Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
z3-z3-4.12.6.src.ast.arith_decl_plugin.cpp Maven / Gradle / Ivy
/*++
Copyright (c) 2006 Microsoft Corporation
Module Name:
arith_decl_plugin.cpp
Abstract:
Author:
Leonardo de Moura (leonardo) 2008-01-09
Revision History:
--*/
#include "ast/arith_decl_plugin.h"
#include "util/warning.h"
#include "math/polynomial/algebraic_numbers.h"
#include "util/id_gen.h"
#include "ast/ast_smt2_pp.h"
#include "util/gparams.h"
struct arith_decl_plugin::algebraic_numbers_wrapper {
unsynch_mpq_manager m_qmanager;
algebraic_numbers::manager m_amanager;
id_gen m_id_gen;
scoped_anum_vector m_nums;
algebraic_numbers_wrapper(reslimit& lim):
m_amanager(lim, m_qmanager),
m_nums(m_amanager) {
}
~algebraic_numbers_wrapper() {
}
unsigned mk_id(algebraic_numbers::anum const & val) {
SASSERT(!m_amanager.is_rational(val));
unsigned idx = m_id_gen.mk();
m_nums.reserve(idx+1);
m_amanager.set(m_nums[idx], val);
TRACE("algebraic2expr", tout << "mk_id -> " << idx << "\n"; m_amanager.display(tout, val); tout << "\n";);
return idx;
}
void recycle_id(unsigned idx) {
SASSERT(idx < m_nums.size());
SASSERT(!m_amanager.is_zero(m_nums[idx]));
TRACE("algebraic2expr", tout << "recycling: " << idx << "\n";);
m_id_gen.recycle(idx);
m_amanager.del(m_nums[idx]);
}
algebraic_numbers::anum const & idx2anum(unsigned idx) {
return m_nums[idx];
}
algebraic_numbers::anum const & to_anum(func_decl * f) {
SASSERT(f->get_decl_kind() == OP_IRRATIONAL_ALGEBRAIC_NUM);
return idx2anum(f->get_parameter(0).get_ext_id());
}
};
arith_decl_plugin::algebraic_numbers_wrapper & arith_decl_plugin::aw() const {
if (m_aw == nullptr)
const_cast(this)->m_aw = alloc(algebraic_numbers_wrapper, m_manager->limit());
return *m_aw;
}
algebraic_numbers::manager & arith_decl_plugin::am() const {
return aw().m_amanager;
}
app * arith_decl_plugin::mk_numeral(algebraic_numbers::manager& m, algebraic_numbers::anum const & val, bool is_int) {
if (m.is_rational(val)) {
rational rval;
m.to_rational(val, rval);
return mk_numeral(rval, is_int);
}
else {
if (is_int) {
m_manager->raise_exception("invalid irrational value passed as an integer");
}
unsigned idx = aw().mk_id(val);
parameter p(idx, true);
SASSERT(p.is_external());
func_decl * decl = m_manager->mk_const_decl(m_rootv_sym, m_real_decl, func_decl_info(m_family_id, OP_IRRATIONAL_ALGEBRAIC_NUM, 1, &p));
app * r = m_manager->mk_const(decl);
if (log_constant_meaning_prelude(r)) {
am().display_root_smt2(m_manager->trace_stream(), val);
m_manager->trace_stream() << "\n";
}
return r;
}
}
app * arith_decl_plugin::mk_numeral(sexpr const * p, unsigned i) {
scoped_anum r(am());
am().mk_root(p, i, r);
return mk_numeral(am(), r, false);
}
void arith_decl_plugin::del(parameter const & p) {
SASSERT(p.is_external());
if (m_aw != nullptr) {
aw().recycle_id(p.get_ext_id());
}
}
parameter arith_decl_plugin::translate(parameter const & p, decl_plugin & target) {
SASSERT(p.is_external());
arith_decl_plugin & _target = static_cast(target);
return parameter(_target.aw().mk_id(aw().idx2anum(p.get_ext_id())), true);
}
void arith_decl_plugin::set_manager(ast_manager * m, family_id id) {
decl_plugin::set_manager(m, id);
m_real_decl = m->mk_sort(symbol("Real"), sort_info(id, REAL_SORT));
m->inc_ref(m_real_decl);
sort * r = m_real_decl;
m_int_decl = m->mk_sort(symbol("Int"), sort_info(id, INT_SORT));
m->inc_ref(m_int_decl);
sort * i = m_int_decl;
sort * b = m->mk_bool_sort();
#define MK_PRED(FIELD, NAME, KIND, SORT) { \
func_decl_info info(id, KIND); \
info.set_chainable(true); \
FIELD = m->mk_func_decl(symbol(NAME), SORT, SORT, b, info); \
m->inc_ref(FIELD); \
}
MK_PRED(m_r_le_decl, "<=", OP_LE, r);
MK_PRED(m_r_ge_decl, ">=", OP_GE, r);
MK_PRED(m_r_lt_decl, "<", OP_LT, r);
MK_PRED(m_r_gt_decl, ">", OP_GT, r);
MK_PRED(m_i_le_decl, "<=", OP_LE, i);
