tech.tablesaw.columns.numbers.Stats Maven / Gradle / Ivy
/*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package tech.tablesaw.columns.numbers;
import org.apache.commons.math3.stat.descriptive.SummaryStatistics;
import tech.tablesaw.api.DoubleColumn;
import tech.tablesaw.api.NumericColumn;
import tech.tablesaw.api.StringColumn;
import tech.tablesaw.api.Table;
public class Stats {
private long n;
private double sum;
private double mean;
private double min;
private double max;
private double variance;
private double standardDeviation;
private double geometricMean;
private double quadraticMean;
private double secondMoment;
private double populationVariance;
private double sumOfLogs;
private double sumOfSquares;
private final String name;
private Stats(String name) {
this.name = name;
}
public static Stats create(final NumericColumn> values) {
SummaryStatistics summaryStatistics = new SummaryStatistics();
for (int i = 0; i < values.size(); i++) {
summaryStatistics.addValue(values.getDouble(i));
}
return getStats(values, summaryStatistics);
}
private static Stats getStats(NumericColumn> values, SummaryStatistics summaryStatistics) {
Stats stats = new Stats("Column: " + values.name());
stats.min = summaryStatistics.getMin();
stats.max = summaryStatistics.getMax();
stats.n = summaryStatistics.getN();
stats.sum = summaryStatistics.getSum();
stats.variance = summaryStatistics.getVariance();
stats.populationVariance = summaryStatistics.getPopulationVariance();
stats.quadraticMean = summaryStatistics.getQuadraticMean();
stats.geometricMean = summaryStatistics.getGeometricMean();
stats.mean = summaryStatistics.getMean();
stats.standardDeviation = summaryStatistics.getStandardDeviation();
stats.sumOfLogs = summaryStatistics.getSumOfLogs();
stats.sumOfSquares = summaryStatistics.getSumsq();
stats.secondMoment = summaryStatistics.getSecondMoment();
return stats;
}
public double range() {
return (max - min);
}
public double standardDeviation() {
return standardDeviation;
}
public long n() {
return n;
}
public double mean() {
return mean;
}
public double min() {
return min;
}
public double max() {
return max;
}
public double sum() {
return sum;
}
public double variance() {
return variance;
}
public double sumOfSquares() {
return sumOfSquares;
}
public double populationVariance() {
return populationVariance;
}
public double sumOfLogs() {
return sumOfLogs;
}
public double geometricMean() {
return geometricMean;
}
public double quadraticMean() {
return quadraticMean;
}
public double secondMoment() {
return secondMoment;
}
public Table asTable() {
Table t = Table.create(name);
StringColumn measure = StringColumn.create("Measure");
DoubleColumn value = DoubleColumn.create("Value");
t.addColumns(measure);
t.addColumns(value);
measure.append("Count");
value.append(n);
measure.append("sum");
value.append(sum());
measure.append("Mean");
value.append(mean());
measure.append("Min");
value.append(min());
measure.append("Max");
value.append(max());
measure.append("Range");
value.append(range());
measure.append("Variance");
value.append(variance());
measure.append("Std. Dev");
value.append(standardDeviation());
return t;
}
public Table asTableComplete() {
Table t = asTable();
StringColumn measure = t.stringColumn("Measure");
DoubleColumn value = t.doubleColumn("Value");
measure.append("Sum of Squares");
value.append(sumOfSquares());
measure.append("Sum of Logs");
value.append(sumOfLogs());
measure.append("Population Variance");
value.append(populationVariance());
measure.append("Geometric Mean");
value.append(geometricMean());
measure.append("Quadratic Mean");
value.append(quadraticMean());
measure.append("Second Moment");
value.append(secondMoment());
return t;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy