
/**
* Counts all bits set in the provided longs.
*
* @param bits The bits stored in an array of long for efficiency.
* @param numLongs The number of longs in {@code bits} to consider.
*/
public static int countBits(long[] bits, int numLongs) {
assert numLongs >= 0 && numLongs <= bits.length
: "numLongs=" + numLongs + " bits.length=" + bits.length;
int bitCount = 0;
for (int i = 0; i < numLongs; i++) {
bitCount += Long.bitCount(bits[i]);
}
return bitCount;
}
/**
* Counts the bits set up to the given bit zero-based index, exclusive.
*
In other words, how many 1s there are up to the bit at the given index excluded.
*
Example: bitIndex 66 means the third bit on the right of the second long.
*
* @param bits The bits stored in an array of long for efficiency.
* @param numLongs The number of longs in {@code bits} to consider.
* @param bitIndex The bit zero-based index, exclusive. It must be greater than or equal to 0,
* and less than or equal to {@code numLongs * Long.SIZE}.
*/
public static int countBitsUpTo(long[] bits, int numLongs, int bitIndex) {
assert numLongs >= 0 && numLongs <= bits.length && bitIndex >= 0 && bitIndex <= numLongs * Long.SIZE
: "bitIndex=" + bitIndex + " numLongs=" + numLongs + " bits.length=" + bits.length;
int bitCount = 0;
int lastLong = bitIndex / Long.SIZE;
for (int i = 0; i < lastLong; i++) {
// Count the bits set for all plain longs.
bitCount += Long.bitCount(bits[i]);
}
if (lastLong < numLongs) {
// Prepare a mask with 1s on the right up to bitIndex exclusive.
long mask = (1L << bitIndex) - 1L; // Shifts are mod 64.
// Count the bits set only within the mask part, so up to bitIndex exclusive.
bitCount += Long.bitCount(bits[lastLong] & mask);
}
return bitCount;
}
/**
* Returns the index of the next bit set following the given bit zero-based index.
*
For example with bits 100011:
* the next bit set after index=-1 is at index=0;
* the next bit set after index=0 is at index=1;
* the next bit set after index=1 is at index=5;
* there is no next bit set after index=5.
*
* @param bits The bits stored in an array of long for efficiency.
* @param numLongs The number of longs in {@code bits} to consider.
* @param bitIndex The bit zero-based index. It must be greater than or equal to -1,
* and strictly less than {@code numLongs * Long.SIZE}.
* @return The zero-based index of the next bit set after the provided {@code bitIndex};
* or -1 if none.
*/
public static int nextBitSet(long[] bits, int numLongs, int bitIndex) {
assert numLongs >= 0 && numLongs <= bits.length && bitIndex >= -1 && bitIndex < numLongs * Long.SIZE
: "bitIndex=" + bitIndex + " numLongs=" + numLongs + " bits.length=" + bits.length;
int longIndex = bitIndex / Long.SIZE;
// Prepare a mask with 1s on the left down to bitIndex exclusive.
long mask = -(1L << (bitIndex + 1)); // Shifts are mod 64.
long l = mask == -1 && bitIndex != -1 ? 0 : bits[longIndex] & mask;
while (l == 0) {
if (++longIndex == numLongs) {
return -1;
}
l = bits[longIndex];
}
return Long.numberOfTrailingZeros(l) + longIndex * 64;
}
/**
* Returns the index of the previous bit set preceding the given bit zero-based index.
*
For example with bits 100011:
* there is no previous bit set before index=0.
* the previous bit set before index=1 is at index=0;
* the previous bit set before index=5 is at index=1;
* the previous bit set before index=64 is at index=5;
*
* @param bits The bits stored in an array of long for efficiency.
* @param numLongs The number of longs in {@code bits} to consider.
* @param bitIndex The bit zero-based index. It must be greater than or equal to 0,
* and less than or equal to {@code numLongs * Long.SIZE}.
* @return The zero-based index of the previous bit set before the provided {@code bitIndex};
* or -1 if none.
*/
public static int previousBitSet(long[] bits, int numLongs, int bitIndex) {
assert numLongs >= 0 && numLongs <= bits.length && bitIndex >= 0 && bitIndex <= numLongs * Long.SIZE
: "bitIndex=" + bitIndex + " numLongs=" + numLongs + " bits.length=" + bits.length;
int longIndex = bitIndex / Long.SIZE;
long l;
if (longIndex == numLongs) {
l = 0;
} else {
// Prepare a mask with 1s on the right up to bitIndex exclusive.
long mask = (1L << bitIndex) - 1L; // Shifts are mod 64.
l = bits[longIndex] & mask;
}
while (l == 0) {
if (longIndex-- == 0) {
return -1;
}
l = bits[longIndex];
}
return 63 - Long.numberOfLeadingZeros(l) + longIndex * 64;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy