Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
NativeSolver.cs
Abstract:
Z3 Managed API: Native Solver
Author:
Christoph Wintersteiger (cwinter) 2012-03-22
Nikolaj Bjorner (nbjorner) 2022-03-01
Notes:
--*/
using System;
using System.Diagnostics;
using System.Collections.Generic;
using System.Linq;
namespace Microsoft.Z3
{
using Z3_ast = System.IntPtr;
using Z3_context = System.IntPtr;
using Z3_func_decl = System.IntPtr;
using Z3_params = System.IntPtr;
using Z3_solver = System.IntPtr;
using Z3_sort = System.IntPtr;
using Z3_symbol = System.IntPtr;
///
/// Solvers.
///
public class NativeSolver : IDisposable
{
///
/// A string that describes all available solver parameters.
///
public string Help => Native.Z3_solver_get_help(nCtx, z3solver);
private void SetParam(Action setter)
{
Z3_params p = Native.Z3_mk_params(nCtx);
Native.Z3_params_inc_ref(nCtx, p);
setter(p);
Native.Z3_solver_set_params(nCtx, z3solver, p);
Native.Z3_params_dec_ref(nCtx, p);
}
///
/// Sets parameter on the solver
///
public void Set(string name, bool value)
{
SetParam((Z3_params p) => Native.Z3_params_set_bool(nCtx, p, Native.Z3_mk_string_symbol(nCtx, name), (byte)(value ? 1 : 0)));
}
///
/// Sets parameter on the solver
///
public void Set(string name, uint value)
{
SetParam((Z3_params p) => Native.Z3_params_set_uint(nCtx, p, Native.Z3_mk_string_symbol(nCtx, name), value));
}
///
/// Sets parameter on the solver
///
public void Set(string name, double value)
{
SetParam((Z3_params p) => Native.Z3_params_set_double(nCtx, p, Native.Z3_mk_string_symbol(nCtx, name), value));
}
///
/// Sets parameter on the solver
///
public void Set(string name, string value)
{
var value_sym = Native.Z3_mk_string_symbol(nCtx, value);
SetParam((Z3_params p) => Native.Z3_params_set_symbol(nCtx, p, Native.Z3_mk_string_symbol(nCtx, name), value_sym));
}
#if false
///
/// Sets parameter on the solver
///
public void Set(string name, Symbol value) { Parameters = Context.MkParams().Add(name, value); }
///
/// Sets parameter on the solver
///
public void Set(Symbol name, bool value) { Parameters = Context.MkParams().Add(name, value); }
///
/// Sets parameter on the solver
///
public void Set(Symbol name, uint value) { Parameters = Context.MkParams().Add(name, value); }
///
/// Sets parameter on the solver
///
public void Set(Symbol name, double value) { Parameters = Context.MkParams().Add(name, value); }
///
/// Sets parameter on the solver
///
public void Set(Symbol name, string value) { Parameters = Context.MkParams().Add(name, value); }
///
/// Sets parameter on the solver
///
public void Set(Symbol name, Symbol value) { Parameters = Context.MkParams().Add(name, value); }
///
/// Retrieves parameter descriptions for solver.
///
public ParamDescrs ParameterDescriptions
{
get { return new ParamDescrs(Context, Native.Z3_solver_get_param_descrs(nCtx, NativeObject)); }
}
#endif
///
/// The current number of backtracking points (scopes).
///
///
///
public uint NumScopes => Native.Z3_solver_get_num_scopes(nCtx, z3solver);
///
/// Creates a backtracking point.
///
///
public void Push() => Native.Z3_solver_push(nCtx, z3solver);
///
/// Backtracks backtracking points.
///
/// Note that an exception is thrown if is not smaller than NumScopes
///
public void Pop(uint n = 1) => Native.Z3_solver_pop(nCtx, z3solver, n);
///
/// Resets the Solver.
///
/// This removes all assertions from the solver.
public void Reset() => Native.Z3_solver_reset(nCtx, z3solver);
///
/// Assert a constraint (or multiple) into the solver.
///
public void Assert(params Z3_ast[] constraints)
{
Debug.Assert(constraints != null);
Debug.Assert(constraints.All(c => c != IntPtr.Zero));
foreach (Z3_ast a in constraints)
{
Native.Z3_solver_assert(nCtx, z3solver, a);
}
}
///
/// Alias for Assert.