MK_PRED(m_i_ge_decl, ">=", OP_GE, i);
MK_PRED(m_i_lt_decl, "<", OP_LT, i);
MK_PRED(m_i_gt_decl, ">", OP_GT, i);
#define MK_AC_OP(FIELD, NAME, KIND, SORT) { \
func_decl_info info(id, KIND); \
info.set_associative(); \
info.set_flat_associative(); \
info.set_commutative(); \
FIELD = m->mk_func_decl(symbol(NAME), SORT, SORT, SORT, info); \
m->inc_ref(FIELD); \
}
#define MK_LEFT_ASSOC_OP(FIELD, NAME, KIND, SORT) { \
func_decl_info info(id, KIND); \
info.set_left_associative(); \
FIELD = m->mk_func_decl(symbol(NAME), SORT, SORT, SORT, info); \
m->inc_ref(FIELD); \
}
#define MK_OP(FIELD, NAME, KIND, SORT) \
FIELD = m->mk_func_decl(symbol(NAME), SORT, SORT, SORT, func_decl_info(id, KIND)); \
m->inc_ref(FIELD)
#define MK_UNARY(FIELD, NAME, KIND, SORT) \
FIELD = m->mk_func_decl(symbol(NAME), SORT, SORT, func_decl_info(id, KIND)); \
m->inc_ref(FIELD)
MK_AC_OP(m_r_add_decl, "+", OP_ADD, r);
MK_LEFT_ASSOC_OP(m_r_sub_decl, "-", OP_SUB, r);
MK_AC_OP(m_r_mul_decl, "*", OP_MUL, r);
MK_LEFT_ASSOC_OP(m_r_div_decl, "/", OP_DIV, r);
MK_UNARY(m_r_uminus_decl, "-", OP_UMINUS, r);
MK_AC_OP(m_i_add_decl, "+", OP_ADD, i);
MK_LEFT_ASSOC_OP(m_i_sub_decl, "-", OP_SUB, i);
MK_AC_OP(m_i_mul_decl, "*", OP_MUL, i);
MK_LEFT_ASSOC_OP(m_i_div_decl, "div", OP_IDIV, i);
MK_OP(m_i_rem_decl, "rem", OP_REM, i);
MK_OP(m_i_mod_decl, "mod", OP_MOD, i);
MK_UNARY(m_i_uminus_decl, "-", OP_UMINUS, i);
m_to_real_decl = m->mk_func_decl(symbol("to_real"), i, r, func_decl_info(id, OP_TO_REAL));
m->inc_ref(m_to_real_decl);
m_to_int_decl = m->mk_func_decl(symbol("to_int"), r, i, func_decl_info(id, OP_TO_INT));
m->inc_ref(m_to_int_decl);
m_is_int_decl = m->mk_func_decl(symbol("is_int"), r, m->mk_bool_sort(), func_decl_info(id, OP_IS_INT));
m->inc_ref(m_is_int_decl);
m_i_power_decl = m->mk_func_decl(symbol("^"), i, i, r, func_decl_info(id, OP_POWER));
m->inc_ref(m_i_power_decl);
MK_OP(m_r_power_decl, "^", OP_POWER, r);
MK_UNARY(m_i_abs_decl, "abs", OP_ABS, i);
MK_UNARY(m_r_abs_decl, "abs", OP_ABS, r);
MK_UNARY(m_sin_decl, "sin", OP_SIN, r);
MK_UNARY(m_cos_decl, "cos", OP_COS, r);
MK_UNARY(m_tan_decl, "tan", OP_TAN, r);
MK_UNARY(m_asin_decl, "asin", OP_ASIN, r);
MK_UNARY(m_acos_decl, "acos", OP_ACOS, r);
MK_UNARY(m_atan_decl, "atan", OP_ATAN, r);
MK_UNARY(m_sinh_decl, "sinh", OP_SINH, r);
MK_UNARY(m_cosh_decl, "cosh", OP_COSH, r);
MK_UNARY(m_tanh_decl, "tanh", OP_TANH, r);
MK_UNARY(m_asinh_decl, "asinh", OP_ASINH, r);
MK_UNARY(m_acosh_decl, "acosh", OP_ACOSH, r);
MK_UNARY(m_atanh_decl, "atanh", OP_ATANH, r);
func_decl * pi_decl = m->mk_const_decl(symbol("pi"), r, func_decl_info(id, OP_PI));
m_pi = m->mk_const(pi_decl);
m->inc_ref(m_pi);
func_decl * e_decl = m->mk_const_decl(symbol("euler"), r, func_decl_info(id, OP_E));
m_e = m->mk_const(e_decl);
m->inc_ref(m_e);
MK_OP(m_neg_root_decl, "neg-root", OP_NEG_ROOT, r);
MK_UNARY(m_u_asin_decl, "asin-u", OP_U_ASIN, r);
MK_UNARY(m_u_acos_decl, "acos-u", OP_U_ACOS, r);
}
arith_decl_plugin::arith_decl_plugin():
m_aw(nullptr),
m_intv_sym("Int"),
m_realv_sym("Real"),
m_rootv_sym("RootObject"),
m_real_decl(nullptr),
m_int_decl(nullptr),
m_r_le_decl(nullptr),
m_r_ge_decl(nullptr),
m_r_lt_decl(nullptr),
m_r_gt_decl(nullptr),
m_r_add_decl(nullptr),
m_r_sub_decl(nullptr),
m_r_uminus_decl(nullptr),
m_r_mul_decl(nullptr),
m_r_div_decl(nullptr),
m_i_le_decl(nullptr),
m_i_ge_decl(nullptr),
m_i_lt_decl(nullptr),
m_i_gt_decl(nullptr),
m_i_add_decl(nullptr),
m_i_sub_decl(nullptr),
m_i_uminus_decl(nullptr),
m_i_mul_decl(nullptr),
m_i_div_decl(nullptr),
m_i_mod_decl(nullptr),
m_i_rem_decl(nullptr),
m_to_real_decl(nullptr),
m_to_int_decl(nullptr),
m_is_int_decl(nullptr),
m_r_power_decl(nullptr),
m_i_power_decl(nullptr),
m_r_abs_decl(nullptr),
m_i_abs_decl(nullptr),
m_sin_decl(nullptr),
m_cos_decl(nullptr),
m_tan_decl(nullptr),
m_asin_decl(nullptr),
m_acos_decl(nullptr),
m_atan_decl(nullptr),
