All Downloads are FREE. Search and download functionalities are using the official Maven repository.

tech.tablesaw.aggregate.AggregateFunctions Maven / Gradle / Ivy

There is a newer version: 0.43.1
Show newest version
package tech.tablesaw.aggregate;

import java.time.Instant;
import java.time.LocalDate;
import java.time.LocalDateTime;
import org.apache.commons.math3.stat.StatUtils;
import org.apache.commons.math3.stat.descriptive.DescriptiveStatistics;
import org.apache.commons.math3.stat.descriptive.moment.Kurtosis;
import org.apache.commons.math3.stat.descriptive.moment.Skewness;
import tech.tablesaw.api.BooleanColumn;
import tech.tablesaw.api.DateColumn;
import tech.tablesaw.api.DateTimeColumn;
import tech.tablesaw.api.InstantColumn;
import tech.tablesaw.api.NumericColumn;
import tech.tablesaw.columns.Column;
import tech.tablesaw.columns.numbers.DoubleColumnType;

public class AggregateFunctions {

  private AggregateFunctions() {}

  public static final DateTimeAggregateFunction earliestDateTime =
      new DateTimeAggregateFunction("Earliest Date-Time") {

        @Override
        public LocalDateTime summarize(DateTimeColumn column) {
          return column.min();
        }
      };

  public static final DateAggregateFunction earliestDate =
      new DateAggregateFunction("Earliest Date") {

        @Override
        public LocalDate summarize(DateColumn column) {
          return column.min();
        }
      };

  public static final DateAggregateFunction latestDate =
      new DateAggregateFunction("Latest Date") {

        @Override
        public LocalDate summarize(DateColumn column) {
          return column.max();
        }
      };

  public static final DateTimeAggregateFunction latestDateTime =
      new DateTimeAggregateFunction("Latest Date-Time") {

        @Override
        public LocalDateTime summarize(DateTimeColumn column) {
          return column.max();
        }
      };

  public static final InstantAggregateFunction maxInstant =
      new InstantAggregateFunction("Max Instant") {
        @Override
        public Instant summarize(InstantColumn column) {
          return column.max();
        }
      };
  public static final InstantAggregateFunction minInstant =
      new InstantAggregateFunction("Min Instant") {
        @Override
        public Instant summarize(InstantColumn column) {
          return column.min();
        }
      };

  public static final BooleanCountFunction countTrue =
      new BooleanCountFunction("Number True") {

        @Override
        public Integer summarize(BooleanColumn column) {
          return column.countTrue();
        }
      };

  public static final BooleanAggregateFunction allTrue =
      new BooleanAggregateFunction("All True") {

        @Override
        public Boolean summarize(BooleanColumn column) {
          return column.all();
        }
      };

  public static final BooleanAggregateFunction anyTrue =
      new BooleanAggregateFunction("Any True") {

        @Override
        public Boolean summarize(BooleanColumn column) {
          return column.any();
        }
      };

  public static final BooleanAggregateFunction noneTrue =
      new BooleanAggregateFunction("None True") {

        @Override
        public Boolean summarize(BooleanColumn column) {
          return column.none();
        }
      };

  public static final BooleanCountFunction countFalse =
      new BooleanCountFunction("Number False") {
        @Override
        public Integer summarize(BooleanColumn column) {
          return (column).countFalse();
        }
      };

  public static final BooleanNumericFunction proportionTrue =
      new BooleanNumericFunction("Proportion True") {
        @Override
        public Double summarize(BooleanColumn column) {
          return (column).proportionTrue();
        }
      };

  public static final BooleanNumericFunction proportionFalse =
      new BooleanNumericFunction("Proportion False") {
        @Override
        public Double summarize(BooleanColumn column) {
          return (column).proportionFalse();
        }
      };

  /** A function that returns the first item */
  public static final NumericAggregateFunction first =
      new NumericAggregateFunction("First") {

        @Override
        public Double summarize(NumericColumn column) {
          return column.isEmpty() ? DoubleColumnType.missingValueIndicator() : column.getDouble(0);
        }
      };

  /** A function that returns the last item */
  public static final NumericAggregateFunction last =
      new NumericAggregateFunction("Last") {

