tech.tablesaw.api.LongColumn Maven / Gradle / Ivy
package tech.tablesaw.api;
import com.google.common.base.Preconditions;
import it.unimi.dsi.fastutil.longs.LongArrayList;
import it.unimi.dsi.fastutil.longs.LongArrays;
import it.unimi.dsi.fastutil.longs.LongComparators;
import it.unimi.dsi.fastutil.longs.LongListIterator;
import it.unimi.dsi.fastutil.longs.LongOpenHashSet;
import it.unimi.dsi.fastutil.longs.LongSet;
import java.nio.ByteBuffer;
import java.time.Instant;
import java.time.ZoneOffset;
import java.util.Iterator;
import java.util.stream.LongStream;
import tech.tablesaw.columns.AbstractColumnParser;
import tech.tablesaw.columns.Column;
import tech.tablesaw.columns.numbers.DoubleColumnType;
import tech.tablesaw.columns.numbers.LongColumnType;
import tech.tablesaw.columns.numbers.NumberColumnFormatter;
public class LongColumn extends NumberColumn implements CategoricalColumn {
private final LongArrayList data;
private LongColumn(String name, LongArrayList data) {
super(LongColumnType.instance(), name);
setPrintFormatter(NumberColumnFormatter.ints());
this.data = data;
}
public static LongColumn create(final String name) {
return new LongColumn(name, new LongArrayList());
}
public static LongColumn create(String name, long... arr) {
return new LongColumn(name, new LongArrayList(arr));
}
public static LongColumn create(String name, int initialSize) {
LongColumn column = new LongColumn(name, new LongArrayList(initialSize));
for (int i = 0; i < initialSize; i++) {
column.appendMissing();
}
return column;
}
public static LongColumn create(String name, LongStream stream) {
LongArrayList list = new LongArrayList();
stream.forEach(list::add);
return new LongColumn(name, list);
}
@Override
public LongColumn createCol(String name, int initialSize) {
return create(name, initialSize);
}
@Override
public LongColumn createCol(String name) {
return create(name);
}
/**
* Returns a new numeric column initialized with the given name and size. The values in the column
* are integers beginning at startsWith and continuing through size (exclusive), monotonically
* increasing by 1 TODO consider a generic fill function including steps or random samples from
* various distributions
*/
public static LongColumn indexColumn(
final String columnName, final int size, final int startsWith) {
final LongColumn indexColumn = LongColumn.create(columnName, size);
for (long i = 0; i < size; i++) {
indexColumn.append(i + startsWith);
}
return indexColumn;
}
@Override
public String getString(final int row) {
final long value = getLong(row);
if (LongColumnType.valueIsMissing(value)) {
return "";
}
return String.valueOf(getPrintFormatter().format(value));
}
public static boolean valueIsMissing(long value) {
return LongColumnType.valueIsMissing(value);
}
@Override
public int size() {
return data.size();
}
@Override
public void clear() {
data.clear();
}
@Override
public Long get(int index) {
long result = getLong(index);
return isMissingValue(result) ? null : result;
}
@Override
public LongColumn subset(final int[] rows) {
final LongColumn c = this.emptyCopy();
for (final int row : rows) {
c.append(getLong(row));
}
return c;
}
@Override
public LongColumn unique() {
final LongSet values = new LongOpenHashSet();
for (int i = 0; i < size(); i++) {
values.add(getLong(i));
}
final LongColumn column = LongColumn.create(name() + " Unique values");
for (long value : values) {
column.append(value);
}
return column;
}
@Override
public LongColumn top(int n) {
final LongArrayList top = new LongArrayList();
final long[] values = data.toLongArray();
LongArrays.parallelQuickSort(values, LongComparators.OPPOSITE_COMPARATOR);
for (int i = 0; i < n && i < values.length; i++) {
top.add(values[i]);
}
return new LongColumn(name() + "[Top " + n + "]", top);
}
@Override
public LongColumn bottom(final int n) {
final LongArrayList bottom = new LongArrayList();
final long[] values = data.toLongArray();
LongArrays.parallelQuickSort(values);
for (int i = 0; i < n && i < values.length; i++) {
bottom.add(values[i]);
}
return new LongColumn(name() + "[Bottoms " + n + "]", bottom);
}
@Override
public LongColumn lag(int n) {
final int srcPos = n >= 0 ? 0 : 0 - n;
final long[] dest = new long[size()];
final int destPos = n <= 0 ? 0 : n;
final int length = n >= 0 ? size() - n : size() + n;
for (int i = 0; i < size(); i++) {
dest[i] = LongColumnType.missingValueIndicator();
}
long[] array = data.toLongArray();
System.arraycopy(array, srcPos, dest, destPos, length);
return new LongColumn(name() + " lag(" + n + ")", new LongArrayList(dest));
}
@Override
public LongColumn removeMissing() {
LongColumn result = copy();
result.clear();
LongListIterator iterator = data.iterator();
while (iterator.hasNext()) {
final long v = iterator.nextLong();
if (!isMissingValue(v)) {
result.append(v);
}
}
return result;
}
public LongColumn append(long i) {
data.add(i);
return this;
}
public LongColumn append(Long val) {
if (val == null) {
appendMissing();
} else {
append(val.longValue());
}
return this;
}
@Override
public LongColumn copy() {
return new LongColumn(name(), data.clone());
}
public long[] asLongArray() {
// TODO: Need to figure out how to handle NaN -> Maybe just use a list with nulls?