m_sinh_decl(nullptr),
m_cosh_decl(nullptr),
m_tanh_decl(nullptr),
m_asinh_decl(nullptr),
m_acosh_decl(nullptr),
m_atanh_decl(nullptr),
m_pi(nullptr),
m_e(nullptr),
m_neg_root_decl(nullptr),
m_u_asin_decl(nullptr),
m_u_acos_decl(nullptr),
m_convert_int_numerals_to_real(false) {
}
arith_decl_plugin::~arith_decl_plugin() {
dealloc(m_aw);
}
void arith_decl_plugin::finalize() {
#define DEC_REF(decl) if (decl) { m_manager->dec_ref(decl); } ((void) 0)
DEC_REF(m_real_decl);
DEC_REF(m_int_decl);
DEC_REF(m_r_le_decl);
DEC_REF(m_r_ge_decl);
DEC_REF(m_r_lt_decl);
DEC_REF(m_r_gt_decl);
DEC_REF(m_r_add_decl);
DEC_REF(m_r_sub_decl);
DEC_REF(m_r_uminus_decl);
DEC_REF(m_r_mul_decl);
DEC_REF(m_r_div_decl);
DEC_REF(m_i_le_decl);
DEC_REF(m_i_ge_decl);
DEC_REF(m_i_lt_decl);
DEC_REF(m_i_gt_decl);
DEC_REF(m_i_add_decl);
DEC_REF(m_i_sub_decl);
DEC_REF(m_i_uminus_decl);
DEC_REF(m_i_mul_decl);
DEC_REF(m_i_div_decl);
DEC_REF(m_i_mod_decl);
DEC_REF(m_i_rem_decl);
DEC_REF(m_to_real_decl);
DEC_REF(m_to_int_decl);
DEC_REF(m_is_int_decl);
DEC_REF(m_i_power_decl);
DEC_REF(m_r_power_decl);
DEC_REF(m_i_abs_decl);
DEC_REF(m_r_abs_decl);
DEC_REF(m_sin_decl);
DEC_REF(m_cos_decl);
DEC_REF(m_tan_decl);
DEC_REF(m_asin_decl);
DEC_REF(m_acos_decl);
DEC_REF(m_atan_decl);
DEC_REF(m_sinh_decl);
DEC_REF(m_cosh_decl);
DEC_REF(m_tanh_decl);
DEC_REF(m_asinh_decl);
DEC_REF(m_acosh_decl);
DEC_REF(m_atanh_decl);
DEC_REF(m_pi);
DEC_REF(m_e);
DEC_REF(m_neg_root_decl);
DEC_REF(m_u_asin_decl);
DEC_REF(m_u_acos_decl);
m_manager->dec_array_ref(m_small_ints.size(), m_small_ints.data());
m_manager->dec_array_ref(m_small_reals.size(), m_small_reals.data());
}
sort * arith_decl_plugin::mk_sort(decl_kind k, unsigned num_parameters, parameter const * parameters) {
switch (k) {
case REAL_SORT: return m_real_decl;
case INT_SORT: return m_int_decl;
default: return nullptr;
}
}
inline func_decl * arith_decl_plugin::mk_func_decl(decl_kind k, bool is_real) {
switch (k) {
case OP_LE: return is_real ? m_r_le_decl : m_i_le_decl;
case OP_GE: return is_real ? m_r_ge_decl : m_i_ge_decl;
case OP_LT: return is_real ? m_r_lt_decl : m_i_lt_decl;
case OP_GT: return is_real ? m_r_gt_decl : m_i_gt_decl;
case OP_ADD: return is_real ? m_r_add_decl : m_i_add_decl;
case OP_SUB: return is_real ? m_r_sub_decl : m_i_sub_decl;
case OP_UMINUS: return is_real ? m_r_uminus_decl : m_i_uminus_decl;
case OP_MUL: return is_real ? m_r_mul_decl : m_i_mul_decl;
case OP_DIV: return m_r_div_decl;
case OP_IDIV: return m_i_div_decl;
case OP_IDIVIDES: UNREACHABLE();
case OP_REM: return m_i_rem_decl;
case OP_MOD: return m_i_mod_decl;
case OP_DIV0: return m_manager->mk_func_decl(symbol("/0"), m_real_decl, m_real_decl, m_real_decl, func_decl_info(m_family_id, OP_DIV0));
case OP_IDIV0: return m_manager->mk_func_decl(symbol("div0"), m_int_decl, m_int_decl, m_int_decl, func_decl_info(m_family_id, OP_IDIV0));
case OP_MOD0: return m_manager->mk_func_decl(symbol("mod0"), m_int_decl, m_int_decl, m_int_decl, func_decl_info(m_family_id, OP_MOD0));
case OP_POWER0:
if (is_real) {
return m_manager->mk_func_decl(symbol("^0"), m_real_decl, m_real_decl, m_real_decl, func_decl_info(m_family_id, OP_POWER0));
}
return m_manager->mk_func_decl(symbol("^0"), m_int_decl, m_int_decl, m_real_decl, func_decl_info(m_family_id, OP_POWER0));
case OP_TO_REAL: return m_to_real_decl;
case OP_TO_INT: return m_to_int_decl;
case OP_IS_INT: return m_is_int_decl;
case OP_POWER: return is_real ? m_r_power_decl : m_i_power_decl;
case OP_ABS: return is_real ? m_r_abs_decl : m_i_abs_decl;
case OP_SIN: return m_sin_decl;
case OP_COS: return m_cos_decl;
case OP_TAN: return m_tan_decl;
case OP_ASIN: return m_asin_decl;
case OP_ACOS: return m_acos_decl;
case OP_ATAN: return m_atan_decl;
case OP_SINH: return m_sinh_decl;
case OP_COSH: return m_cosh_decl;
case OP_TANH: return m_tanh_decl;
case OP_ASINH: return m_asinh_decl;