///
public void Add(params Z3_ast[] constraints) => Assert(constraints);
///
/// Alias for Assert.
///
public void Add(IEnumerable constraints) => Assert(constraints.ToArray());
///
/// Add constraints to ensure the function f can only be injective.
/// Example:
/// for function f : D1 x D2 -> R
/// assert axioms
/// forall (x1 : D1, x2 : D2) x1 = inv1(f(x1,x2))
/// forall (x1 : D1, x2 : D2) x2 = inv2(f(x1,x2))
///
///
public void AssertInjective(Z3_func_decl f)
{
uint arity = Native.Z3_get_arity(nCtx, f);
Z3_sort range = Native.Z3_get_range(nCtx, f);
Z3_ast[] vars = new Z3_ast[arity];
Z3_sort[] sorts = new Z3_sort[arity];
Z3_symbol[] names = new Z3_symbol[arity];
for (uint i = 0; i < arity; ++i)
{
Z3_sort domain = Native.Z3_get_domain(nCtx, f, i);
vars[i] = ntvContext.MkBound(arity - i - 1, domain);
sorts[i] = domain;
names[i] = Native.Z3_mk_int_symbol(nCtx, (int)i);
}
Z3_ast app_f = IntPtr.Zero; // Context.MkApp(f, vars);
for (uint i = 0; i < arity; ++i)
{
Z3_sort domain = Native.Z3_get_domain(nCtx, f, i);
Z3_func_decl proj = ntvContext.MkFreshFuncDecl("inv", new Z3_sort[] { range }, domain);
Z3_ast body = ntvContext.MkEq(vars[i], ntvContext.MkApp(proj, app_f));
Z3_ast q = ntvContext.MkForall(names, sorts, body);
Assert(q);
}
}
///
/// Assert multiple constraints into the solver, and track them (in the unsat) core
/// using the Boolean constants in ps.
///
///
/// This API is an alternative to with assumptions for extracting unsat cores.
/// Both APIs can be used in the same solver. The unsat core will contain a combination
/// of the Boolean variables provided using
/// and the Boolean literals
/// provided using with assumptions.
///
public void AssertAndTrack(Z3_ast[] constraints, Z3_ast[] ps)
{
Debug.Assert(constraints != null);
Debug.Assert(constraints.All(c => c != IntPtr.Zero));
Debug.Assert(ps.All(c => c != IntPtr.Zero));
if (constraints.Length != ps.Length)
throw new Z3Exception("Argument size mismatch");
for (int i = 0; i < constraints.Length; i++)
Native.Z3_solver_assert_and_track(nCtx, z3solver, constraints[i], ps[i]);
}
///
/// Assert a constraint into the solver, and track it (in the unsat) core
/// using the Boolean constant p.
///
///
/// This API is an alternative to with assumptions for extracting unsat cores.
/// Both APIs can be used in the same solver. The unsat core will contain a combination
/// of the Boolean variables provided using
/// and the Boolean literals
/// provided using with assumptions.
///
public void AssertAndTrack(Z3_ast constraint, Z3_ast p)
{
Debug.Assert(constraint != null);
Debug.Assert(p != null);
Native.Z3_solver_assert_and_track(nCtx, z3solver, constraint, p);
}
///
/// Load solver assertions from a file.
///
public void FromFile(string file)
=> Native.Z3_solver_from_file(nCtx, z3solver, file);
///
/// Load solver assertions from a string.
///
public void FromString(string str)
=> Native.Z3_solver_from_string(nCtx, z3solver, str);
///
/// The number of assertions in the solver.
///
public uint NumAssertions
=> (uint)ntvContext.ToArray(Native.Z3_solver_get_assertions(nCtx, z3solver)).Length;
///
/// The set of asserted formulas.
///
public Z3_ast[] Assertions
=> ntvContext.ToArray(Native.Z3_solver_get_assertions(nCtx, z3solver));
///
/// Currently inferred units.
///
public Z3_ast[] Units
=> ntvContext.ToArray(Native.Z3_solver_get_units(nCtx, z3solver));
///
/// Checks whether the assertions in the solver are consistent or not.
///
///
///
///
///
///
public Status Check(params Z3_ast[] assumptions)
{
Z3_lbool r;
if (assumptions == null || assumptions.Length == 0)
r = (Z3_lbool)Native.Z3_solver_check(nCtx, z3solver);
else
r = (Z3_lbool)Native.Z3_solver_check_assumptions(nCtx, z3solver, (uint)assumptions.Length, assumptions);
return lboolToStatus(r);
}
///
/// Checks whether the assertions in the solver are consistent or not.
///
///
///
///
///
///
public Status Check(IEnumerable assumptions)
{
Z3_lbool r;
Z3_ast[] asms = assumptions.ToArray();
if (asms.Length == 0)
r = (Z3_lbool)Native.Z3_solver_check(nCtx, z3solver);
else
r = (Z3_lbool)Native.Z3_solver_check_assumptions(nCtx, z3solver, (uint)asms.Length, asms);
return lboolToStatus(r);
}
///
/// The model of the last Check(params Expr[] assumptions).
///
///
/// The result is null if Check(params Expr[] assumptions) was not invoked before,
/// if its results was not SATISFIABLE, or if model production is not enabled.
///
public NativeModel Model
{
get
{
IntPtr x = Native.Z3_solver_get_model(nCtx, z3solver);
return x == IntPtr.Zero
? null
: new NativeModel(ntvContext, x);
}
}
///
/// The proof of the last Check(params Expr[] assumptions).
///
///
/// The result is null if Check(params Expr[] assumptions) was not invoked before,
/// if its results was not UNSATISFIABLE, or if proof production is disabled.
///
public Z3_ast Proof
=> Native.Z3_solver_get_proof(nCtx, z3solver);
///
/// The unsat core of the last Check.
///
///
/// The unsat core is a subset of Assertions
/// The result is empty if Check was not invoked before,
/// if its results was not UNSATISFIABLE, or if core production is disabled.
///
public Z3_ast[] UnsatCore
=> ntvContext.ToArray(Native.Z3_solver_get_unsat_core(nCtx, z3solver));
///
/// A brief justification of why the last call to Check returned UNKNOWN.
///
public string ReasonUnknown
=> Native.Z3_solver_get_reason_unknown(nCtx, z3solver);
///
/// Create a clone of the current solver with respect to ctx.
///
public NativeSolver Translate(NativeContext ctx)
{
Debug.Assert(ctx != null);
return new NativeSolver(ctx, Native.Z3_solver_translate(nCtx, z3solver, ctx.nCtx));
}
///
/// Import model converter from other solver.
///
public void ImportModelConverter(NativeSolver src)
{
Debug.Assert(src != null);
Native.Z3_solver_import_model_converter(nCtx, src.z3solver, z3solver);
}
///
/// Solver statistics.
///
public Statistics.Entry[] Statistics
{
get
{
var stats = Native.Z3_solver_get_statistics(nCtx, z3solver);
return ntvContext.GetStatistics(stats);
}
}
///
/// A string representation of the solver.
///
public override string ToString()
{
return Native.Z3_solver_to_string(nCtx, z3solver);
}
#region Internal
readonly NativeContext ntvContext;
Z3_solver z3solver;
Z3_context nCtx => ntvContext.nCtx;
internal NativeSolver(NativeContext nativeCtx, Z3_solver z3solver)
{
Debug.Assert(nativeCtx != null);
Debug.Assert(z3solver != IntPtr.Zero);
this.ntvContext = nativeCtx;
this.z3solver = z3solver;
Native.Z3_solver_inc_ref(nCtx, z3solver);
}
///
/// Finalizer.
///
~NativeSolver()
{
Dispose();
}
///
/// Disposes of the underlying native Z3 object.
///
public void Dispose()
{
if (z3solver != IntPtr.Zero)
{
Native.Z3_solver_dec_ref(nCtx, z3solver);
z3solver = IntPtr.Zero;
}
GC.SuppressFinalize(this);
}
private Status lboolToStatus(Z3_lbool r)
{
switch (r)
{
case Z3_lbool.Z3_L_TRUE: return Status.SATISFIABLE;
case Z3_lbool.Z3_L_FALSE: return Status.UNSATISFIABLE;
default: return Status.UNKNOWN;
}
}
#endregion
}
}