final long[] result = new long[size()];
for (int i = 0; i < size(); i++) {
result[i] = getLong(i);
}
return result;
}
/**
* Returns a DateTimeColumn where each value is the LocalDateTime represented by the values in
* this column
*
* The values in this column must be longs that represent the time in milliseconds from the
* epoch as in standard Java date/time calculations
*
* @param offset The ZoneOffset to use in the calculation
* @return A column of LocalDateTime values
*/
public DateTimeColumn asDateTimes(ZoneOffset offset) {
DateTimeColumn column = DateTimeColumn.create(name() + ": date time");
for (int i = 0; i < size(); i++) {
column.append(Instant.ofEpochMilli(getLong(i)).atZone(offset).toLocalDateTime());
}
return column;
}
@Override
public Iterator iterator() {
return data.iterator();
}
@Override
public Long[] asObjectArray() {
final Long[] output = new Long[size()];
for (int i = 0; i < size(); i++) {
if (!isMissing(i)) {
output[i] = getLong(i);
} else {
output[i] = null;
}
}
return output;
}
@Override
public int compare(Long o1, Long o2) {
return Long.compare(o1, o2);
}
@Override
public LongColumn set(int i, Long val) {
return val == null ? setMissing(i) : set(i, (long) val);
}
public LongColumn set(int i, long val) {
data.set(i, val);
return this;
}
@Override
public Column set(int row, String stringValue, AbstractColumnParser> parser) {
return set(row, parser.parseLong(stringValue));
}
@Override
public LongColumn append(final Column column) {
Preconditions.checkArgument(column.type() == this.type());
final LongColumn numberColumn = (LongColumn) column;
final int size = numberColumn.size();
for (int i = 0; i < size; i++) {
append(numberColumn.getLong(i));
}
return this;
}
@Override
public LongColumn append(Column column, int row) {
Preconditions.checkArgument(column.type() == this.type());
return append(((LongColumn) column).getLong(row));
}
@Override
public LongColumn set(int row, Column column, int sourceRow) {
Preconditions.checkArgument(column.type() == this.type());
return set(row, ((LongColumn) column).getLong(sourceRow));
}
@Override
public LongColumn appendMissing() {
return append(LongColumnType.missingValueIndicator());
}
@Override
public byte[] asBytes(int rowNumber) {
return ByteBuffer.allocate(LongColumnType.instance().byteSize())
.putLong(getLong(rowNumber))
.array();
}
@Override
public int countUnique() {
LongSet uniqueElements = new LongOpenHashSet();
for (int i = 0; i < size(); i++) {
uniqueElements.add(getLong(i));
}
return uniqueElements.size();
}
/**
* Returns the value at the given index. The actual value is returned if the ColumnType is
* INTEGER. Otherwise the value is rounded as described below.
*
* Returns the closest {@code int} to the argument, with ties rounding to positive infinity.
*
*
Special cases:
*
*
Special cases:
*
*
* - If the argument is NaN, the result is 0.
*
- If the argument is positive infinity or any value greater than or equal to the value of
* {@code Integer.MAX_VALUE}, an error will be thrown
*
*
* @param row the index of the value to be rounded to an integer.
* @return the value of the argument rounded to the nearest {@code int} value.
* @throws ClassCastException if the absolute value of the value to be rounded is too large to be
* cast to an int
*/
public long getLong(int row) {
return data.getLong(row);
}
@Override
public double getDouble(int row) {
long value = data.getLong(row);
if (isMissingValue(value)) {
return DoubleColumnType.missingValueIndicator();
}
return value;
}
public boolean isMissingValue(long value) {
return LongColumnType.valueIsMissing(value);
}
@Override
public boolean isMissing(int rowNumber) {
return isMissingValue(getLong(rowNumber));
}
@Override
public LongColumn setMissing(int i) {
return set(i, LongColumnType.missingValueIndicator());
}
@Override
public void sortAscending() {
data.sort(LongComparators.NATURAL_COMPARATOR);
}
@Override
public void sortDescending() {
data.sort(LongComparators.OPPOSITE_COMPARATOR);
}
@Override
public LongColumn appendObj(Object obj) {
if (obj == null) {
return appendMissing();
}
if (obj instanceof Long) {
return append((long) obj);
}
throw new IllegalArgumentException("Could not append " + obj.getClass());
}
@Override
public LongColumn appendCell(final String value) {
try {
return append(LongColumnType.DEFAULT_PARSER.parseLong(value));
} catch (final NumberFormatException e) {
throw new NumberFormatException(
"Error adding value to column " + name() + ": " + e.getMessage());
}
}
@Override
public LongColumn appendCell(final String value, AbstractColumnParser> parser) {
try {
return append(parser.parseLong(value));
} catch (final NumberFormatException e) {
throw new NumberFormatException(
"Error adding value to column " + name() + ": " + e.getMessage());
}
}
@Override
public String getUnformattedString(final int row) {
final long value = getLong(row);
if (LongColumnType.valueIsMissing(value)) {
return "";
}
return String.valueOf(value);
}
@Override
public Table countByCategory() {
return null;
}
/**
* Returns a new IntColumn containing a value for each value in this column
*
* A narrowing conversion of a signed integer to an integral type T simply discards all but the
* n lowest order bits, where n is the number of bits used to represent type T. In addition to a
* possible loss of information about the magnitude of the numeric value, this may cause the sign
* of the resulting value to differ from the sign of the input value.
*
*
In other words, if the element being converted is larger (or smaller) than Integer.MAX_VALUE
* (or Integer.MIN_VALUE) you will not get a conventionally good conversion.
*
*
Despite the fact that overflow, underflow, or other loss of information may occur, a
* narrowing primitive conversion never results in a run-time exception.
*
*
A missing value in the receiver is converted to a missing value in the result
*/
@Override
public IntColumn asIntColumn() {
IntColumn result = IntColumn.create(name());
for (long d : data) {
if (LongColumnType.valueIsMissing(d)) {
result.appendMissing();
} else {
result.append((int) d);
}
}
return result;
}
/**
* Returns a new ShortColumn containing a value for each value in this column
*
*
A narrowing conversion of a signed long to an integral type T simply discards all but the n
* lowest order bits, where n is the number of bits used to represent type T. In addition to a
* possible loss of information about the magnitude of the numeric value, this may cause the sign
* of the resulting value to differ from the sign of the input value.
*
*
In other words, if the element being converted is larger (or smaller) than Short.MAX_VALUE
* (or Short.MIN_VALUE) you will not get a conventionally good conversion.
*
*
Despite the fact that overflow, underflow, or other loss of information may occur, a
* narrowing primitive conversion never results in a run-time exception.
*
*
A missing value in the receiver is converted to a missing value in the result
*/
@Override
public ShortColumn asShortColumn() {
ShortColumn result = ShortColumn.create(name());
for (long d : data) {
if (LongColumnType.valueIsMissing(d)) {
result.appendMissing();
} else {
result.append((short) d);
}
}
return result;
}
/**
* Returns a new FloatColumn containing a value for each value in this column
*
*
A widening primitive conversion from a long to a float does not lose information about the
* overall magnitude of a numeric value. It may, however, result in loss of precision - that is,
* the result may lose some of the least significant bits of the value. In this case, the
* resulting floating-point value will be a correctly rounded version of the integer value, using
* IEEE 754 round-to-nearest mode.
*
*
Despite the fact that a loss of precision may occur, a widening primitive conversion never
* results in a run-time exception.
*
*
A missing value in the receiver is converted to a missing value in the result
*/
@Override
public FloatColumn asFloatColumn() {
FloatColumn result = FloatColumn.create(name());
for (long d : data) {
if (LongColumnType.valueIsMissing(d)) {
result.appendMissing();
} else {
result.append(d);
}
}
return result;
}
/**
* Returns a new DoubleColumn containing a value for each value in this column
*
*
A widening primitive conversion from a long to a double does not lose information about the
* overall magnitude of a numeric value. It may, however, result in loss of precision - that is,
* the result may lose some of the least significant bits of the value. In this case, the
* resulting floating-point value will be a correctly rounded version of the integer value, using
* IEEE 754 round-to-nearest mode.
*
*
Despite the fact that a loss of precision may occur, a widening primitive conversion never
* results in a run-time exception.
*
*
A missing value in the receiver is converted to a missing value in the result
*/
@Override
public DoubleColumn asDoubleColumn() {
DoubleColumn result = DoubleColumn.create(name());
for (long d : data) {
if (LongColumnType.valueIsMissing(d)) {
result.appendMissing();
} else {
result.append(d);
}
}
return result;
}
}