tech.tablesaw.plotly.api.QQPlot Maven / Gradle / Ivy
package tech.tablesaw.plotly.api;
import com.google.common.base.Preconditions;
import java.util.Arrays;
import org.apache.commons.math3.stat.StatUtils;
import tech.tablesaw.api.NumericColumn;
import tech.tablesaw.api.Table;
import tech.tablesaw.plotly.components.Axis;
import tech.tablesaw.plotly.components.Figure;
import tech.tablesaw.plotly.components.Layout;
import tech.tablesaw.plotly.traces.ScatterTrace;
public class QQPlot {
/**
* Returns a figure containing a QQ Plot describing the differences between the distribution of
* values in the columns of interest
*
* @param title A title for the plot
* @param table The table containing the columns of interest
* @param columnName1 The name of the first numeric column containing the data to plot
* @param columnName2 The name of the second numeric column containing the data to plot
* @return A quantile plot
*/
public static Figure create(String title, Table table, String columnName1, String columnName2) {
NumericColumn> xCol = table.nCol(columnName1);
NumericColumn> yCol = table.nCol(columnName2);
return create(title, xCol.name(), xCol.asDoubleArray(), yCol.name(), yCol.asDoubleArray());
}
/**
* Returns a figure containing a QQ Plot describing the differences between the distribution of
* values in the columns of interest
*
* @param title A title for the plot
* @param xTitle The name of the first numeric column containing the data to plot
* @param xData The data to plot on the x Axis
* @param yTitle The name of the second numeric column containing the data to plot
* @param yData The data to plot on the y Axis
* @return A quantile plot
*/
public static Figure create(
String title, String xTitle, double[] xData, String yTitle, double[] yData) {
Preconditions.checkArgument(xData.length != 0, "x Data array is empty");
Preconditions.checkArgument(yData.length != 0, "x Data array is empty");
if (xData.length != yData.length) {
double[] interpolatedData;
if (xData.length < yData.length) {
interpolatedData = interpolate(yData, xData.length);
yData = interpolatedData;
} else {
interpolatedData = interpolate(xData, yData.length);
xData = interpolatedData;
}
}
Arrays.sort(xData);
Arrays.sort(yData);
double min = Math.min(xData[0], yData[0]);
double max = Math.max(xData[xData.length - 1], yData[yData.length - 1]);
double[] line = {min, max};
// Draw the 45 degree line indicating equal distributions
ScatterTrace trace1 =
ScatterTrace.builder(line, line).mode(ScatterTrace.Mode.LINE).name("y = x").build();
// Draw the actual data points
ScatterTrace trace2 = ScatterTrace.builder(xData, yData).name("distributions").build();
Layout layout =
Layout.builder()
.title(title)
.xAxis(Axis.builder().title(xTitle).build())
.yAxis(Axis.builder().title(yTitle).build())
.height(700)
.width(900)
.build();
return new Figure(layout, trace1, trace2);
}
/**
* Returns a double array, whose values are quantiles from the given source, based on the given
* size. The idea is to produce size elements that represent the quantiles of source array
*
* @param source The array to whose quantiles are calculated
* @param size The size of the array to return
*/
private static double[] interpolate(double[] source, int size) {
double[] interpolatedData = new double[size];
for (int i = 0; i < size; i++) {
double value = ((i + .5) / (double) size) * 100;
interpolatedData[i] = StatUtils.percentile(source, value);
}
return interpolatedData;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy