Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
z3-z3-4.12.6.src.ast.rewriter.pb2bv_rewriter.cpp Maven / Gradle / Ivy
/*++
Copyright (c) 2016 Microsoft Corporation
Module Name:
pb2bv_rewriter.cpp
Abstract:
Conversion from pseudo-booleans to bit-vectors.
Author:
Nikolaj Bjorner (nbjorner) 2016-10-23
Notes:
--*/
#include "util/statistics.h"
#include "util/lbool.h"
#include "util/uint_set.h"
#include "util/gparams.h"
#include "util/debug.h"
#include "ast/rewriter/rewriter.h"
#include "ast/rewriter/rewriter_def.h"
#include "ast/rewriter/pb2bv_rewriter.h"
#include "ast/ast_util.h"
#include "ast/ast_pp.h"
#include "util/sorting_network.h"
static const unsigned g_primes[7] = { 2, 3, 5, 7, 11, 13, 17};
struct pb2bv_rewriter::imp {
ast_manager& m;
params_ref m_params;
expr_ref_vector m_lemmas;
func_decl_ref_vector m_fresh; // all fresh variables
unsigned_vector m_fresh_lim;
unsigned m_num_translated;
unsigned m_compile_bv;
unsigned m_compile_card;
struct card2bv_rewriter {
typedef expr* pliteral;
typedef ptr_vector pliteral_vector;
psort_nw m_sort;
ast_manager& m;
imp& m_imp;
arith_util au;
pb_util pb;
bv_util bv;
expr_ref_vector m_trail;
expr_ref_vector m_args;
rational m_k;
vector m_coeffs;
bool m_keep_cardinality_constraints;
symbol m_pb_solver;
unsigned m_min_arity;
template
expr_ref mk_le_ge(expr_ref_vector& fmls, expr* a, expr* b, expr* bound) {
expr_ref x(m), y(m), result(m);
unsigned nb = bv.get_bv_size(a);
x = bv.mk_zero_extend(1, a);
y = bv.mk_zero_extend(1, b);
result = bv.mk_bv_add(x, y);
x = bv.mk_extract(nb, nb, result);
result = bv.mk_extract(nb-1, 0, result);
if (is_le != l_false) {
fmls.push_back(m.mk_eq(x, bv.mk_numeral(rational::zero(), 1)));
fmls.push_back(bv.mk_ule(result, bound));
}
else {
fmls.push_back(m.mk_eq(x, bv.mk_numeral(rational::one(), 1)));
fmls.push_back(bv.mk_ule(bound, result));
}
return result;
}
typedef std::pair ca;
struct compare_coeffs {
bool operator()(ca const& x, ca const& y) const {
return x.first > y.first;
}
};
void sort_args() {
vector cas;
for (unsigned i = 0; i < m_args.size(); ++i) {
cas.push_back(std::make_pair(m_coeffs[i], expr_ref(m_args.get(i), m)));
}
std::sort(cas.begin(), cas.end(), compare_coeffs());
m_coeffs.reset();
m_args.reset();
for (ca const& ca : cas) {
m_coeffs.push_back(ca.first);
m_args.push_back(ca.second);
}
}
template
void gcd_reduce(vector& coeffs, rational & k) {
rational g(0);
for (rational const& c : coeffs) {
if (!c.is_int())
return;
g = gcd(g, c);
if (g.is_one())
return;
}
if (g.is_zero())
return;
switch (is_le) {
case l_undef:
if (!k.is_int())
return;
g = gcd(k, g);
if (g.is_one() || g.is_zero())
return;
k /= g;
break;
case l_true:
k /= g;
k = floor(k);
break;
case l_false:
k /= g;
k = ceil(k);
break;
}
for (rational& c : coeffs)
c /= g;
}
//
// create a circuit of size sz*log(k)
// by forming a binary tree adding pairs of values that are assumed <= k,
// and in each step we check that the result is <= k by checking the overflow
// bit and that the non-overflow bits are <= k.
// The procedure for checking >= k is symmetric and checking for = k is
// achieved by checking <= k on intermediary addends and the resulting sum is = k.
//
// is_le = l_true - <=
// is_le = l_undef - =
// is_le = l_false - >=
//
template
expr_ref mk_le_ge(rational const & _k) {
rational k(_k);
//sort_args();
gcd_reduce(m_coeffs, k);
unsigned sz = m_args.size();
expr * const* args = m_args.data();
TRACE("pb",
for (unsigned i = 0; i < sz; ++i) {
tout << m_coeffs[i] << "*" << mk_pp(args[i], m) << " ";
if (i + 1 < sz && !m_coeffs[i+1].is_neg()) tout << "+ ";
}
switch (is_le) {
case l_true: tout << "<= "; break;
case l_undef: tout << "= "; break;
case l_false: tout << ">= "; break;
}
tout << k << "\n";);
if (k.is_zero()) {
if (is_le != l_false) {
return expr_ref(m.mk_not(::mk_or(m_args)), m);
}
else {
return expr_ref(m.mk_true(), m);
}
}
if (k.is_neg()) {
return expr_ref((is_le == l_false)?m.mk_true():m.mk_false(), m);
}
if (m_pb_solver == "totalizer") {
expr_ref result(m);
switch (is_le) {
case l_true: if (mk_le_tot(sz, args, k, result)) return result; else break;
case l_false: if (mk_ge_tot(sz, args, k, result)) return result; else break;
case l_undef: break;
}
}
if (m_pb_solver == "sorting") {
expr_ref result(m);
switch (is_le) {
case l_true: if (mk_le(sz, args, k, result)) return result; else break;
case l_false: if (mk_ge(sz, args, k, result)) return result; else break;
case l_undef: if (mk_eq(sz, args, k, result)) return result; else break;
}
}
if (m_pb_solver == "segmented") {
throw default_exception("segmented encoding is disabled, use a different value for pb.solver");
switch (is_le) {
case l_true: return mk_seg_le(k);
case l_false: return mk_seg_ge(k);
case l_undef: break;
}
}
if (m_pb_solver == "binary_merge") {
expr_ref result = binary_merge(is_le, k);
if (result) return result;
}
// fall back to divide and conquer encoding.
SASSERT(k.is_pos());
expr_ref zero(m), bound(m);
expr_ref_vector es(m), fmls(m);
unsigned nb = k.get_num_bits();
zero = bv.mk_numeral(rational(0), nb);
bound = bv.mk_numeral(k, nb);
for (unsigned i = 0; i < sz; ++i) {
SASSERT(!m_coeffs[i].is_neg());
if (m_coeffs[i] > k) {
if (is_le != l_false) {
fmls.push_back(m.mk_not(args[i]));
}
else {
fmls.push_back(args[i]);
}
}
else {
es.push_back(mk_ite(args[i], bv.mk_numeral(m_coeffs[i], nb), zero));
}
}
while (es.size() > 1) {
for (unsigned i = 0; i + 1 < es.size(); i += 2) {
es[i/2] = mk_le_ge(fmls, es[i].get(), es[i+1].get(), bound);
}
if ((es.size() % 2) == 1) {
es[es.size()/2] = es.back();
}
es.shrink((1 + es.size())/2);
}
switch (is_le) {
case l_true:
return ::mk_and(fmls);
case l_false:
if (!es.empty()) {
fmls.push_back(bv.mk_ule(bound, es.back()));
}
return ::mk_or(fmls);
case l_undef:
if (es.empty()) {
fmls.push_back(m.mk_bool_val(k.is_zero()));
}
else {
fmls.push_back(m.mk_eq(bound, es.back()));
}
return ::mk_and(fmls);
default:
UNREACHABLE();
return expr_ref(m.mk_true(), m);
}
}
/**
\brief Totalizer encoding. Based on a version by Miguel.
*/
bool mk_le_tot(unsigned sz, expr * const * args, rational const& _k, expr_ref& result) {
SASSERT(sz == m_coeffs.size());
if (!_k.is_unsigned() || sz == 0) return false;
unsigned k = _k.get_unsigned();
expr_ref_vector args1(m);
rational bound;
flip(sz, args, args1, _k, bound);
if (bound.get_unsigned() < k) {
return mk_ge_tot(sz, args1.data(), bound, result);
}
if (k > 20) {
return false;
}
result = m.mk_not(bounded_addition(sz, args, k + 1));
TRACE("pb", tout << result << "\n";);
return true;
}
bool mk_ge_tot(unsigned sz, expr * const * args, rational const& _k, expr_ref& result) {
SASSERT(sz == m_coeffs.size());
if (!_k.is_unsigned() || sz == 0) return false;
unsigned k = _k.get_unsigned();
expr_ref_vector args1(m);
rational bound;
flip(sz, args, args1, _k, bound);
if (bound.get_unsigned() < k) {
return mk_le_tot(sz, args1.data(), bound, result);
}
if (k > 20) {
return false;
}
result = bounded_addition(sz, args, k);
TRACE("pb", tout << result << "\n";);
