
tech.tablesaw.api.ml.classification.DecisionTree Maven / Gradle / Ivy
package tech.tablesaw.api.ml.classification;
import com.google.common.base.Preconditions;
import tech.tablesaw.api.CategoryColumn;
import tech.tablesaw.api.IntColumn;
import tech.tablesaw.api.NumericColumn;
import tech.tablesaw.api.ShortColumn;
import tech.tablesaw.util.DoubleArrays;
import java.util.SortedSet;
import java.util.TreeSet;
/**
*
*/
public class DecisionTree extends AbstractClassifier {
private final smile.classification.DecisionTree classifierModel;
private DecisionTree(int maxNodes, int[] classArray, NumericColumn... columns) {
double[][] data = DoubleArrays.to2dArray(columns);
this.classifierModel = new smile.classification.DecisionTree(data, classArray, maxNodes);
}
public static DecisionTree learn(int maxNodes, IntColumn classes, NumericColumn... columns) {
int[] classArray = classes.data().toIntArray();
return new DecisionTree(maxNodes, classArray, columns);
}
public static DecisionTree learn(int maxNodes, ShortColumn classes, NumericColumn... columns) {
int[] classArray = classes.toIntArray();
return new DecisionTree(maxNodes, classArray, columns);
}
public static DecisionTree learn(int nTrees, CategoryColumn classes, NumericColumn... columns) {
int[] classArray = classes.data().toIntArray();
return new DecisionTree(nTrees, classArray, columns);
}
public int predict(double[] data) {
return classifierModel.predict(data);
}
public ConfusionMatrix predictMatrix(ShortColumn labels, NumericColumn... predictors) {
Preconditions.checkArgument(predictors.length > 0);
SortedSet
© 2015 - 2025 Weber Informatics LLC | Privacy Policy