case OP_ACOSH: return m_acosh_decl;
case OP_ATANH: return m_atanh_decl;
case OP_PI: return m_pi->get_decl();
case OP_E: return m_e->get_decl();
//case OP_0_PW_0_INT: return m_0_pw_0_int->get_decl();
//case OP_0_PW_0_REAL: return m_0_pw_0_real->get_decl();
case OP_NEG_ROOT: return m_neg_root_decl;
//case OP_DIV_0: return m_div_0_decl;
//case OP_IDIV_0: return m_idiv_0_decl;
//case OP_MOD_0: return m_mod_0_decl;
case OP_U_ASIN: return m_u_asin_decl;
case OP_U_ACOS: return m_u_acos_decl;
default: return nullptr;
}
}
void arith_decl_plugin::check_arity(unsigned arity, unsigned expected_arity) {
if (arity != expected_arity) {
m_manager->raise_exception("invalid number of arguments passed to function");
}
}
inline decl_kind arith_decl_plugin::fix_kind(decl_kind k, unsigned arity) {
if (k == OP_SUB && arity == 1) {
return OP_UMINUS;
}
return k;
}
#define MAX_SMALL_NUM_TO_CACHE 16
app * arith_decl_plugin::mk_numeral(rational const & val, bool is_int) {
if (is_int && !val.is_int()) {
m_manager->raise_exception("invalid rational value passed as an integer");
}
if (val.is_unsigned()) {
unsigned u_val = val.get_unsigned();
if (u_val < MAX_SMALL_NUM_TO_CACHE) {
if (is_int && !m_convert_int_numerals_to_real) {
app * r = m_small_ints.get(u_val, 0);
if (r == nullptr) {
parameter p[2] = { parameter(val), parameter(1) };
r = m_manager->mk_const(m_manager->mk_const_decl(m_intv_sym, m_int_decl, func_decl_info(m_family_id, OP_NUM, 2, p)));
m_manager->inc_ref(r);
m_small_ints.setx(u_val, r, 0);
if (log_constant_meaning_prelude(r)) {
m_manager->trace_stream() << u_val << "\n";
}
}
return r;
}
else {
app * r = m_small_reals.get(u_val, 0);
if (r == nullptr) {
parameter p[2] = { parameter(val), parameter(0) };
r = m_manager->mk_const(m_manager->mk_const_decl(m_realv_sym, m_real_decl, func_decl_info(m_family_id, OP_NUM, 2, p)));
m_manager->inc_ref(r);
m_small_reals.setx(u_val, r, 0);
if (log_constant_meaning_prelude(r)) {
m_manager->trace_stream() << u_val << "\n";
}
}
return r;
}
}
}
parameter p[2] = { parameter(val), parameter(static_cast(is_int)) };
func_decl * decl;
if (is_int && !m_convert_int_numerals_to_real)
decl = m_manager->mk_const_decl(m_intv_sym, m_int_decl, func_decl_info(m_family_id, OP_NUM, 2, p));
else
decl = m_manager->mk_const_decl(m_realv_sym, m_real_decl, func_decl_info(m_family_id, OP_NUM, 2, p));
app * r = m_manager->mk_const(decl);
if (log_constant_meaning_prelude(r)) {
val.display_smt2(m_manager->trace_stream());
m_manager->trace_stream() << "\n";
}
return r;
}
func_decl * arith_decl_plugin::mk_num_decl(unsigned num_parameters, parameter const * parameters, unsigned arity) {
if (!(num_parameters == 2 && arity == 0 && parameters[0].is_rational() && parameters[1].is_int())) {
m_manager->raise_exception("invalid numeral declaration");
return nullptr;
}
if (parameters[1].get_int() != 0)
return m_manager->mk_const_decl(m_intv_sym, m_int_decl, func_decl_info(m_family_id, OP_NUM, num_parameters, parameters));
else
return m_manager->mk_const_decl(m_realv_sym, m_real_decl, func_decl_info(m_family_id, OP_NUM, num_parameters, parameters));
}
static bool use_coercion(decl_kind k) {
return k == OP_ADD || k == OP_SUB || k == OP_MUL || k == OP_POWER || k == OP_LE || k == OP_GE || k == OP_LT || k == OP_GT || k == OP_UMINUS;
}
static bool has_real_arg(unsigned arity, sort * const * domain, sort * real_sort) {
for (unsigned i = 0; i < arity; i++)
if (domain[i] == real_sort)
return true;
return false;
}
static bool has_real_arg(ast_manager * m, unsigned num_args, expr * const * args, sort * real_sort) {
for (unsigned i = 0; i < num_args; i++)
if (args[i]->get_sort() == real_sort)
return true;
return false;
}
static bool is_const_op(decl_kind k) {
return
k == OP_PI ||
k == OP_E;
//k == OP_0_PW_0_INT ||
//k == OP_0_PW_0_REAL;
}
symbol arith_decl_plugin::bv_symbol(decl_kind k) const {
switch (k) {
case OP_ARITH_BAND: return symbol("band");
case OP_ARITH_SHL: return symbol("shl");
case OP_ARITH_ASHR: return symbol("ashr");
case OP_ARITH_LSHR: return symbol("lshr");
default:
UNREACHABLE();
}
return symbol();
}
func_decl * arith_decl_plugin::mk_func_decl(decl_kind k, unsigned num_parameters, parameter const * parameters,
unsigned arity, sort * const * domain, sort * range) {
if (k == OP_NUM)
return mk_num_decl(num_parameters, parameters, arity);
if (arity == 0 && !is_const_op(k)) {
m_manager->raise_exception("no arguments supplied to arithmetical operator");
return nullptr;
}
if (k == OP_IDIVIDES) {
if (arity != 1 || domain[0] != m_int_decl || num_parameters != 1 || !parameters[0].is_int()) {
m_manager->raise_exception("invalid divides application. Expects integer parameter and one argument of sort integer");
}
return m_manager->mk_func_decl(symbol("divisible"), 1, &m_int_decl, m_manager->mk_bool_sort(),
func_decl_info(m_family_id, k, num_parameters, parameters));
}
if (k == OP_ARITH_BAND || k == OP_ARITH_SHL || k == OP_ARITH_ASHR || k == OP_ARITH_LSHR) {
if (arity != 2 || domain[0] != m_int_decl || domain[1] != m_int_decl || num_parameters != 1 || !parameters[0].is_int())
m_manager->raise_exception("invalid bitwise and application. Expects integer parameter and two arguments of sort integer");
return m_manager->mk_func_decl(bv_symbol(k), 2, domain, m_int_decl,
func_decl_info(m_family_id, k, num_parameters, parameters));
}
if (m_manager->int_real_coercions() && use_coercion(k)) {
return mk_func_decl(fix_kind(k, arity), has_real_arg(arity, domain, m_real_decl));
}
else {
bool is_real = arity > 0 && domain[0] == m_real_decl;
return mk_func_decl(fix_kind(k, arity), is_real);
}
}
func_decl * arith_decl_plugin::mk_func_decl(decl_kind k, unsigned num_parameters, parameter const * parameters,
unsigned num_args, expr * const * args, sort * range) {
if (k == OP_NUM)
return mk_num_decl(num_parameters, parameters, num_args);
if (num_args == 0 && !is_const_op(k)) {
m_manager->raise_exception("no arguments supplied to arithmetical operator");
return nullptr;
}
if (k == OP_IDIVIDES) {
if (num_args != 1 || args[0]->get_sort() != m_int_decl || num_parameters != 1 || !parameters[0].is_int()) {
m_manager->raise_exception("invalid divides application. Expects integer parameter and one argument of sort integer");
}
return m_manager->mk_func_decl(symbol("divisible"), 1, &m_int_decl, m_manager->mk_bool_sort(),
func_decl_info(m_family_id, k, num_parameters, parameters));
}
if (k == OP_ARITH_BAND || k == OP_ARITH_SHL || k == OP_ARITH_ASHR || k == OP_ARITH_LSHR) {
if (num_args != 2 || args[0]->get_sort() != m_int_decl || args[1]->get_sort() != m_int_decl || num_parameters != 1 || !parameters[0].is_int())
m_manager->raise_exception("invalid bitwise and application. Expects integer parameter and two arguments of sort integer");
sort* domain[2] = { m_int_decl, m_int_decl };
return m_manager->mk_func_decl(bv_symbol(k), 2, domain, m_int_decl,
func_decl_info(m_family_id, k, num_parameters, parameters));
}
if (m_manager->int_real_coercions() && use_coercion(k)) {
return mk_func_decl(fix_kind(k, num_args), has_real_arg(m_manager, num_args, args, m_real_decl));
}
else {
bool is_real = num_args > 0 && args[0]->get_sort() == m_real_decl;
return mk_func_decl(fix_kind(k, num_args), is_real);
}
}
void arith_decl_plugin::get_sort_names(svector& sort_names, symbol const & logic) {
if (logic == "NRA" ||
logic == "QF_NRA" ||
logic == "QF_UFNRA") {
// TBD: remove completely pending regressions:
// m_convert_int_numerals_to_real = true;
sort_names.push_back(builtin_name("Real", REAL_SORT));
}
else {
// TODO: only define Int and Real in the right logics
sort_names.push_back(builtin_name("Int", INT_SORT));
sort_names.push_back(builtin_name("Real", REAL_SORT));
}
}
void arith_decl_plugin::get_op_names(svector& op_names, symbol const & logic) {
op_names.push_back(builtin_name("<=",OP_LE));
op_names.push_back(builtin_name(">=",OP_GE));
op_names.push_back(builtin_name("<",OP_LT));
op_names.push_back(builtin_name(">",OP_GT));
op_names.push_back(builtin_name("+",OP_ADD));
op_names.push_back(builtin_name("-",OP_SUB));
op_names.push_back(builtin_name("~",OP_UMINUS));
op_names.push_back(builtin_name("*",OP_MUL));
op_names.push_back(builtin_name("/",OP_DIV));
op_names.push_back(builtin_name("div",OP_IDIV));
if (gparams::get_value("smtlib2_compliant") == "true") {
op_names.push_back(builtin_name("divisible",OP_IDIVIDES));
}
op_names.push_back(builtin_name("rem",OP_REM));
op_names.push_back(builtin_name("mod",OP_MOD));
op_names.push_back(builtin_name("to_real",OP_TO_REAL));
op_names.push_back(builtin_name("to_int",OP_TO_INT));
op_names.push_back(builtin_name("is_int",OP_IS_INT));
op_names.push_back(builtin_name("abs", OP_ABS));
if (logic == symbol::null || logic == symbol("ALL")) {
op_names.push_back(builtin_name("^", OP_POWER));
op_names.push_back(builtin_name("^0", OP_POWER0));
op_names.push_back(builtin_name("sin", OP_SIN));
op_names.push_back(builtin_name("cos", OP_COS));
op_names.push_back(builtin_name("tan", OP_TAN));
op_names.push_back(builtin_name("asin", OP_ASIN));
op_names.push_back(builtin_name("acos", OP_ACOS));
op_names.push_back(builtin_name("atan", OP_ATAN));
op_names.push_back(builtin_name("sinh", OP_SINH));
op_names.push_back(builtin_name("cosh", OP_COSH));
op_names.push_back(builtin_name("tanh", OP_TANH));
op_names.push_back(builtin_name("asinh", OP_ASINH));
op_names.push_back(builtin_name("acosh", OP_ACOSH));
op_names.push_back(builtin_name("atanh", OP_ATANH));
op_names.push_back(builtin_name("pi", OP_PI));
op_names.push_back(builtin_name("euler", OP_E));
op_names.push_back(builtin_name("/0",OP_DIV0));
op_names.push_back(builtin_name("div0",OP_IDIV0));
op_names.push_back(builtin_name("mod0",OP_MOD0));
}
}
bool arith_decl_plugin::is_value(app * e) const {
return
is_app_of(e, m_family_id, OP_NUM) ||
is_app_of(e, m_family_id, OP_IRRATIONAL_ALGEBRAIC_NUM) ||
is_app_of(e, m_family_id, OP_PI) ||
is_app_of(e, m_family_id, OP_E);
}
bool arith_decl_plugin::is_unique_value(app * e) const {
return
is_app_of(e, m_family_id, OP_NUM) ||
is_app_of(e, m_family_id, OP_PI) ||
is_app_of(e, m_family_id, OP_E);
}
bool arith_decl_plugin::are_equal(app * a, app * b) const {
if (decl_plugin::are_equal(a, b)) {
return true;
}
if (is_app_of(a, m_family_id, OP_IRRATIONAL_ALGEBRAIC_NUM) && is_app_of(b, m_family_id, OP_IRRATIONAL_ALGEBRAIC_NUM)) {
return am().eq(aw().to_anum(a->get_decl()), aw().to_anum(b->get_decl()));
}
return false;
}
bool arith_decl_plugin::are_distinct(app * a, app * b) const {
TRACE("are_distinct_bug", tout << mk_ismt2_pp(a, *m_manager) << "\n" << mk_ismt2_pp(b, *m_manager) << "\n";);
if (decl_plugin::are_distinct(a,b)) {
return true;
}
if (is_app_of(a, m_family_id, OP_IRRATIONAL_ALGEBRAIC_NUM) && is_app_of(b, m_family_id, OP_IRRATIONAL_ALGEBRAIC_NUM)) {
return am().neq(aw().to_anum(a->get_decl()), aw().to_anum(b->get_decl()));
}
if (is_app_of(a, m_family_id, OP_IRRATIONAL_ALGEBRAIC_NUM) && is_app_of(b, m_family_id, OP_NUM)) {
std::swap(a, b);
}
if (is_app_of(a, m_family_id, OP_NUM) && is_app_of(b, m_family_id, OP_IRRATIONAL_ALGEBRAIC_NUM)) {
rational val = a->get_decl()->get_parameter(0).get_rational();
return am().neq(aw().to_anum(b->get_decl()), val.to_mpq());
}
#define is_non_zero(e) is_app_of(e,m_family_id, OP_NUM) && !to_app(e)->get_decl()->get_parameter(0).get_rational().is_zero()
if (is_app_of(a, m_family_id, OP_ADD) &&
a->get_num_args() == 2 &&
to_app(a)->get_arg(0) == b &&
is_non_zero(to_app(a)->get_arg(1))) {
return true;
}
if (is_app_of(a, m_family_id, OP_ADD) &&
a->get_num_args() == 2 &&
to_app(a)->get_arg(1) == b &&
is_non_zero(to_app(a)->get_arg(0))) {
return true;
}
if (is_app_of(b, m_family_id, OP_ADD) &&
b->get_num_args() == 2 &&
to_app(b)->get_arg(1) == a &&
is_non_zero(to_app(b)->get_arg(0))) {
return true;
}
if (is_app_of(b, m_family_id, OP_ADD) &&
b->get_num_args() == 2 &&
to_app(b)->get_arg(0) == a &&
is_non_zero(to_app(b)->get_arg(1))) {
return true;
}
return false;
}
expr * arith_decl_plugin::get_some_value(sort * s) {
SASSERT(s == m_int_decl || s == m_real_decl);
return mk_numeral(rational(0), s == m_int_decl);
}
bool arith_util::is_numeral(expr const * n, rational & val, bool & is_int) const {
if (is_irrational_algebraic_numeral(n)) {
scoped_anum an(am());
is_irrational_algebraic_numeral2(n, an);
if (am().is_rational(an)) {
am().to_rational(an, val);
is_int = val.is_int();
return true;
}
}
if (!is_app_of(n, arith_family_id, OP_NUM))
return false;
func_decl * decl = to_app(n)->get_decl();
val = decl->get_parameter(0).get_rational();
is_int = decl->get_parameter(1).get_int() != 0;
return true;
}
bool arith_recognizers::is_irrational_algebraic_numeral(expr const * n) const {
return is_app(n) && to_app(n)->is_app_of(arith_family_id, OP_IRRATIONAL_ALGEBRAIC_NUM);
}
#define IS_INT_EXPR_DEPTH_LIMIT 100
bool arith_recognizers::is_int_expr(expr const *e) const {
if (is_int(e)) return true;
if (is_uninterp(e)) return false;
ptr_buffer todo;
todo.push_back(e);
rational r;
unsigned i = 0;
while (!todo.empty()) {
++i;
if (i > IS_INT_EXPR_DEPTH_LIMIT) {return false;}
e = todo.back();
todo.pop_back();
if (is_to_real(e)) {
// pass
}
else if (is_numeral(e) && is_int(e)) {
// pass
}
else if (is_add(e) || is_mul(e)) {
todo.append(to_app(e)->get_num_args(), to_app(e)->get_args());
}
else {
return false;
}
}
return true;
}
arith_util::arith_util(ast_manager & m):
m_manager(m),
m_plugin(nullptr) {
}
void arith_util::init_plugin() {
SASSERT(m_plugin == 0);
m_plugin = static_cast(m_manager.get_plugin(arith_family_id));
}
bool arith_util::is_irrational_algebraic_numeral2(expr const * n, algebraic_numbers::anum & val) const {
if (!is_app_of(n, arith_family_id, OP_IRRATIONAL_ALGEBRAIC_NUM))
return false;
am().set(val, to_irrational_algebraic_numeral(n));
return true;
}
algebraic_numbers::anum const & arith_util::to_irrational_algebraic_numeral(expr const * n) const {
SASSERT(is_irrational_algebraic_numeral(n));
return plugin().aw().to_anum(to_app(n)->get_decl());
}
expr_ref arith_util::mk_mul_simplify(expr_ref_vector const& args) {
return mk_mul_simplify(args.size(), args.data());
}
expr_ref arith_util::mk_mul_simplify(unsigned sz, expr* const* args) {
expr_ref result(m_manager);
switch (sz) {
case 0:
result = mk_numeral(rational(1), true);
break;
case 1:
result = args[0];
break;
default:
result = mk_mul(sz, args);
break;
}
return result;
}
expr_ref arith_util::mk_add_simplify(expr_ref_vector const& args) {
return mk_add_simplify(args.size(), args.data());
}
expr_ref arith_util::mk_add_simplify(unsigned sz, expr* const* args) {
expr_ref result(m_manager);
switch (sz) {
case 0:
result = mk_numeral(rational(0), true);
break;
case 1:
result = args[0];
break;
default:
result = mk_add(sz, args);
break;
}
return result;
}
bool arith_util::is_considered_partially_interpreted(func_decl* f, unsigned n, expr* const* args, func_decl_ref& f_out) {
if (is_decl_of(f, arith_family_id, OP_DIV) && n == 2 && !is_numeral(args[1])) {
f_out = mk_div0();
return true;
}
if (is_decl_of(f, arith_family_id, OP_IDIV) && n == 2 && !is_numeral(args[1])) {
sort* rs[2] = { mk_int(), mk_int() };
f_out = m_manager.mk_func_decl(arith_family_id, OP_IDIV0, 0, nullptr, 2, rs, mk_int());
return true;
}
if (is_decl_of(f, arith_family_id, OP_MOD) && n == 2 && !is_numeral(args[1])) {
sort* rs[2] = { mk_int(), mk_int() };
f_out = m_manager.mk_func_decl(arith_family_id, OP_MOD0, 0, nullptr, 2, rs, mk_int());
return true;
}
if (is_decl_of(f, arith_family_id, OP_REM) && n == 2 && !is_numeral(args[1])) {
sort* rs[2] = { mk_int(), mk_int() };
f_out = m_manager.mk_func_decl(arith_family_id, OP_MOD0, 0, nullptr, 2, rs, mk_int());
return true;
}
return false;
}
bool arith_util::is_considered_uninterpreted(func_decl* f, unsigned n, expr* const* args, func_decl_ref& f_out) {
rational r;
if (is_decl_of(f, arith_family_id, OP_DIV) && n == 2 && is_numeral(args[1], r) && r.is_zero()) {
f_out = mk_div0();
return true;
}
if (is_decl_of(f, arith_family_id, OP_IDIV) && n == 2 && is_numeral(args[1], r) && r.is_zero()) {
sort* rs[2] = { mk_int(), mk_int() };
f_out = m_manager.mk_func_decl(arith_family_id, OP_IDIV0, 0, nullptr, 2, rs, mk_int());
return true;
}
if (is_decl_of(f, arith_family_id, OP_MOD) && n == 2 && is_numeral(args[1], r) && r.is_zero()) {
sort* rs[2] = { mk_int(), mk_int() };
f_out = m_manager.mk_func_decl(arith_family_id, OP_MOD0, 0, nullptr, 2, rs, mk_int());
return true;
}
if (is_decl_of(f, arith_family_id, OP_REM) && n == 2 && is_numeral(args[1], r) && r.is_zero()) {
sort* rs[2] = { mk_int(), mk_int() };
f_out = m_manager.mk_func_decl(arith_family_id, OP_MOD0, 0, nullptr, 2, rs, mk_int());
return true;
}
if (is_decl_of(f, arith_family_id, OP_POWER) && n == 2 && is_numeral(args[1], r) && r.is_zero() && is_numeral(args[0], r) && r.is_zero()) {
f_out = is_int(args[0]) ? mk_ipower0() : mk_rpower0();
return true;
}
return plugin().is_considered_uninterpreted(f);
}
func_decl* arith_util::mk_ipower0() {
sort* s = mk_int();
sort* rs[2] = { s, s };
return m_manager.mk_func_decl(arith_family_id, OP_POWER0, 0, nullptr, 2, rs, mk_real());
}
func_decl* arith_util::mk_rpower0() {
sort* s = mk_real();
sort* rs[2] = { s, s };
return m_manager.mk_func_decl(arith_family_id, OP_POWER0, 0, nullptr, 2, rs, s);
}
func_decl* arith_util::mk_div0() {
sort* rs[2] = { mk_real(), mk_real() };
return m_manager.mk_func_decl(arith_family_id, OP_DIV0, 0, nullptr, 2, rs, mk_real());
}
func_decl* arith_util::mk_idiv0() {
sort* rs[2] = { mk_int(), mk_int() };
return m_manager.mk_func_decl(arith_family_id, OP_IDIV0, 0, nullptr, 2, rs, mk_int());
}
func_decl* arith_util::mk_rem0() {
sort* rs[2] = { mk_int(), mk_int() };
return m_manager.mk_func_decl(arith_family_id, OP_MOD0, 0, nullptr, 2, rs, mk_int());
}
func_decl* arith_util::mk_mod0() {
sort* rs[2] = { mk_int(), mk_int() };
return m_manager.mk_func_decl(arith_family_id, OP_MOD0, 0, nullptr, 2, rs, mk_int());
}
bool arith_util::is_bounded(expr* n) const {
expr* x = nullptr, * y = nullptr;
while (true) {
if (is_idiv(n, x, y) && is_numeral(y)) {
n = x;
}
else if (is_mod(n, x, y) && is_numeral(y)) {
return true;
}
else if (is_numeral(n)) {
return true;
}
else {
return false;
}
}
}
bool arith_util::is_extended_numeral(expr* term, rational& r) const {
rational mul(1);
do {
if (is_numeral(term, r)) {
r *= mul;
return true;
}
if (is_uminus(term, term)) {
mul.neg();
continue;
}
if (is_to_real(term, term)) {
continue;
}
if (is_mul(term)) {
r = mul;
rational n(0);
for (expr* arg : *to_app(term)) {
if (!is_extended_numeral(arg, n))
return false;
r *= n;
}
return true;
}
if (is_add(term)) {
rational n(0);
r = 0;
for (expr* arg : *to_app(term)) {
if (!is_extended_numeral(arg, n))
return false;
r += n;
}
r *= mul;
return true;
}
rational k1, k2;
expr* t1, *t2;
if (is_sub(term, t1, t2) &&
is_extended_numeral(t1, k1) &&
is_extended_numeral(t2, k2)) {
r = (k1 - k2) * mul;
return true;
}
return false;
}
while (true);
return false;
}
bool arith_util::is_underspecified(expr* e) const {
if (!is_app(e))
return false;
if (to_app(e)->get_family_id() == get_family_id()) {
switch (to_app(e)->get_decl_kind()) {
case OP_DIV:
case OP_IDIV:
case OP_REM:
case OP_MOD:
case OP_DIV0:
case OP_IDIV0:
case OP_MOD0:
return true;
default:
break;
}
}
return false;
}