tech.tablesaw.api.ml.classification.LogisticRegression Maven / Gradle / Ivy
/*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package tech.tablesaw.api.ml.classification;
import com.google.common.base.Preconditions;
import tech.tablesaw.api.NumericColumn;
import tech.tablesaw.api.IntConvertibleColumn;
import tech.tablesaw.util.DoubleArrays;
import java.util.SortedSet;
import java.util.TreeSet;
public class LogisticRegression extends AbstractClassifier {
private final smile.classification.LogisticRegression classifierModel;
private LogisticRegression(smile.classification.LogisticRegression classifierModel) {
this.classifierModel = classifierModel;
}
public static LogisticRegression learn(IntConvertibleColumn labels, NumericColumn... predictors) {
smile.classification.LogisticRegression classifierModel =
new smile.classification.LogisticRegression(DoubleArrays.to2dArray(predictors), labels.toIntArray());
return new LogisticRegression(classifierModel);
}
public static LogisticRegression learn(IntConvertibleColumn labels, double lambda, NumericColumn... predictors) {
smile.classification.LogisticRegression classifierModel =
new smile.classification.LogisticRegression(DoubleArrays.to2dArray(predictors), labels.toIntArray(),
lambda);
return new LogisticRegression(classifierModel);
}
public static LogisticRegression learn(IntConvertibleColumn labels,
double lambda,
double tolerance,
int maxIters,
NumericColumn... predictors) {
smile.classification.LogisticRegression classifierModel =
new smile.classification.LogisticRegression(
DoubleArrays.to2dArray(predictors),
labels.toIntArray(),
lambda,
tolerance,
maxIters);
return new LogisticRegression(classifierModel);
}
public int predict(double[] data) {
return classifierModel.predict(data);
}
public ConfusionMatrix predictMatrix(IntConvertibleColumn labels, NumericColumn... predictors) {
Preconditions.checkArgument(predictors.length > 0);
SortedSet
© 2015 - 2025 Weber Informatics LLC | Privacy Policy