return true;
}
void flip(unsigned sz, expr* const* args, expr_ref_vector& args1, rational const& k, rational& bound) {
bound = -k;
for (unsigned i = 0; i < sz; ++i) {
args1.push_back(mk_not(args[i]));
bound += m_coeffs[i];
}
}
expr_ref bounded_addition(unsigned sz, expr * const * args, unsigned k) {
SASSERT(sz > 0);
expr_ref result(m);
vector es;
vector coeffs;
for (unsigned i = 0; i < m_coeffs.size(); ++i) {
unsigned_vector v;
expr_ref_vector e(m);
unsigned c = m_coeffs[i].get_unsigned();
v.push_back(c >= k ? k : c);
e.push_back(args[i]);
es.push_back(e);
coeffs.push_back(v);
}
while (es.size() > 1) {
for (unsigned i = 0; i + 1 < es.size(); i += 2) {
expr_ref_vector o(m);
unsigned_vector oc;
tot_adder(es[i], coeffs[i], es[i + 1], coeffs[i + 1], k, o, oc);
es[i / 2].set(o);
coeffs[i / 2] = oc;
}
if ((es.size() % 2) == 1) {
es[es.size() / 2].set(es.back());
coeffs[es.size() / 2] = coeffs.back();
}
es.shrink((1 + es.size())/2);
coeffs.shrink((1 + coeffs.size())/2);
}
SASSERT(coeffs.size() == 1);
SASSERT(coeffs[0].back() <= k);
if (coeffs[0].back() == k) {
result = es[0].back();
}
else {
result = m.mk_false();
}
return result;
}
void tot_adder(expr_ref_vector const& l, unsigned_vector const& lc,
expr_ref_vector const& r, unsigned_vector const& rc,
unsigned k,
expr_ref_vector& o, unsigned_vector & oc) {
SASSERT(l.size() == lc.size());
SASSERT(r.size() == rc.size());
uint_set sums;
vector trail;
u_map sum2def;
for (unsigned i = 0; i <= l.size(); ++i) {
for (unsigned j = (i == 0) ? 1 : 0; j <= r.size(); ++j) {
unsigned sum = std::min(k, ((i == 0) ? 0 : lc[i - 1]) + ((j == 0) ? 0 : rc[j - 1]));
sums.insert(sum);
}
}
for (unsigned u : sums) {
oc.push_back(u);
}
std::sort(oc.begin(), oc.end());
DEBUG_CODE(
for (unsigned i = 0; i + 1 < oc.size(); ++i) {
SASSERT(oc[i] < oc[i+1]);
});
for (unsigned i = 0; i < oc.size(); ++i) {
sum2def.insert(oc[i], i);
trail.push_back(expr_ref_vector(m));
}
for (unsigned i = 0; i <= l.size(); ++i) {
for (unsigned j = (i == 0) ? 1 : 0; j <= r.size(); ++j) {
if (i != 0 && j != 0 && (lc[i - 1] >= k || rc[j - 1] >= k)) continue;
unsigned sum = std::min(k, ((i == 0) ? 0 : lc[i - 1]) + ((j == 0) ? 0 : rc[j - 1]));
expr_ref_vector ands(m);
if (i != 0) {
ands.push_back(l[i - 1]);
}
if (j != 0) {
ands.push_back(r[j - 1]);
}
trail[sum2def.find(sum)].push_back(::mk_and(ands));
}
}
for (unsigned i = 0; i < oc.size(); ++i) {
o.push_back(::mk_or(trail[sum2def.find(oc[i])]));
}
}
/**
\brief MiniSat+ based encoding of PB constraints.
Translating Pseudo-Boolean Constraints into SAT,
Niklas Een, Niklas Soerensson, JSAT 2006.
*/
vector m_min_base;
rational m_min_cost;
vector m_base;
void create_basis(vector const& seq, rational const& carry_in, rational const& cost) {
if (cost >= m_min_cost) {
return;
}
rational delta_cost(0);
for (unsigned i = 0; i < seq.size(); ++i) {
delta_cost += seq[i];
}
if (cost + delta_cost < m_min_cost) {
m_min_cost = cost + delta_cost;
m_min_base = m_base;
m_min_base.push_back(delta_cost + rational::one());
}
for (unsigned i = 0; i < sizeof(g_primes)/sizeof(*g_primes); ++i) {
vector seq1;
rational p(g_primes[i]);
rational rest = carry_in;
// create seq1
for (unsigned j = 0; j < seq.size(); ++j) {
rest += seq[j] % p;
if (seq[j] >= p) {
seq1.push_back(div(seq[j], p));
}
}
m_base.push_back(p);
create_basis(seq1, div(rest, p), cost + rest);
m_base.pop_back();
}
}
bool create_basis() {
m_base.reset();
m_min_cost = rational(INT_MAX);
m_min_base.reset();
rational cost(0);
create_basis(m_coeffs, rational::zero(), cost);
m_base = m_min_base;
TRACE("pb",
tout << "Base: ";
for (unsigned i = 0; i < m_base.size(); ++i) {
tout << m_base[i] << " ";
}
tout << "\n";);
return
!m_base.empty() &&
m_base.back().is_unsigned() &&
m_base.back().get_unsigned() <= 20*m_base.size();
}
/**
\brief Check if 'out mod n >= lim'.
*/
expr_ref mod_ge(ptr_vector const& out, unsigned n, unsigned lim) {
TRACE("pb", for (unsigned i = 0; i < out.size(); ++i) tout << mk_pp(out[i], m) << " "; tout << "\n";
tout << "n:" << n << " lim: " << lim << "\n";);
if (lim == n) {
return expr_ref(m.mk_false(), m);
}
if (lim == 0) {
return expr_ref(m.mk_true(), m);
}
SASSERT(0 < lim && lim < n);
expr_ref_vector ors(m);
for (unsigned j = 0; j + lim - 1 < out.size(); j += n) {
expr_ref tmp(m);
tmp = out[j + lim - 1];
if (j + n - 1 < out.size()) {
tmp = m.mk_and(tmp, m.mk_not(out[j + n - 1]));
}
ors.push_back(tmp);
}
return ::mk_or(ors);
}
// x0 + 5x1 + 3x2 >= k
// x0 x1 x1 -> s0 s1 s2
// s2 x1 x2 -> s3 s4 s5
// k = 7: s5 or (s4 & not s2 & s0)
// k = 6: s4
// k = 5: s4 or (s3 & not s2 & s1)
// k = 4: s4 or (s3 & not s2 & s0)
// k = 3: s3
//
bool mk_ge(unsigned sz, expr * const* args, rational bound, expr_ref& result) {
if (!create_basis()) return false;
if (!bound.is_unsigned()) return false;
vector coeffs(m_coeffs);
result = m.mk_true();
expr_ref_vector carry(m), new_carry(m);
m_base.push_back(bound + rational::one());
for (const rational& b_i : m_base) {
unsigned B = b_i.get_unsigned();
unsigned d_i = (bound % b_i).get_unsigned();
bound = div(bound, b_i);
for (unsigned j = 0; j < coeffs.size(); ++j) {
rational c = coeffs[j] % b_i;
SASSERT(c.is_unsigned());
for (unsigned k = 0; k < c.get_unsigned(); ++k) {
carry.push_back(args[j]);
}
coeffs[j] = div(coeffs[j], b_i);
}
TRACE("pb", tout << "Carry: " << carry << "\n";
for (auto c : coeffs) tout << c << " ";
tout << "\n";
);
ptr_vector out;
m_sort.sorting(carry.size(), carry.data(), out);
expr_ref gt = mod_ge(out, B, d_i + 1);
expr_ref ge = mod_ge(out, B, d_i);
result = mk_and(ge, result);
result = mk_or(gt, result);
TRACE("pb", tout << "b: " << b_i << " d: " << d_i << " gt: " << gt << " ge: " << ge << " " << result << "\n";);
new_carry.reset();
for (unsigned j = B - 1; j < out.size(); j += B) {
new_carry.push_back(out[j]);
}
carry.reset();
carry.append(new_carry);
}
TRACE("pb", tout << "bound: " << bound << " Carry: " << carry << " result: " << result << "\n";);
return true;
}
/**
\brief binary merge encoding.
*/
expr_ref binary_merge(lbool is_le, rational const& k) {
expr_ref result(m);
unsigned_vector coeffs;
for (rational const& c : m_coeffs) {
if (c.is_unsigned()) {
coeffs.push_back(c.get_unsigned());
}
else {
return result;
}
}
if (!k.is_unsigned()) {
return result;
}
switch (is_le) {
case l_true:
result = m_sort.le(k.get_unsigned(), coeffs.size(), coeffs.data(), m_args.data());
break;
case l_false:
result = m_sort.ge(k.get_unsigned(), coeffs.size(), coeffs.data(), m_args.data());
break;
case l_undef:
result = m_sort.eq(k.get_unsigned(), coeffs.size(), coeffs.data(), m_args.data());
break;
}
return result;
}
/**
\brief Segment based encoding.
The PB terms are partitoned into segments, such that each segment contains arguments with the same cofficient.
The segments are sorted, such that the segment with highest coefficient is first.
Then for each segment create circuits based on sorting networks the arguments of the segment.
*/
expr_ref mk_seg_ge(rational const& k) {
rational bound(-k);
for (unsigned i = 0; i < m_args.size(); ++i) {
m_args[i] = mk_not(m_args[i].get());
bound += m_coeffs[i];
}
return mk_seg_le(bound);
}
expr_ref mk_seg_le(rational const& k) {
sort_args();
unsigned sz = m_args.size();
expr* const* args = m_args.data();
// Create sorted entries.
vector> outs;
vector coeffs;
for (unsigned i = 0, seg_size = 0; i < sz; i += seg_size) {
seg_size = segment_size(i);
ptr_vector out;
m_sort.sorting(seg_size, args + i, out);
out.push_back(m.mk_false());
outs.push_back(out);
coeffs.push_back(m_coeffs[i]);
}
return mk_seg_le_rec(outs, coeffs, 0, k);
}
expr_ref mk_seg_le_rec(vector> const& outs, vector const& coeffs, unsigned i, rational const& k) {
if (k.is_neg()) {
return expr_ref(m.mk_false(), m);
}
if (i == outs.size()) {
return expr_ref(m.mk_true(), m);
}
rational const& c = coeffs[i];
ptr_vector const& out = outs[i];
if (i + 1 == outs.size() && k >= rational(out.size()-1)*c) {
return expr_ref(m.mk_true(), m);
}
expr_ref_vector fmls(m);
fmls.push_back(m.mk_implies(m.mk_not(out[0]), mk_seg_le_rec(outs, coeffs, i + 1, k)));
rational k1;
for (unsigned j = 0; j + 1 < out.size(); ++j) {
k1 = k - rational(j+1)*c;
if (k1.is_neg()) {
fmls.push_back(m.mk_not(out[j]));
break;
}
fmls.push_back(m.mk_implies(m.mk_and(out[j], m.mk_not(out[j+1])), mk_seg_le_rec(outs, coeffs, i + 1, k1)));
}
return ::mk_and(fmls);
}
// The number of arguments with the same coefficient.
unsigned segment_size(unsigned start) const {
unsigned i = start;
while (i < m_args.size() && m_coeffs[i] == m_coeffs[start]) ++i;
return i - start;
}
expr_ref mk_and(expr_ref& a, expr_ref& b) {
if (m.is_true(a)) return b;
if (m.is_true(b)) return a;
if (m.is_false(a)) return a;
if (m.is_false(b)) return b;
return expr_ref(m.mk_and(a, b), m);
}
expr_ref mk_or(expr_ref& a, expr_ref& b) {
if (m.is_true(a)) return a;
if (m.is_true(b)) return b;
if (m.is_false(a)) return b;
if (m.is_false(b)) return a;
return expr_ref(m.mk_or(a, b), m);
}
bool mk_le(unsigned sz, expr * const* args, rational const& k, expr_ref& result) {
expr_ref_vector args1(m);
rational bound(-k);
for (unsigned i = 0; i < sz; ++i) {
args1.push_back(mk_not(args[i]));
bound += m_coeffs[i];
}
return mk_ge(sz, args1.data(), bound, result);
}
bool mk_eq(unsigned sz, expr * const* args, rational const& k, expr_ref& result) {
expr_ref r1(m), r2(m);
if (mk_ge(sz, args, k, r1) && mk_le(sz, args, k, r2)) {
result = m.mk_and(r1, r2);
return true;
}
else {
return false;
}
}
expr_ref mk_bv(func_decl * f, unsigned sz, expr * const* args) {
++m_imp.m_compile_bv;
decl_kind kind = f->get_decl_kind();
rational k = pb.get_k(f);
m_coeffs.reset();
m_args.reset();
for (unsigned i = 0; i < sz; ++i) {
m_coeffs.push_back(pb.get_coeff(f, i));
m_args.push_back(args[i]);
}
CTRACE("pb", k.is_neg(), tout << expr_ref(m.mk_app(f, sz, args), m) << "\n";);
SASSERT(!k.is_neg());
switch (kind) {
case OP_PB_GE:
case OP_AT_LEAST_K: {
dualize(f, m_args, k);
SASSERT(!k.is_neg());
return mk_le_ge(k);
}
case OP_PB_LE:
case OP_AT_MOST_K:
return mk_le_ge(k);
case OP_PB_EQ:
return mk_le_ge(k);
default:
UNREACHABLE();
return expr_ref(m.mk_true(), m);
}
}
void dualize(func_decl* f, expr_ref_vector & args, rational & k) {
k.neg();
for (unsigned i = 0; i < args.size(); ++i) {
k += pb.get_coeff(f, i);
args[i] = ::mk_not(m, args[i].get());
}
}
expr* negate(expr* e) {
if (m.is_not(e, e)) return e;
return m.mk_not(e);
}
expr* mk_ite(expr* c, expr* hi, expr* lo) {
while (m.is_not(c, c)) {
std::swap(hi, lo);
}
if (hi == lo) return hi;
if (m.is_true(hi) && m.is_false(lo)) return c;
if (m.is_false(hi) && m.is_true(lo)) return negate(c);
if (m.is_true(hi)) return m.mk_or(c, lo);
if (m.is_false(lo)) return m.mk_and(c, hi);
if (m.is_false(hi)) return m.mk_and(negate(c), lo);
if (m.is_true(lo)) return m.mk_implies(c, hi);
return m.mk_ite(c, hi, lo);
}
bool is_or(func_decl* f) {
switch (f->get_decl_kind()) {
case OP_AT_MOST_K:
case OP_PB_LE:
return false;
case OP_AT_LEAST_K:
case OP_PB_GE:
return pb.get_k(f).is_one();
case OP_PB_EQ:
return false;
default:
UNREACHABLE();
return false;
}
}
public:
card2bv_rewriter(imp& i, ast_manager& m):
m_sort(*this),
m(m),
m_imp(i),
au(m),
pb(m),
bv(m),
m_trail(m),
m_args(m),
m_keep_cardinality_constraints(false),
m_pb_solver(symbol("solver")),
m_min_arity(9)
{}
void set_pb_solver(symbol const& s) { m_pb_solver = s; }
bool mk_app(bool full, func_decl * f, unsigned sz, expr * const* args, expr_ref & result) {
if (f->get_family_id() == pb.get_family_id() && mk_pb(full, f, sz, args, result)) {
// skip
}
else if (au.is_le(f) && is_pb(args[0], args[1])) {
result = mk_le_ge(m_k);
}
else if (au.is_lt(f) && is_pb(args[0], args[1])) {
++m_k;
result = mk_le_ge(m_k);
}
else if (au.is_ge(f) && is_pb(args[1], args[0])) {
result = mk_le_ge(m_k);
}
else if (au.is_gt(f) && is_pb(args[1], args[0])) {
++m_k;
result = mk_le_ge(m_k);
}
else if (m.is_eq(f) && is_pb(args[0], args[1])) {
result = mk_le_ge(m_k);
}
else {
return false;
}
++m_imp.m_num_translated;
return true;
}
br_status mk_app_core(func_decl * f, unsigned sz, expr * const* args, expr_ref & result) {
if (mk_app(true, f, sz, args, result)) {
return BR_DONE;
}
else {
return BR_FAILED;
}
}
bool mk_app(bool full, expr* e, expr_ref& r) {
app* a;
return (is_app(e) && (a = to_app(e), mk_app(full, a->get_decl(), a->get_num_args(), a->get_args(), r)));
}
bool is_pb(expr* x, expr* y) {
m_args.reset();
m_coeffs.reset();
m_k.reset();
return is_pb(x, rational::one()) && is_pb(y, rational::minus_one());
}
bool is_pb(expr* e, rational const& mul) {
if (!is_app(e)) {
return false;
}
app* a = to_app(e);
rational r, r1, r2;
expr* c, *th, *el;
unsigned sz = a->get_num_args();
if (a->get_family_id() == au.get_family_id()) {
switch (a->get_decl_kind()) {
case OP_ADD:
for (unsigned i = 0; i < sz; ++i)
if (!is_pb(a->get_arg(i), mul))
return false;
return true;
case OP_SUB: {
if (!is_pb(a->get_arg(0), mul))
return false;
r = -mul;
for (unsigned i = 1; i < sz; ++i)
if (!is_pb(a->get_arg(i), r))
return false;
return true;
}
case OP_UMINUS:
return is_pb(a->get_arg(0), -mul);
case OP_NUM:
VERIFY(au.is_numeral(a, r));
m_k -= mul * r;
return m_k.is_int();
case OP_MUL:
if (sz != 2) {
return false;
}
if (au.is_numeral(a->get_arg(0), r)) {
r *= mul;
return is_pb(a->get_arg(1), r);
}
if (au.is_numeral(a->get_arg(1), r)) {
r *= mul;
return is_pb(a->get_arg(0), r);
}
return false;
default:
return false;
}
}
if (m.is_ite(a, c, th, el) &&
au.is_numeral(th, r1) &&
au.is_numeral(el, r2)) {
r1 *= mul;
r2 *= mul;
if (r1 < r2) {
m_args.push_back(::mk_not(m, c));
m_coeffs.push_back(r2-r1);
m_k -= r1;
}
else {
m_args.push_back(c);
m_coeffs.push_back(r1-r2);
m_k -= r2;
}
return m_k.is_int() && (r1-r2).is_int();
}
return false;
}
bool mk_pb(bool full, func_decl * f, unsigned sz, expr * const* args, expr_ref & result) {
SASSERT(f->get_family_id() == pb.get_family_id());
if (is_or(f)) {
result = m.mk_or(sz, args);
}
else if (pb.is_at_most_k(f) && pb.get_k(f).is_unsigned()) {
if (m_keep_cardinality_constraints && f->get_arity() >= m_min_arity) return false;
result = m_sort.le(full, pb.get_k(f).get_unsigned(), sz, args);
++m_imp.m_compile_card;
}
else if (pb.is_at_least_k(f) && pb.get_k(f).is_unsigned()) {
if (m_keep_cardinality_constraints && f->get_arity() >= m_min_arity) return false;
result = m_sort.ge(full, pb.get_k(f).get_unsigned(), sz, args);
++m_imp.m_compile_card;
}
else if (pb.is_eq(f) && pb.get_k(f).is_unsigned() && pb.has_unit_coefficients(f)) {
if (m_keep_cardinality_constraints && f->get_arity() >= m_min_arity) return false;
result = m_sort.eq(full, pb.get_k(f).get_unsigned(), sz, args);
++m_imp.m_compile_card;
}
else if (pb.is_le(f) && pb.get_k(f).is_unsigned() && pb.has_unit_coefficients(f)) {
if (m_keep_cardinality_constraints && f->get_arity() >= m_min_arity) return false;
result = m_sort.le(full, pb.get_k(f).get_unsigned(), sz, args);
++m_imp.m_compile_card;
}
else if (pb.is_ge(f) && pb.get_k(f).is_unsigned() && pb.has_unit_coefficients(f)) {
if (m_keep_cardinality_constraints && f->get_arity() >= m_min_arity) return false;
result = m_sort.ge(full, pb.get_k(f).get_unsigned(), sz, args);
++m_imp.m_compile_card;
}
else if (pb.is_eq(f) && pb.get_k(f).is_unsigned() && has_small_coefficients(f) && m_pb_solver == "solver") {
return false;
}
else if (pb.is_le(f) && pb.get_k(f).is_unsigned() && has_small_coefficients(f) && m_pb_solver == "solver") {
return false;
}
else if (pb.is_ge(f) && pb.get_k(f).is_unsigned() && has_small_coefficients(f) && m_pb_solver == "solver") {
return false;
}
else {
result = mk_bv(f, sz, args);
}
TRACE("pb", tout << "full: " << full << " " << expr_ref(m.mk_app(f, sz, args), m) << " " << result << "\n";
);
return true;
}
bool has_small_coefficients(func_decl* f) {
unsigned sz = f->get_arity();
unsigned sum = 0;
for (unsigned i = 0; i < sz; ++i) {
rational c = pb.get_coeff(f, i);
if (!c.is_unsigned()) return false;
unsigned sum1 = sum + c.get_unsigned();
if (sum1 < sum) return false;
sum = sum1;
}
return true;
}
// definitions used for sorting network
pliteral mk_false() { return m.mk_false(); }
pliteral mk_true() { return m.mk_true(); }
pliteral mk_max(unsigned n, pliteral const* lits) { return trail(m.mk_or(n, lits)); }
pliteral mk_min(unsigned n, pliteral const* lits) { return trail(m.mk_and(n, lits)); }
pliteral mk_not(pliteral a) { if (m.is_not(a,a)) return a; return trail(m.mk_not(a)); }
std::ostream& pp(std::ostream& out, pliteral lit) { return out << mk_ismt2_pp(lit, m); }
pliteral trail(pliteral l) {
m_trail.push_back(l);
return l;
}
pliteral fresh(char const* n) {
expr_ref fr(m.mk_fresh_const(n, m.mk_bool_sort()), m);
m_imp.m_fresh.push_back(to_app(fr)->get_decl());
return trail(fr);
}
void mk_clause(unsigned n, pliteral const* lits) {
m_imp.m_lemmas.push_back(::mk_or(m, n, lits));
}
void keep_cardinality_constraints(bool f) {
m_keep_cardinality_constraints = f;
}
void set_cardinality_encoding(sorting_network_encoding enc) { m_sort.cfg().m_encoding = enc; }
void set_min_arity(unsigned ma) { m_min_arity = ma; }
};
struct card2bv_rewriter_cfg : public default_rewriter_cfg {
card2bv_rewriter m_r;
bool rewrite_patterns() const { return false; }
bool flat_assoc(func_decl * f) const { return false; }
br_status reduce_app(func_decl * f, unsigned num, expr * const * args, expr_ref & result, proof_ref & result_pr) {
result_pr = nullptr;
if (m_r.m.proofs_enabled()) {
return BR_FAILED;
}
return m_r.mk_app_core(f, num, args, result);
}
card2bv_rewriter_cfg(imp& i, ast_manager & m):m_r(i, m) {}
void keep_cardinality_constraints(bool f) { m_r.keep_cardinality_constraints(f); }
void set_pb_solver(symbol const& s) { m_r.set_pb_solver(s); }
void set_cardinality_encoding(sorting_network_encoding enc) { m_r.set_cardinality_encoding(enc); }
void set_min_arity(unsigned ma) { m_r.set_min_arity(ma); }
};
class card_pb_rewriter : public rewriter_tpl {
public:
card2bv_rewriter_cfg m_cfg;
card_pb_rewriter(imp& i, ast_manager & m):
rewriter_tpl(m, false, m_cfg),
m_cfg(i, m) {}
void keep_cardinality_constraints(bool f) { m_cfg.keep_cardinality_constraints(f); }
void set_pb_solver(symbol const& s) { m_cfg.set_pb_solver(s); }
void set_cardinality_encoding(sorting_network_encoding e) { m_cfg.set_cardinality_encoding(e); }
void set_min_arity(unsigned ma) { m_cfg.set_min_arity(ma); }
void rewrite(bool full, expr* e, expr_ref& r, proof_ref& p) {
expr_ref ee(e, m());
if (m().proofs_enabled()) {
r = e;
return;
}
if (m_cfg.m_r.mk_app(full, e, r)) {
ee = r;
}
(*this)(ee, r, p);
}
};
card_pb_rewriter m_rw;
bool keep_cardinality() const {
params_ref const& p = m_params;
return
p.get_bool("keep_cardinality_constraints", false) ||
p.get_bool("sat.cardinality.solver", false) ||
p.get_bool("cardinality.solver", false) ||
gparams::get_module("sat").get_bool("cardinality.solver", false);
}
symbol pb_solver() const {
params_ref const& p = m_params;
symbol s = p.get_sym("sat.pb.solver", symbol());
if (s != symbol()) return s;
s = p.get_sym("pb.solver", symbol());
if (s != symbol()) return s;
return gparams::get_module("sat").get_sym("pb.solver", symbol("solver"));
}
unsigned min_arity() const {
params_ref const& p = m_params;
unsigned r = p.get_uint("sat.pb.min_arity", UINT_MAX);
if (r != UINT_MAX) return r;
r = p.get_uint("pb.min_arity", UINT_MAX);
if (r != UINT_MAX) return r;
return gparams::get_module("sat").get_uint("pb.min_arity", 9);
}
sorting_network_encoding cardinality_encoding() const {
symbol enc = m_params.get_sym("cardinality.encoding", symbol());
if (enc == symbol()) {
enc = gparams::get_module("sat").get_sym("cardinality.encoding", symbol());
}