        @Override
        public Double summarize(NumericColumn column) {
          return column.isEmpty()
              ? DoubleColumnType.missingValueIndicator()
              : column.getDouble(column.size() - 1);
        }
      };

  /** A function that returns the difference between the last and first items */
  public static final NumericAggregateFunction change =
      new NumericAggregateFunction("Change") {

        @Override
        public Double summarize(NumericColumn column) {
          return column.size() < 2
              ? DoubleColumnType.missingValueIndicator()
              : column.getDouble(column.size() - 1) - column.getDouble(0);
        }
      };

  /** A function that returns the difference between the last and first items */
  public static final NumericAggregateFunction pctChange =
      new NumericAggregateFunction("Percent Change") {

        @Override
        public Double summarize(NumericColumn column) {
          return column.size() < 2
              ? DoubleColumnType.missingValueIndicator()
              : (column.getDouble(column.size() - 1) - column.getDouble(0)) / column.getDouble(0);
        }
      };

  /** A function that calculates the count of values in the column excluding missing values */
  public static final CountFunction countNonMissing =
      new CountFunction("Count") {

        @Override
        public Integer summarize(Column column) {
          return column.size() - column.countMissing();
        }
      };

  /**
   * A function that calculates the count of values in the column excluding missing values. A
   * synonym for countNonMissing
   */
  public static final CountFunction count = countNonMissing;

  /** A function that calculates the count of values in the column excluding missing values */
  public static final CountFunction countMissing =
      new CountFunction("Missing Values") {

        @Override
        public Integer summarize(Column column) {
          return column.countMissing();
        }
      };

  /** A function that returns the number of non-missing unique values in the column param */
  public static final CountFunction countUnique =
      new CountFunction("Count Unique") {

        @Override
        public Integer summarize(Column doubles) {
          return doubles.unique().removeMissing().size();
        }
      };

  /** A function that calculates the mean of the values in the column param */
  public static final NumericAggregateFunction mean =
      new NumericAggregateFunction("Mean") {

        @Override
        public Double summarize(NumericColumn column) {
          return StatUtils.mean(removeMissing(column));
        }
      };

  /**
   * A function that calculates the coefficient of variation (stdDev/mean) of the values in the
   * column
   */
  public static final NumericAggregateFunction cv =
      new NumericAggregateFunction("CV") {

        @Override
        public Double summarize(NumericColumn column) {
          double[] col = removeMissing(column);
          return Math.sqrt(StatUtils.variance(col)) / StatUtils.mean(col);
        }
      };

  /** A function that calculates the sum of the values in the column param */
  public static final NumericAggregateFunction sum =
      new NumericAggregateFunction("Sum") {

        @Override
        public Double summarize(NumericColumn column) {
          return StatUtils.sum(removeMissing(column));
        }
      };

  public static final NumericAggregateFunction median =
      new NumericAggregateFunction("Median") {

        @Override
        public Double summarize(NumericColumn column) {
          return percentile(column, 50.0);
        }
      };

  public static final CountFunction countWithMissing =
      new CountFunction("Count (incl. missing)") {

        @Override
        public Integer summarize(Column column) {
          return column.size();
        }
      };

  public static final NumericAggregateFunction quartile1 =
      new NumericAggregateFunction("First Quartile") {

        @Override
        public Double summarize(NumericColumn column) {
          return percentile(column, 25.0);
        }
      };

  public static final NumericAggregateFunction quartile3 =
      new NumericAggregateFunction("Third Quartile") {

        @Override
        public Double summarize(NumericColumn column) {
          return percentile(column, 75.0);
        }
      };

  public static final NumericAggregateFunction percentile90 =
      new NumericAggregateFunction("90th Percentile") {

        @Override
        public Double summarize(NumericColumn column) {
          return percentile(column, 90.0);
        }
      };

  public static final NumericAggregateFunction percentile95 =
      new NumericAggregateFunction("95th Percentile") {

        @Override
        public Double summarize(NumericColumn column) {
          return percentile(column, 95.0);
        }
      };

  public static final NumericAggregateFunction percentile99 =
      new NumericAggregateFunction("99th Percentile") {