if (enc == symbol("grouped")) return sorting_network_encoding::grouped_at_most;
if (enc == symbol("bimander")) return sorting_network_encoding::bimander_at_most;
if (enc == symbol("ordered")) return sorting_network_encoding::ordered_at_most;
if (enc == symbol("unate")) return sorting_network_encoding::unate_at_most;
if (enc == symbol("circuit")) return sorting_network_encoding::circuit_at_most;
return sorting_network_encoding::grouped_at_most;
}
imp(ast_manager& m, params_ref const& p):
m(m), m_params(p), m_lemmas(m),
m_fresh(m),
m_num_translated(0),
m_rw(*this, m) {
updt_params(p);
m_compile_bv = 0;
m_compile_card = 0;
}
void updt_params(params_ref const & p) {
m_params.append(p);
m_rw.keep_cardinality_constraints(keep_cardinality());
m_rw.set_pb_solver(pb_solver());
m_rw.set_cardinality_encoding(cardinality_encoding());
m_rw.set_min_arity(min_arity());
}
void collect_param_descrs(param_descrs& r) const {
r.insert("keep_cardinality_constraints", CPK_BOOL, "retain cardinality constraints (don't bit-blast them) and use built-in cardinality solver", "false");
r.insert("pb.solver", CPK_SYMBOL, "encoding used for Pseudo-Boolean constraints: totalizer, sorting, binary_merge, bv, solver. PB constraints are retained if set to 'solver'", "solver");
r.insert("cardinality.encoding", CPK_SYMBOL, "encoding used for cardinality constraints: grouped, bimander, ordered, unate, circuit", "none");
}
unsigned get_num_steps() const { return m_rw.get_num_steps(); }
void cleanup() { m_rw.cleanup(); }
void operator()(bool full, expr * e, expr_ref & result, proof_ref & result_proof) {
// m_rw(e, result, result_proof);
m_rw.rewrite(full, e, result, result_proof);
}
void push() {
m_fresh_lim.push_back(m_fresh.size());
}
void pop(unsigned num_scopes) {
SASSERT(m_lemmas.empty()); // lemmas must be flushed before pop.
if (num_scopes > 0) {
SASSERT(num_scopes <= m_fresh_lim.size());
unsigned new_sz = m_fresh_lim.size() - num_scopes;
unsigned lim = m_fresh_lim[new_sz];
m_fresh.resize(lim);
m_fresh_lim.resize(new_sz);
}
m_rw.reset();
}
void flush_side_constraints(expr_ref_vector& side_constraints) {
side_constraints.append(m_lemmas);
m_lemmas.reset();
}
void collect_statistics(statistics & st) const {
st.update("pb-compile-bv", m_compile_bv);
st.update("pb-compile-card", m_compile_card);
st.update("pb-aux-variables", m_fresh.size());
st.update("pb-aux-clauses", m_rw.m_cfg.m_r.m_sort.m_stats.m_num_compiled_clauses);
}
};
pb2bv_rewriter::pb2bv_rewriter(ast_manager & m, params_ref const& p) { m_imp = alloc(imp, m, p); }
pb2bv_rewriter::~pb2bv_rewriter() { dealloc(m_imp); }
void pb2bv_rewriter::updt_params(params_ref const & p) { m_imp->updt_params(p); }
void pb2bv_rewriter::collect_param_descrs(param_descrs& r) const { m_imp->collect_param_descrs(r); }
ast_manager & pb2bv_rewriter::m() const { return m_imp->m; }
unsigned pb2bv_rewriter::get_num_steps() const { return m_imp->get_num_steps(); }
void pb2bv_rewriter::cleanup() { ast_manager& mgr = m(); params_ref p = m_imp->m_params; dealloc(m_imp); m_imp = alloc(imp, mgr, p); }
func_decl_ref_vector const& pb2bv_rewriter::fresh_constants() const { return m_imp->m_fresh; }
void pb2bv_rewriter::operator()(bool full, expr * e, expr_ref & result, proof_ref & result_proof) { (*m_imp)(full, e, result, result_proof); }
void pb2bv_rewriter::push() { m_imp->push(); }
void pb2bv_rewriter::pop(unsigned num_scopes) { m_imp->pop(num_scopes); }
void pb2bv_rewriter::flush_side_constraints(expr_ref_vector& side_constraints) { m_imp->flush_side_constraints(side_constraints); }
unsigned pb2bv_rewriter::num_translated() const { return m_imp->m_num_translated; }
void pb2bv_rewriter::collect_statistics(statistics & st) const { m_imp->collect_statistics(st); }