        @Override
        public Double summarize(NumericColumn column) {
          return percentile(column, 99.0);
        }
      };

  public static final NumericAggregateFunction range =
      new NumericAggregateFunction("Range") {

        @Override
        public Double summarize(NumericColumn column) {
          double[] data = removeMissing(column);
          return StatUtils.max(data) - StatUtils.min(data);
        }
      };

  public static final NumericAggregateFunction min =
      new NumericAggregateFunction("Min") {

        @Override
        public Double summarize(NumericColumn column) {
          return StatUtils.min(removeMissing(column));
        }
      };

  public static final NumericAggregateFunction max =
      new NumericAggregateFunction("Max") {

        @Override
        public Double summarize(NumericColumn column) {
          return StatUtils.max(removeMissing(column));
        }
      };

  public static final NumericAggregateFunction product =
      new NumericAggregateFunction("Product") {

        @Override
        public Double summarize(NumericColumn column) {
          return StatUtils.product(removeMissing(column));
        }
      };

  public static final NumericAggregateFunction geometricMean =
      new NumericAggregateFunction("Geometric Mean") {

        @Override
        public Double summarize(NumericColumn column) {
          return StatUtils.geometricMean(removeMissing(column));
        }
      };

  public static final NumericAggregateFunction populationVariance =
      new NumericAggregateFunction("Population Variance") {

        @Override
        public Double summarize(NumericColumn column) {
          return StatUtils.populationVariance(removeMissing(column));
        }
      };

  /** Returns the quadratic mean, aka, the root-mean-square */
  public static final NumericAggregateFunction quadraticMean =
      new NumericAggregateFunction("Quadratic Mean") {

        @Override
        public Double summarize(NumericColumn column) {
          return new DescriptiveStatistics(removeMissing(column)).getQuadraticMean();
        }
      };

  public static final NumericAggregateFunction kurtosis =
      new NumericAggregateFunction("Kurtosis") {

        @Override
        public Double summarize(NumericColumn column) {
          double[] data = removeMissing(column);
          return new Kurtosis().evaluate(data, 0, data.length);
        }
      };

  public static final NumericAggregateFunction skewness =
      new NumericAggregateFunction("Skewness") {

        @Override
        public Double summarize(NumericColumn column) {
          double[] data = removeMissing(column);
          return new Skewness().evaluate(data, 0, data.length);
        }
      };

  public static final NumericAggregateFunction sumOfSquares =
      new NumericAggregateFunction("Sum of Squares") {

        @Override
        public String functionName() {
          return "Sum of Squares";
        }

        @Override
        public Double summarize(NumericColumn column) {
          return StatUtils.sumSq(removeMissing(column));
        }
      };

  public static final NumericAggregateFunction sumOfLogs =
      new NumericAggregateFunction("Sum of Logs") {

        @Override
        public Double summarize(NumericColumn column) {
          return StatUtils.sumLog(removeMissing(column));
        }
      };

  public static final NumericAggregateFunction variance =
      new NumericAggregateFunction("Variance") {

        @Override
        public Double summarize(NumericColumn column) {
          double[] values = removeMissing(column);
          return StatUtils.variance(values);
        }
      };

  public static final NumericAggregateFunction stdDev =
      new NumericAggregateFunction("Std. Deviation") {

        @Override
        public Double summarize(NumericColumn column) {
          return Math.sqrt(StatUtils.variance(removeMissing(column)));
        }
      };

  /** @deprecated use {@link #stdDev} instead */
  @Deprecated public static final NumericAggregateFunction standardDeviation = stdDev;

  public static Double percentile(NumericColumn data, Double percentile) {
    return StatUtils.percentile(removeMissing(data), percentile);
  }

  private static double[] removeMissing(NumericColumn column) {
    NumericColumn numericColumn = (NumericColumn) column.removeMissing();
    return numericColumn.asDoubleArray();
  }

  // TODO(lwhite): These are two column reductions. We need a class for that
  public static Double meanDifference(NumericColumn column1, NumericColumn column2) {
    return StatUtils.meanDifference(column1.asDoubleArray(), column2.asDoubleArray());
  }

  public static Double sumDifference(NumericColumn column1, NumericColumn column2) {
    return StatUtils.sumDifference(column1.asDoubleArray(), column2.asDoubleArray());
  }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy